
Postulates of Euclidean Geometry

Postulates 1–9 of Neutral Geometry.

Postulate 10E (The Euclidean Parallel Postulate). For each line ` and each point A that does not lie on `,
there is a unique line that contains A and is parallel to `.

Postulate 11E (The Euclidean Area Postulate). For every polygonal region R, there is a positive real number
S(R) called the area of R, which satisfies the following conditions:

(i) (Area Congruence Property) If R1 and R2 are congruent simple regions, then S(R1) = S(R2).
(ii) (Area Addition Property) If R1, . . . ,Rn are nonoverlapping simple regions, then S(R1 ∪ · · · ∪ Rn) =

S(R1) + · · ·+ S(Rn).
(iii) (Unit Area Property) If R is a square region with sides of length 1, then S(R) = 1.

Selected Theorems of Euclidean Geometry

All of the theorems of neutral geometry.

Theorem 10.1 (Converse to the Alternate Interior Angles Theorem). If two parallel lines are cut by a
transversal, then both pairs of alternate interior angles are congruent.

Corollary 10.2 (Converse to the Corresponding Angles Theorem). If two parallel lines are cut by a transver-
sal, then all four pairs of corresponding angles are congruent.

Corollary 10.3 (Converse to the Consecutive Interior Angles Theorem). If two parallel lines are cut by a
transversal, then both pairs of consecutive interior angles are supplementary.

Lemma 10.4 (Proclus’s Lemma). Suppose ` and `′ are parallel lines. If t is a line that is distinct from ` but
intersects `, then t also intersects `′.

Theorem 10.5. Suppose ` and `′ are parallel lines. Then any line that is perpendicular to one of them is perpen-
dicular to both.

Corollary 10.6. Suppose ` and `′ are parallel lines, and m and m′ are distinct lines such that m ⊥ ` and m′ ⊥ `′.
Then m ‖ m′.

Corollary 10.7 (Converse to the Common Perpendiculars Theorem). If two lines are parallel, then they
have a common perpendicular.

Theorem 10.8 (Converse to the Equidistance Theorem). If two lines are parallel, then each one is equidistant
from the other.

Corollary 10.9 (Symmetry of Equidistant Lines). If ` and m are two distinct lines, then ` is equidistant from
m if and only if m is equidistant from `.

Theorem 10.10 (Transitivity of Parallelism). If `, m, and n are distinct lines such that ` ‖ m and m ‖ n, then
` ‖ n.

Theorem 10.11 (Angle-Sum Theorem for Triangles). Every triangle has angle sum equal to 180◦.

Corollary 10.12. In any triangle, the measure of each exterior angle is equal to the sum of the measures of the two
remote interior angles.

Theorem 10.13 (60-60-60 Theorem). A triangle has all of its interior angle measures equal to 60◦ if and only if
it is equilateral.

Theorem 10.14 (30-60-90 Theorem). A triangle has interior angle measures 30◦, 60◦, and 90◦ if and only if it
is a right triangle in which the hypotenuse is twice as long as the shortest leg.



Theorem 10.15 (45-45-90 Theorem). A triangle has interior angle measures 45◦, 45◦, and 90◦ if and only if it
is an isosceles right triangle.

Theorem 10.16 (Euclid’s Fifth Postulate). If ` and `′ are two lines cut by a transversal t in such a way that
the measures of two consecutive interior angles add up to less than 180◦, then ` and `′ intersect on the same side of
t as those two angles.

Theorem 10.17 (AAA Construction Theorem). Suppose AB is a segment, and α, β, and γ are three positive
real numbers whose sum is 180. On each side of

←−−→
AB, there is a point C such that 4ABC has the following angle

measures: m∠A = α◦, m∠B = β◦, and m∠C = γ◦.

Corollary 10.18 (Equilateral Triangle Construction Theorem). If AB is any segment, then on each side of
←−−→
AB there is a point C such that 4ABC is equilateral.

Theorem 10.19 (Angle-Sum Theorem for Convex Polygons). In a convex polygon with n sides, the angle
sum is equal to (n− 2)× 180◦.

Corollary 10.20. In a regular n-gon, the measure of each angle is n−2
n × 180◦.

Corollary 10.21 (Exterior Angle Sum for a Convex Polygon). In any convex polygon, the sum of the measures
of the exterior angles (one at each vertex ) is 360◦.

Theorem 10.22 (Angle-Sum Theorem for General Polygons). If P is any polygon with n sides, the sum of
its interior angle measures is (n− 2)× 180◦.

Theorem 10.23 (Angle Sum Theorem for Quadrilaterals). Every convex quadrilateral has an angle sum of
360◦.

