Solutions/sketches for the Final for 505, Winter 2010

Wednesday, March 17, in-class

Problem 1. Let A be a principal ideal domain, and let F be a finitely generated free module. Show that any submodule of F is free.

Solution. Consult your notes.

Problem 2. Prove a special case of the uniqueness part of the Artin-Wedderburn theorem. Let D, D' be division rings. Show that $M_n(D) \simeq M_m(D')$ (as rings) if and only if $n = m, D \simeq D'$.

Solution. Let $A = M_n(D)$. Let L_i be a left ideal of $M_n(D)$ consisting of matrices with zeros everywhere except in the ith column. By the fact stated in class (and proved in the special case when D is a field), L_i, for $1 \leq i \leq n$, is a simple module for $M_n(D)$. Moreover, $L_1 \simeq L_i$ for any $i, 1 \leq i \leq n$, as $M_n(D)$-modules (the isomorphism just takes the 1st column to the ith column), and we have $A = M_n(D) = L_1 \oplus L_2 \oplus \ldots \oplus L_n \simeq L_1^\oplus n$.

Similarly, $A = M_n(D') = L'_1 \oplus \ldots \oplus L'_m \simeq (L'_1)^\oplus m$, where L'_i is the left ideal consisting of matrices in $M_m(D')$ with zeros everywhere except in the ith column.

Note that a direct sum decomposition $A \simeq L_1^\oplus n$ yields a composition series for A as an A-module:

$$0 \subset L \subset L \oplus L \subset \ldots \subset L^\oplus n$$

with n composition factors, each one isomorphic to L. Since we have constructed two direct sum decompositions: $A \simeq L_1^\oplus n$ and $A \simeq (L'_1)^\oplus m$, the Jordan-Holder theorem implies that $n = m$ and $L_1 \simeq L'_1$ as A-modules. Therefore, $D \simeq \text{End}_A(L_1, L_1) \simeq \text{End}_A(L'_1, L'_1) \simeq D'$.

Problem 3. Let F be a finite field. Prove that for any positive integer n there exists an irreducible polynomial $f(x) \in F[x]$ of degree n.

Solution. Let $F = \mathbb{F}_{p^n}$, and let $L = \mathbb{F}_{p^{mn}}$. By the theory for finite fields, $[L : F] = n$. Also, L/F is a separable extension since finite fields are perfect. By the primitive element theorem, there exists $\alpha \in L$ such that $L = F(\alpha)$. Let $f(x) = \text{Irr}(\alpha, F)$. Then $\deg f(x) = [L : F] = n$, and f is irreducible by construction.

Problem 4. Let G be a finite abelian group. Show that any irreducible representation of G over an algebraically closed field k is one–dimensional.

Solution 1 (Using Artin–Wedderburn theorem). Let $J(kG)$ be the Jacobson radical of the group algebra kG. First, we observe that $kG/J(kG)$ is a semi–simple algebra. Indeed, since kG is a finite–dimensional k-algebra, it is Artinian. Therefore, $kG/J(kG)$ is also Artinian, since a quotient of an Artinian ring is Artinian. Moreover, $J(kG/J(kG)) = 0$ (a classical property of the Jacobson radical proved in homework). Another result we proved in class says that if A is an Artinian ring such that $J(A) = 0$ then A is semi–simple. Hence, $kG/J(kG)$ is semi–simple.

By Artin-Wedderburn, $kG/J(kG)$ is a product of matrix rings of the form $M_n(D)$ where D is a finite–dimensional division algebra over k. By the “Tiny Wedderburn theorem”\footnote{Tiny Wedderburn theorem: the only finite dimensional division algebra over an algebraically closed field k is k itself}, there are no non-trivial finite-dimensional division algebras over algebraically closed fields. Hence, $M_n(D) = M_n(k)$. We conclude that $kG/J(kG)$ is a product of matrix rings over k. Now commutativity of kG implies that all these
matrix rings are trivial. We conclude \(kG/J(kG) \simeq k \oplus k \oplus \ldots \oplus k \). Since any simple \(kG/J(kG) \) module must appear in this decomposition, we get that all simple \(kG/J(kG) \)-modules are one-dimensional.

Now let \(L \) be an irreducible representation of \(G \). Then \(L \) is a simple \(kG \)-module. Let \(m \subset kG \) be the annihilator of \(L \). Then \(J(kG) \subset m \) by the definition of the Jacobson radical. Hence, \(J(kG) \) acts trivially on \(L \). We conclude that the action of \(kG \) on \(L \) factors through the action of \(kG/J(kG) \). In other words, \(L \) is a simple module for \(kG/J(kG) \). By the discussion above, \(L \) is one-dimensional.

