Homework 3 for 506, Spring 2009

due Friday, April 24

Throughout this homework, k will be a field.

Problem 1. Let $X \subset \mathbb{A}^n$ be an algebraic set. Show that X is irreducible if and only if I(X) is prime.

Problem 2. Let $\mathfrak{a} = (XY, YZ, XZ) \subset k[X, Y, Z]$. Let $X = V(\mathfrak{a}) \subset \mathbb{A}^3$. Answer the following questions (you may assume $k = \bar{k}$ if it helps):

- (1) Describe (or sketch) X.
- (2) What is the dimension of X?
- (3) How many irreducible components does X have?
- (4) Prove or disprove: $\mathfrak{a} = I(V(\mathfrak{a}))$.
- (5) Show that \mathfrak{a} cannot be generated by two elements.

Now let $\mathfrak{a}' = (XY, (X - Y)Z) \subset k[X, Y, Z]$, and let $X' = V(\mathfrak{a}')$. Describe $V(\mathfrak{a}')$ and calculate $\mathrm{rad}(\mathfrak{a}')$.

Problem 3. Let $f, g \in k[X, Y]$ be irreducible polynomials, such that neither one is a multiple of the other. Show that V((f, g)) is a finite set.

Problem 4.

- (1) Let $A \subset B \subset C$ be algebras such that B is finite over A, and C is finite over B. Show that C is finite over A.
- (2) Let B be a finite A-algebra, and let $b \in B$. Show that b is a root of a monic polynomial over A, that is, there exist $a_0, \ldots, a_{n-1} \in A$ such that

$$b^n + a_{n-1}b^{n-1} \cdot \cdot \cdot + a_1b + a_0 = 0.$$

(3) Prove the converse: Let b be a root of a monic polynomial over A, then B=A[b] is a finite A-algebra.

Problem 5. Let k be an infinite field, and let $f \in k[x_1, ..., x_n]$. Assume that $f \not\equiv \text{const.}$ Show that $V(f) \not= \mathbb{A}^n$.

Problem 6. Let R be an integral domain with a unique non-trivial prime ideal \mathfrak{p} , and let K be the fraction field of R. Let $S = R/\mathfrak{p} \times K$. Define $\phi : R \to S$ as $\phi(x) = (\bar{x}, x)$ where \bar{x} is the image of x in the quotient R/\mathfrak{p} . Show that ϕ^* : Spec $S \to \operatorname{Spec} R$ is bijective but not a homeomorphism.