Corollary 10.24. A quadrilateral is equiangular if and only if it is a rectangle, and it is a regular quadrilateral if
and only if it is a square.

Theorem 10.25. Every parallelogram has the following properties.

(a) Each diagonal cuts it into a pair of congruent triangles.
(b) Both pairs of opposite sides are congruent.
(c) Both pairs of opposite angles are congruent.
(d) Its diagonals bisect each other.

Theorem 10.26. If a quadrilateral has a pair of opposite sides that are both parallel and congruent, then it is a
parallelogram.

Theorem 10.27. If a quadrilateral has a pair of opposite sides that are both perpendicular to a third side and
congruent, then it is a rectangle.

Theorem 10.28 (Constructing a Rectangle). Suppose a and b are positive real numbers, and AB is a segment
of length a. On either side of

←−−→
AB, there exist points C and D such that ABCD is a rectangle with AB = CD = a

and AD = BC = b.

Corollary 10.29 (Constructing a Square). If AB is any segment, then on each side of
←−−→
AB there are points C

and D such that ABCD is a square.

Theorem 10.30 (Midsegment Theorem). Any midsegment of a triangle is parallel to the third side and half as
long.

Chapter 11: Area

Lemma 11.1 (Convex Decomposition Lemma). Suppose P is a convex polygon, and BC is a chord of P. Then
the two convex polygons P1 and P2 described in the polygon splitting theorem (Theorem 8.9 ) form an admissible
decomposition of P, and therefore S(P) = S(P1) + S(P2).

Lemma 11.2. Suppose P is a convex polygon, O is a point in IntP, and {B1, . . . , Bm} are distinct points on P,
ordered in such a way that for each i = 1, . . . ,m, the angle ∠BiOBi+1 is proper and contains none of the Bj’s in its
interior (where we interpret Bm+1 to mean B1). For each i = 1, . . . ,m, let Pi denote the following set:

Pi = OBi ∪OBi+1 ∪
(
P ∩ Int∠BiOBi+1

)
.



Then each Pi is a convex polygon, and

S(P) = S(P1) + · · ·+ S(Pm). (11.1)

Theorem 11.8 (Area of a Rectangle). The area of a rectangle is the product of the lengths of any two adjacent
sides.

Lemma 11.9 (Area of a Right Triangle). The area of a right triangle is one-half of the product of the lengths of
its legs.

Theorem 11.10 (Area of a Triangle). The area of a triangle is equal to one-half the length of any base multiplied
by the corresponding height.

Corollary 11.11 (Triangle Sliding Theorem). Suppose 4ABC and 4A′BC are triangles that have a common
side BC, such that A and A′ both lie on a line parallel to

←−−→
BC. Then S4ABC = S4A′BC .

Corollary 11.12 (Triangle Area Proportion Theorem). Suppose 4ABC and 4AB′C ′ are triangles with a
common vertex A, such that the points B,C,B′, C ′ are collinear Then

S4ABC

S4AB′C′
=

BC

B′C ′
.

Theorem 11.13 (Area of a Trapezoid). The area of a trapezoid is the average of the lengths of the bases multiplied
by the height.

Corollary 11.14 (Area of a Parallelogram). The area of a parallelogram is the length of any base multiplied by
the corresponding height.

Chapter 12: Similarity

Theorem 12.1 (Transitivity of Similarity of Triangles). Two triangles that are both similar to a third triangle
are similar to each other.

Theorem 12.2 (The Side-Splitter Theorem). Suppose 4ABC is a triangle, and ` is a line parallel to
←−−→
BC that

intersects AB at an interior point D. Then ` also intersects AC at an interior point E, and the following proportions
hold:

AD

AB
=
AE

AC
and

AD

DB
=
AE

EC
.

Theorem 12.3 (AA Similarity Theorem). If there is a correspondence between the vertices of two triangles such
that two pairs of corresponding angles are congruent, then the triangles are similar under that correspondence.

Theorem 12.4 (Similar Triangle Construction Theorem). If 4ABC is a triangle and DE is any segment,
then on each side of

←−−→
DE, there is a point F such that 4ABC ∼ 4DEF .

Theorem 12.5 (SSS Similarity Theorem). If 4ABC and 4DEF are triangles such that AB/DE = AC/DF =
BC/EF , then 4ABC ∼ 4DEF .

Theorem 12.6 (SAS Similarity Theorem). If 4ABC and 4DEF are triangles such that ∠A ∼= ∠D and
AB/DE = AC/DF , then 4ABC ∼ 4DEF .

Theorem 12.7 (Two Transversals Theorem). Suppose ` and `′ are parallel lines, and m and n are two distinct
transversals to ` and `′ meeting at a point X that is not on either ` or `′. Let M and N be the points where m and
n, respectively, meet `; and let M ′ and N ′ be the points where they meet `′. Then 4XMN ∼ 4XM ′N ′.

