Throughout this worksheet A is a ring with 1, not necessarily commutative.

Definition 1.1. Let A be a ring, and M be a (left) A-module. We say that M satisfies a *descending chain condition* if any decreasing chain of submodules

$$M_1 \supset M_2 \supset \ldots \supset M_{i-1} \supset M_i \supset \ldots$$

stabilizes.

Lemma 1.2. Prove that the following conditions on an A-module M are equivalent:

1. M satisfies the descending chain condition
2. Any non-empty set of submodules of M has a minimal element

Proof. Exercise. □

Definition 1.3.

1. Let A be a ring, and M be a (left) A-module. We say that M is Artinian if it satisfies the descending chain condition.
2. A ring A is Artinian if it is an Artinian module over itself.

Provide justifications for the following examples.

Example 1.4.

1. \mathbb{Z} is Noetherian but not Artinian (as a ring).
2. Let p be fixed prime number. Let $G < \mathbb{Q}/\mathbb{Z}$ be a subgroup consisting of all elements of order p^n for some $n \geq 0$. Then G is an Artinian \mathbb{Z}-module but not a Noetherian one (i.e., satisfies the descending chain condition but not the ascending chain condition).

Proposition 1.5. Let $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ be a short exact sequence of A-modules. Then M_2 is Artinian if and only if M_1, M_3 are Artinian.

Proof. Exercise. □

Proposition 1.6. Let A be an Artinian ring, and M be a finitely generated A-module. Then M is Artinian.

Proof. Exercise. □