Solution 2 (Using Schur’s lemma). Let \(L \) be an irreducible representation of \(G \). Let \(s \in G \), and define \(\rho_s : L \to L \) via \(\rho_s(m) = sm \) for any \(m \in L \). This is evidently a \(k \)-linear operator. We claim that \(\rho_s \) is a \(G \)-invariant map (that is, \(\rho_s \in \text{End}_{kG}(L) \)). Indeed, let \(g \in G, m \in L \). Then
\[
\rho_s(gm) = gsm = g \rho_s(m)
\]
(This is where we need commutativity of \(G \)) Since \(k \) is algebraically closed, Schur’s lemma together with the “Tiny Wedderburn theorem” implies that \(\text{End}_{kG}(L) = k \).

Therefore, \(\rho_s \in \text{End}_{kG}(L) = k \) is simply a multiplication by a scalar.

Let \(m \) be any element in \(L \). Then \(sm = \rho_s m \in km \subset L \). Hence, any element in \(L \) generates a \(G \)-invariant subspace. Since \(L \) is irreducible, we must have \(L = km \). Therefore, \(L \) is one-dimensional.

Solution 3 (Jim Stark.) Any homomorphism \(\chi : G \to k^* \) is a one dimensional representation of \(G \) whose character is exactly \(\chi \). As \(G \) is abelian it has \(|G| \) conjugacy classes and hence \(|G| \) irreducible representations; therefore, to prove the proposition it suffices to exhibit \(|G| \) different homomorphisms from \(G \) to \(k^* \).

By the fundamental theorem of abelian groups we take \(G \) to be a direct product of cyclic groups
\[
G = \mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_n.
\]
For each \(1 \leq i \leq n \) let \(\omega_i \in k \) be a primitive \((d_i)\)th root of unity; this we can do because \(k \) is algebraically closed. Given any \(t = (t_1, \ldots, t_n) \) in \(G \) define \(\chi_t : G \to k^* \) by
\[
\chi_t(x_1, \ldots, x_n) = \omega_1^{t_1 x_1} \cdots \omega_n^{t_n x_n}.
\]
Observe that \(t_i x_i \) is in \(\mathbb{Z}/d_i \) but \(\omega_i^{t_i} = 1 \) so this is a well defined map and, by elementary ring identities, a homomorphism. Assume \(s, t \in G \) with \(s \neq t \). Then \(s \) and \(t \) differ in some coordinate, say the \(i \)th. Let \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) be the element of \(G \) that has zeros everywhere save a one in the \(i \)th coordinate. Then
\[
\chi_s(e_i) = \omega_i^{t_i} \quad \text{and} \quad \chi_t(e_i) = \omega_i^{s_i}.
\]
As \(s_i \neq t_i \) and \(\omega_i \) is primitive we have \(\omega_i^{t_i} \neq \omega_i^{s_i} \); hence, \(\chi_s \neq \chi_t \). This shows that \(\chi_t \), as \(t \) ranges over \(G \), gives \(|G| \) distinct homomorphisms from \(G \) to \(k^* \) and completes the proof of the proposition. \(\square \)

Problem 5.

1. Let \(V \) be a complex representation of the symmetric group \(S_n \). Let \(m = \text{dim} V \), let \(\chi \) be the character of \(V \), and let \(s \in S_n \) be a transposition. What are the possible values of \(\chi(s) \)?
2. Answer the same question in the following special case: \(V \) is an irreducible representation of \(S_3 \).

Solution. a). Let \(\rho : S_n \to \text{GL}_m \) be the representation of \(S_n \) on \(V \). Since \(s^2 = 1 \), \(\rho(s)^2 = \text{Id} \). Hence, for any eigenvalue \(\lambda \) of \(\rho(s) \), we must have \(\lambda^2 = 1 \). Therefore,
$\lambda = \pm 1$. This implies that the possible values for $\text{Tr}(\rho(s))$ are

$$-m, -m + 2, \ldots, m - 2, m,$$

$m + 1$ total values. We note that all of them can be realized. Indeed, let $V = \text{triv}^\oplus \ell \oplus \text{sgn}^\oplus (m - \ell)$. Then $\chi_V(s) = \ell \chi_{\text{triv}}(s) + (m - \ell) \chi_{\text{sgn}}(s) = \ell - (m - \ell) = 2\ell - m$.

When ℓ ranges from 0 to m, the value of $\chi_V(s)$ ranges through the list above.

b). There are three irreducible representations of S_3: triv, sgn and the 2-dimensional standard representation W. If we write down the character table, we can just read off the values for $s = (12)$:

<table>
<thead>
<tr>
<th></th>
<th>triv</th>
<th>sgn</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(12)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(123)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

In particular, in dimension 2 only one value, 0, is realized by an irreducible representation. For 2 and -2 we have to take triv$^\oplus 2$ and sgn$^\oplus 2$ respectively.