
WORKSHEET ON SYMMETRIC POLYNOMIALS AND GAUSS LEMMA

DUE WEDNESDAY, NOVEMBER 28, 2018

1. Elementary symmetric polynomials

Definition 1.1. Let R be a ring (commutative, with unit). A polynomial f ∈ R[x1, . . . , xn] is
symmetric if for any σ ∈ Sn, f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

Alternatively, define the action of Sn on R[x1, . . . , xn] via

σ ◦ f(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).

The symmetric polynomials are invariants of this action - the polynomials for which the stabilizer
is the entire group Sn.

Example 1.2. Let n = 3. Then x171 + x172 + x173 , x1x
16
2 + x2x

16
3 + x3x

16
1 are symmetric whereas

x1x
2
2x

3
3 is not.

Consider the polynomial P (t) = (t− x1)(t− x2) . . . (t− xn) in R[x1, . . . , xn][t]. Let

P (t) = tn − e1(x1, . . . , xn)tn−1 + e2(x1, . . . , xn)tn−2 − . . .+ (−1)nen(x1, . . . , xn)

Definition 1.3. Polynomials ei(x1, . . . , xn), 1 ≤ i ≤ n, are called the elementary symmetric poly-
nomials.

Observe that P (t) is clearly invariant under the action of Sn. Hence, the elementary symmetric
polynomials are, in fact, symmetric. Of course, one can write them down explicitly:
e1 = x1 + . . .+ xn
e2 = x1x2 + x1x3 + . . .+ xn−1xn
. . .
en = x1 . . . xn

Let α = (α1, . . . , αn) ∈ Zn≥0 and denote by xα the monomial xα1
1 . . . xαn

n . We’ll say that xα > xβ

if α > β in lexicographical order. If f is a polynomial in R[x1, . . . , xn] then the multidegree of f is
the degree α of the maximal monomial in f . The degree of a monomial xα is α1 + . . . + αn. The
degree of a polynomial f is the maximum among the degrees of its monomials.

Observe that any symmetric polynomial containing xα must contain
∑
σ∈Sn

x
σ(α1)
1 . . . x

σ(αn)
n .

Definition 1.4. A polynomial f is called homogeneous if f is a sum of monomials of the same
degree.

Note that elementary symmetric polynomials are homogeneous and determined by a multidegree
α which consists of only 0’s and 1’s.

Theorem 1.5. (= Problem 1) Let f(x1, . . . , xn) ∈ R[x1, . . . , xn] be a symmetric polynomial. Then
there exists a polynomial F ∈ R[y1, . . . , yn] such that f(x1, . . . , xn) = F (e1, . . . , en).

In other words, any symmetric polynomial can be expressed in terms of elementary ones.
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Example 1.6. x31 + x32 + x33 = e31 − 3e1e2 + 3e3.

Definition 1.7. We say that f1, . . . , fm ∈ R[x1, . . . , xn] are algebraically independent if there does
not exist 0 6= F ∈ R[x1, . . . , xm] such that F (f1, . . . , fm) = 0.

Theorem 1.8. (=Problem 2). Prove that elementary symmetric polynomials on n variables are
algebraically independent.

The combination of these two results is sometimes referred to as the “Fundamental Theorem of
symmetric polynomials”:

Theorem 1.9. The ring of invariants of the polynomial ring on n variables under the action of the
symmetric group is a polynomial ring on the elementary symmetric polynomials:

R[x1, . . . , xn]Sn ' R[e1, . . . , en].

Hint: Both statements can be proven by induction on n and then on the total degree of the
polynomial. If you get stuck, check out Lang, VI.6. The proof in Lang is sketched on Wikipedia
which also offers another, more elegant, alternative proof.
R[x1, . . . , xn]Sn is called the ring of symmetric polynomials.

2. Newton identities

This section is FYI although proving Newton identities is a very good exercise.
Let pk(x1, . . . , xn) = xk1 + . . . + xkn. Since pk is symmetric, it can be expressed in terms of

elementary symmetric polynomials. Explicit formulas can be obtained recursively via Newton
Identities:

kek =

k∑
i=1

(−1)i−1ek−ipi

(The convention here is e0 = 1).

The following results are straightforward applications of the Newton identities.

Theorem 2.1. Assume R is a field of characteristic 0. Then {p1, . . . , pn} are algebraically inde-
pendent generators of the ring of symmetric polynomials R[x1, . . . , xn]Sn .

Corollary 2.2. Let t1, . . . , tn be all roots (counted with multiplicity and, possibly, complex) of a
polynomial of degree n with real coefficients. Then tk1 + . . .+ tkn is a real number for any k.

3. Gauss Lemma

For this part let A be a unique factorization domain, and K = Frac(A) be its field of fractions.
For any s ∈ K, we can write

s = prt

where p is an irreducible element in A, r is an integer, and t ∼= a/b ∈ K such that p does not divide
a or b. Then the integer r is uniquely determined and is called the order of s at p:

r = ordps.

For f = anX
n + an−1X

n−1 + . . .+ a0 ∈ K[X], we define the order of f at p to be ∞ if f = 0 and
min0≤i≤n ordpai otherwise. Finally, we the define the content of f as follows:

cont(f) =
∏

ordpf 6=0

pordpf

OR any multiple of this product by an invertible element in A.
Caution: Content is defined UP TO a scalar multiplication by a unit element.
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Definition 3.1. A polynomial f(X) ∈ A[X] is primitive if cont(f) = 1.

Theorem 3.2. ( = Problem 3 a,b ).

(1) Let f, g ∈ K[X]. Then cont(fg) = cont(f)cont(g)
(2) Let f, g ∈ A[X]. If f, g are both primitive, then fg is primitive.

Corollary 3.3. ( = Problem 3 c ) If a non constant polynomial with coefficients in A is irreducible
over A, then it is irreducible over K.

Remark 3.4. Any of the three statement above go under the name of “Gauss lemma”, originally
formulated for A = Z. It says that if you could factor a non-constant polynomial with integer
coefficients over the rationals (in a non-trivial way), then you could factor it over the integers.

Theorem 3.5. (= Problem 4) Let A be a UFD. Then the polynomial ring A[X1, . . . , Xn] is a UFD.