Theorem 12.8 (Converse to the Side-Splitter Theorem). Suppose 4ABC is a triangle, and D and E are
interior points on AB and AC, respectively, such that

AD

AB
=
AE

AC
.

Then
←−−→
DE is parallel to

←−−→
BC.



Theorem 12.9 (Angle Bisector Proportionality Theorem). Suppose 4ABC is a triangle and D is a point on
BC that also lies on the bisector of ∠BAC. Then

BD

DC
=
AB

AC
.

Theorem 12.10 (Parallel Projection Theorem). Suppose `, m, n, t, and t′ are distinct lines such that ` ‖ m ‖ n;
t intersects `, m, and n at A, B, and C, respectively; and t′ intersects the same three lines at A′, B′, and C ′,
respectively. If B is between A and C, then B′ is between A′ and C ′, and

AB

BC
=
A′B′

B′C ′
.

Theorem 12.11 (Menelaus’s Theorem). Let 4ABC be a triangle. Suppose D,E, F are points different from
A,B,C and lying on such that either two of the points lie on 4ABC or none of them do. Then D, E, and F are
collinear if and only if

AD

DB
· BE
EC
· CF
FA

= 1.

Theorem 12.12 (Ceva’s Theorem). Suppose 4ABC is a triangle, and D,E, F are points in the interiors of AB,
BC, and CA, respectively Then the three cevians AE, BF , and CD are concurrent if and only if

AD

DB
· BE
EC
· CF
FA

= 1.

Theorem 12.13 (Median Concurrence Theorem). The medians of a triangle are concurrent, and the distance
from the point of intersection to each vertex is twice the distance to the midpoint of the opposite side.

Theorem 12.19 (Triangle Area Scaling Theorem). If two triangles are similar, then the ratio of their areas
is the square of the ratio of their corresponding side lengths; that is, if 4ABC ∼ 4DEF and AB = r · DE, then
S4ABC = r2 · S4DEF .

Theorem 12.20 (Quadrilateral Area Scaling Theorem). If two convex quadrilaterals are similar, then the
ratio of their areas is the square of the ratio of their corresponding side lengths.

Chapter 13: Right triangles

Theorem 13.1 (The Pythagorean Theorem). Suppose 4ABC is a right triangle with right angle at C, and let
a, b, and c denote the lengths of the sides opposite A, B, and C, respectively. Then a2 + b2 = c2.

Theorem 13.2 (Converse to the Pythagorean Theorem). Suppose 4ABC is a triangle with side lengths a,
b, and c. If a2 + b2 = c2, then 4ABC is a right triangle, and its hypotenuse is the side of length c.

Theorem 13.3 (Side Lengths of 30-60-90 Triangles). In a triangle with angle measures 30◦, 60◦, and 90◦, the
longer leg is

√
3 times as long as the shorter leg, and the hypotenuse is twice as long as the shorter leg.

Theorem 13.4 (Side Lengths of 45-45-90 Triangles). In a triangle with angle measures 45◦, 45◦, and 90◦, the
legs are congruent, and the hypotenuse is

√
2 times as long as either leg.

Theorem 13.5 (Diagonal of a Square). In a square, each diagonal is
√
2 times as long as each side.

Theorem 13.6 (SSS Existence Theorem). Suppose a, b, and c are positive real numbers such that each one is
strictly less than the sum of the other two. Then there exists a triangle with side lengths a, b, and c.

Corollary 13.7 (SSS Construction Theorem). Suppose a, b, and c are positive real numbers such that each one
is strictly less than the sum of the other two, and AB is a segment of length c. Then on either side of

←−−→
AB, there

exists a point C such that 4ABC has side lengths a, b, and c opposite vertices A, B, and C, respectively.

Theorem 13.8 (Right Triangle Similarity Theorem). The altitude to the hypotenuse of a right triangle cuts
it into two triangles that are similar to each other and to the original triangle.

Theorem 13.9 (Right Triangle Proportion Theorem). In every right triangle, the following proportions hold:

(a) The altitude to the hypotenuse is the geometric mean of the projections of the two legs onto the hypotenuse.



(b) Each leg is the geometric mean of its projection onto the hypotenuse and the whole hypotenuse.

Theorem 13.12 (The Pythagorean Identity). If θ is any real number in the interval [0, 180], then (sin θ)2 +
(cos θ)2 = 1.

Theorem 13.13 (The Law of Cosines). Let 4ABC be any triangle, and let a, b, and c denote the lengths of the
sides opposite A, B, and C, respectively. Then

a2 + b2 = c2 + 2ab cos∠C.

