
Homework 8 for 504, Fall 2015
due Wednesday, December 3

All rings are commutative with identity.

Definition. (1). Let {ai}i∈I be ideals in A. The ideal
∑

I ai is defined as∑
I

ai = {a1 + . . .+ an | ak ∈ aik}

(2) Let a1, . . . , an be ideals in A. Then
n∏
1
ai is the ideal generated by all products

(a1 . . . an), ai ∈ ai.

One has to check that this actually defines ideals but it is immediate. Note
that we could have defined the sum as the ideal generated by all possible sums of
elements from the corresponding ideals. In (2), though, we did not have options: if
we simply take the set of all products, this is not necessarily an ideal. So we have
to consider the ideal generated by all products.

Problem 1. Let a1, . . . , an be ideals in A such that ai + aj = A for any i 6= j.

(1) Show that there exists x ∈ A such that
x ≡ 1(mod a1)
x ≡ 0(mod a2)
. . .
x ≡ 0(mod an)

(2) Prove “Chinese remainder theorem”: For any m1, . . . ,mn there exists
an element x ∈ A such that
x ≡ m1(mod a1)
x ≡ m2(mod a2)
. . .
x ≡ mn(mod an)

Moreover, the residue of x in A/
n∏
1
ai is uniquely defined.

(3) (This is merely a reformulation in a more ring-theoretic language.) Show
that the following are isomorphic:

A/(∩ai) ' A/a1 × · · · ×A/an

Definition. Let A be an integral domain. A Euclidean function on A is a function
λ : A\{0} → Z≥0 such that any a, b ∈ A, b 6= 0 there exist q, r ∈ A such that
a = bq + r and either r = 0 or λ(r) < λ(b). A is a Euclidean domain if it has a
Euclidean function associated with it.

(Heuristically, A is a Euclidean domain if A satisfies the Euclidean algorithm.)

Problem 2. Prove that a Euclidean domain is a PID.

Corollary. Euclidean domains are UFD.
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Problem 3. Let Z[i] = {a+ bi | a, b ∈ Z} be the ring of Gaussian integers. Here, i
is the square root of −1. Let

λ(a+ bi) = N(a+ bi) = (a+ bi)(a− bi) = a2 + b2

(the Norm of a+ bi).

(1) Prove that Z[i] is a UFD.
(2) Find the units of Z[i].
(3) Describe all irreducible elements of Z[i].

Hint. You can use Fermat’s theorem on the sum of two squares: An odd
prime number is a sum of two squares if and only if it is 1 mod 4. If you
haven’t seen this in a number theory course, I encourage you to look up a
proof (there are many, the first one attributed to Euler) of this beautiful
fact.

Problem 4. Give an example of an integral domain A and an irreducible element
a ∈ A such that the ideal (a) is not prime.

Problem 5. Let F be a field, F [X] be the polynomial ring over F , and define
deg f : F [X] → Z≥0 as the degree of the polynomial f(X). Show that F [X] is
Euclidean (with respect to the function deg).

Remark. For more than one variable we have that F [X1, . . . , Xn] is a UFD but
not a PID.

For the next problem, note that by definition a polynomial f(X) = a0+a1X+ . . .+
anX

n ∈ F [X] is zero if and only if all coefficients are zero: a0 = a1 = . . . = an = 0.

Problem 6. (a). Let F be a field, and f(X) be a polynomial of degree n. Show
that f(X) has no more then n roots.
(b). Let f(X) ∈ F [X]. Then f determines a function f : F → F by evaluation.
Assume F is an infinite field. Show that if the function determined by f is zero
then f(X) ≡ 0 in F [X].
(c). Give a counterexample to the previous statement for a finite field.


