All rings are commutative with 1. This worksheet pursues two main results on Artinian rings:

1. An Artinian ring is a Noetherian ring of dimension 0 (Thm 1.6).
2. Structure theorem for Artinian rings (Thm 1.9)

Lemma 1.1. Let R be an Artinian integral domain. Then R is a field.

Proof. Exercise \(\square \)

Proposition 1.2. Let R be an Artinian ring. Then any prime ideal is maximal.

Proof. Exercise \(\square \)

Corollary 1.3. Let R be an Artinian ring. Then the Krull dimension of R is zero.

Proof. Exercise (one line proof though). \(\square \)

Proposition 1.4. Let R be an Noetherian ring. Then $\mathfrak{N}(R)$ is a nilpotent ideal.

Proof. Exercise \(\square \)

Lemma 1.5. (1). Let p be a prime ideal in R. Then $\text{rad}(p^n) = p$.
(2). Let p_1, p_2 be prime ideals in R which are also relatively prime. Then p_1^n, p_2^m are relatively prime for any $n, m > 0$.

Proof. Exercise (use properties of radicals from Hw. 1 for a very short proof of 2)). \(\square \)

Theorem 1.6. A ring R is Artinian if and only if it is Noetherian of Krull dimension 0.

Proof. Artinian implies Noetherian by Hopkins-Levitzki theorem (Homework 1, problem 5); dimension is 0 by Cor. 1.3.

Now let R be a zero-dimensional Noetherian ring. By pr. 2, Hm. 2, R has finitely many minimal prime ideals; since dimension is zero, all prime ideals are maximal. Let $\{m_1, m_2, \ldots, m_n\}$ be the set of all maximal ideals in R. Then $\mathfrak{N} = m_1 \cap \ldots \cap m_n = m_1 \cdot \ldots \cdot m_n$. Hence, $m_1^\ell \cdot \ldots \cdot m_n^\ell = 0$ for a big enough ℓ by Prop. 1.4. Now show that R has a composition series and conclude that it is Artinian. Finish the proof \(\square \)

Corollary 1.7. Let R be a Noetherian local ring with a maximal ideal m. Then one of the following holds:

- either $m^n \neq m^{n+1}$ for any $n > 0$
- or there exists n such that $m^n = 0$. In the latter case, R is Artinian.

Proof. Exercise \(\square \)

In other words, a local Noetherian ring is Artinian if and only if the unique maximal ideal is nilpotent.

Lemma 1.8. Let R_1, R_2 be Artinian rings. Then $R_1 \times R_2$ is also Artinian.
Proof. Exercise

Theorem 1.9. Any Artinian ring decomposes uniquely (up to isomorphism) as a direct product of finitely many local Artinian rings.

Proof. Exercise (don’t forget Chinese Remainder theorem).

Remark 1.10. For an Artinian ring R, Spec R is just a union of finitely many points. Zariski topology becomes a discrete topology. Spec R is irreducible if and only if R is local.