Problem 1. Let F be a field of characteristic $p > 0$. F is called **perfect** if $F^p = F$. Show that F is perfect if and only if any algebraic extension L/F is separable.

Problem 2. Let $K = \mathbb{Q}(z)$, a field of rational functions on one variable. Consider $f(X) = X^n - z \in K[X]$.
(a) Show that $f(X)$ is irreducible.
(b) Describe the splitting field of f.
(c) Determine the Galois group of the splitting field of $X^5 - z$ over K.

Problem 3. Determine the Galois group (order, name) of the splitting field of $x^4 - 2$ over \mathbb{Q}. Determine all normal subextensions of the splitting field over \mathbb{Q}.

Problem 4. Let L/F be a finite Galois extension, and let $f(x)$ be an irreducible polynomial over F of degree 7 which does not have roots in L. Show that f is irreducible over L.

Problem 5. Let L be the splitting field of the polynomial $x^5 - 4x + 2$ over \mathbb{Q}. Prove that $\text{Gal}(L/\mathbb{Q}) \simeq S_5$.
