
WORKSHEET ON SYMMETRIC GROUPS, MATH 504, FALL 2018

DUE FRIDAY, NOVEMBER 2
EXTENDED TO MONDAY, NOV 5, BY POPULAR DEMAND AND CONVINCING ARGUMENTS

1. Generators of Sn

Definition 1.1. The symmetric group on n elements, denoted Sn is a group of self-bijections
(or permutations) of the set X = {1, 2, . . . , n}. For the purposes of this worksheet, we multiply
permutations from left to right. You could multiply from right to left as well - this will not change
any of the main results but you’ll need to adjust some of the formulas. Either way is fine as long as
you (and I:)) are consistent.

Notation. Let σ ∈ Sn. Hence, σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection. The commonly used
notation for the corresponding permutation is the following:(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
Definition 1.2. A permutation σ ∈ Sn is called a cycle if there exists a subset {x1, . . . , xk} ⊂
{1, 2, . . . , n} such that σ(xi) = xi+1 and σ(y) = y for any y 6= xi. The standard notation for such a
permutation is

(x1, x2, . . . , xk).

Two cycles (x1, x2, . . . , xk) and (y1, y2, . . . , y`) are called disjoint if the sets {x1, x2, . . . , xk} and
{y1, y2, . . . , y`} do not intersect.

Example 1.3.

(
1 2 3 4 5
1 3 4 2 5

)
= (234)

Symmetric group has various sets of generators. For example:

Proposition 1.4. (= Problem 0 .) The symmetric group Sn can be generated by two elements: a
cycle of length 2 and a cycle of length n.

Proposition 1.5. (= Problem 1 .) Any permutation σ ∈ Sn can be written as a composition of
disjoint cycles.

Remark 1.6. Such decomposition is unique up to the order of the factors.

Example 1.7.

(
1 2 3 4 5
5 3 4 2 1

)
= (15)(234)(

1 2 3 4 5
2 1 3 5 4

)
= (12)(3)(45) = (12)(45)

A cycle of length 1, such as (3) in the example above, just indicates that the corresponding
element is fixed under the permutation. These are often skipped when permutation is written as a
product of cycles.
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We now describe the conjugacy classes of Sn ( = the orbits under the action by conjugation of
Sn on itself).

Theorem 1.8. (= Problem 2 .) Let σ, τ ∈ Sn. Then σ and τ are conjugate if and only if their
decompositions into disjoint cycles can be put into one-to-one correspondence such that the corre-
sponding cycles are of the same length.

In particular, the conjugacy class of a single cycle consists of all cycles of the same length.

Remark 1.9. The group Sn is non-commutative for n ≥ 3. Nonetheless, disjoint cycles always
commute.

Definition 1.10. A transposition is a cycle of length 2.

Proposition 1.11. (= Problem 3 .) The symmetric group Sn is generated by transpositions.

2. Alternating group

Note that the symmetric group Sn acts on polynomials on n variables. Namely, we define

(σf)(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n))

In short, σf = f ◦ σ−1. For example, for n = 3, σ = (12) a cycle of length 2,

σ(x21x2x
5
3) = x22x1x

5
3 = x1x

2
2x

5
3.

For σ = (123),

σ(x21x2x
5
3) = x23x1x

5
2 = x1x

5
2x

2
3.

Let

f(x1, . . . , xn) =
∏
i<j

(xi − xj).

Question. Do you know for which matrix f(x1, . . . , xn) is a determinant?

Note that for any σ ∈ Sn, we have σf = ±f . Define a map

Sgn : Sn → Z/2Z

via Sgn(σ) = −1 if σf = −f and Sgn(σ) = 1 otherwise.

Proposition 2.1. (= Problem 4 .) Sgn is a group homomorphism.

Definition 2.2. A permutation σ ∈ Sn is called even if Sgn(σ) = 1. Otherwise, it is called odd.

Corollary 2.3. The subset of all even permutations is a normal subgroup of Sn.

Definition 2.4. The subgroup of even permutations is called an alternating group An.

As we shall see in the following theorem, the sign of a permutation can be determined from its
decomposition into transpositions.

Theorem 2.5. (= Problem 5 .) (1) If τ ∈ Sn is a transposition, then Sgn(τ) = −1
(2) A permutation σ is even if and only if it can be written as a product of even number of transpo-
sitions.

We now determine generators of An.

Theorem 2.6. (= Problem 6 .) The group An is generated by 3-cycles of the form (12i), 3 ≤ i ≤ n.
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3. Derived series for Sn

Theorem 3.1. (= Problem 7 ) The symmetric group Sn is solvable for n = 2, 3, 4.

Write down the explicit derived series in the proof.

Theorem 3.2. (= Problem 8 )

(1) [Sn, Sn] = An
(2) For n ≥ 5, [An, An] = An

The following lemma might be useful (prove it if you use it):

Lemma 3.3. Let i, j, k, `,m be distinct integers. Then

(1) (ij)(k`) = [(ijk), (ij`)],
(2) (ijk) = [(ik), (ij)],
(3) (ijk) = [(ik`), (ijm)].

Theorem 3.4. For n ≥ 5, the group An is simple.

4. Sylow subgroups of Spn

In this section you’ll give an alternative proof of the first Sylow theorem. So you are NOT allowed
to assume any of them!
Let ν(n) denote the maximal power of p dividing (pn)!; that is, pν(n)|(pn)! but pν(n)+1 6 |(pn)!.

Lemma 4.1. ν(n) = 1 + p+ . . .+ pn−1.

Proposition 4.2. (= Problem 9 ) The symmetric group Spn has a Sylow p-subgroup.

Proof. Hint: proof by induction. For the induction step n − 1 7→ n, subdivide Spn into p equal
parts. Consider the permutation σ of order p defined explicitly as a product of pn−1 disjoint cycles
as follows:

σ = (1, pn−1+1, . . . , (p−1)pn−1+1) . . . (j, pn−1+j, . . . , (p−1)pn−1+j) . . . (pn−1, 2pn−1, . . . , (p−1)pn−1, pn)

Now using a Sylow p-subgroup of Spn−1 and the permutation σ, construct a Sylow p-subgroup for
Spn . �

Definition 4.3. Let G be a group, and H,K be subgroups of G. For an element x ∈ G, the set

HxK := {hxk |h ∈ H, k ∈ K}
is called a double coset of H,K in G.

The next three statements constitute Problem 10 .

Lemma 4.4. Suppose H,K are finite subgroups of G. Then for any x ∈ G,

|HxK| = |H||K|
|H ∩ xKx−1|

.

Proposition 4.5. Let H < G be finite groups, and suppose that G has a Sylow subgroup Q. Then
H has a Sylow subgroup P . Moreover, P = H ∩ xQx−1 for some x ∈ G.

Proof. Hint: Consider double cosets HxQ, and let pn be the maximal power of p dividing |H| (so
that the expected order of P is pn). Using the formula for the size of double cosets in the Lemma
above and the fact that G is a union of non disjoint double cosets, show (by contradiction) that at
least one intersection H ∩ xQx−1 must have the maximal possible size pn. �

Now, the first Sylow theorem is an easy consequence of what you already proved.

Theorem 4.6. Any finite group whose order is divisible by p has a Sylow p-subgroup.
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5. Old Homework problem

This part is optional but if you haven’t completed Problem 2.2 in Homework 3, you could do a
simplified version of the proof of one of the theorems in the previous section here and claim credit
for the old homework.

Problem 5.1. (= Problem 4.2 of HW 3 ) Describe explicitly the Sylow 2-subgroup of S2n .