Theorem 13.14 (Law of Sines). Let 4ABC be any triangle, and let a, b, and c denote the lengths of the sides
opposite A, B, and C, respectively. Then

sin∠A
a

=
sin∠B
b

=
sin∠C
c

.

Theorem 13.15 (Heron’s Formula). Let 4ABC be a triangle, and let a, b, c denote the lengths of the sides
opposite A, B, and C, respectively. Then

S4ABC = (s(s− a)(s− b)(s− c)) 1
2

where s = (a+ b+ c)/2 (called the semiperimeter of 4ABC).

Theorem 13.16 (Sum Formulas). Suppose α and β are real numbers such that α, β, and α + β are all strictly
between 0◦ and 90◦. Then

sin(α+ β) = sinα cosβ + cosα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ.

Corollary 13.17 (Double Angle Formulas). Suppose α is a real number strictly between 0◦ and 45◦. Then

sin 2α = 2 sinα cosα,

cos 2α = cos2 α− sin2 α.

Chapter: 14 Circles

Theorem 14.4 (Properties of Secant Lines). Suppose C is a circle and ` is a secant line that intersects C at A
and B. Then every interior point of the chord AB is in the interior of C, and every point of ` that is not in AB is
in the exterior of C.

Theorem 14.5 (Properties of Chords). Suppose C is a circle and AB is a chord of C.

(a) The perpendicular bisector of AB passes through the center of C.

(b) If AB is not a diameter, a radius of C is perpendicular to AB if and only if it bisects AB.

Theorem 14.6 (Line-Circle Theorem). Suppose C is a circle and ` is a line that contains a point in the interior
of C. Then ` is a secant line for C, and thus there are exactly two points where ` intersects C.

Theorem 14.7 (Tangent Line Theorem). Suppose C is a circle, and ` is a line that intersects C at a point P .
Then ` is tangent to C if and only if ` is perpendicular to the radius through P .

Corollary 14.8. If C is a circle and A ∈ C, there is a unique line tangent to C at A.

Theorem 14.9 (Properties of Tangent Lines). If C is a circle and ` is a line that is tangent to C at P , then
every point of ` except P lies in the exterior of C, and every point of C except P lies on the same side of ` as the
center of C.

Lemma 14.15. Any two conjugate arcs have measures adding up to 360◦.

Theorem 14.16 (Another Thales’s Theorem). Any angle inscribed in a semicircle is a right angle.



Theorem 14.17 (Converse to Thales’s Theorem). The hypotenuse of a right triangle is a diameter of a circle
that contains all three vertices.

Theorem 14.18 (Existence of Tangent Lines Through an Exterior Point). Let C be a circle, and let A be
a point in the exterior of C. Then there are exactly two distinct tangent lines to C containing A. The two points of
tangency X and Y are equidistant from A, and the center of C lies on the bisector of ∠XAY .

Theorem 14.19 (Inscribed Angle Theorem). The measure of a proper angle inscribed in a circle is one-half the
measure of its intercepted arc.

Corollary 14.20 (Arc Addition Theorem). Suppose A, B, and C are three distinct points on a circle C, and
_

AB and
_

BC are arcs that intersect only at B. Then m
_

ABC= m
_

AB +m
_

BC.

Corollary 14.21 (Intersecting Chords Theorem: Power of a Point). Suppose AB and CD are two distinct
chords of a circle C that intersect at a point P ∈ IntC. Then

(PA)(PB) = (PC)(PD). (14.2)

Corollary 14.22 (Intersecting Secants Theorem: Power of a Point). Suppose two distinct secant lines of a
circle C intersect at a point P exterior to C. Let A,B be the points where one of the secants meets C, and C,D be
the points where the other one does. Then

(PA)(PB) = (PC)(PD). (14.3)

Theorem (Circumscribed circle theorem). For every triangle there exists a circumscribed cirlce: the circle that
contans all three vertices of the triangle. The center of the circumscribed circle is the intersection point of the three
perpendicular bisectors of the triangle.

Theorem (Inscribed circle theorem). For every triangle there exists an inscribed cirlce: the circle that is tangent
to all three sides of the triangle. The center of the circumscribed circle is the intersection point of the three angle
bisectors of the triangle.

Theorem 14.28 (Cyclic Quadrilateral Theorem). A quadrilateral ABCD is cyclic if and only if it is convex
and both pairs of opposite angles are supplementary: m∠A+m∠C = 180◦ and m∠B +m∠D = 180◦.

Theorem (Concurrence theorems). Let 4ABC be a triangle.

1. The medians of 4ABC are concurrent.

2. The angle bisectors of 4ABC are concurrent.

3. The perpendicular bisectors of 4ABC are concurrent.

4. The lines containing the three altitudes of 4ABC are concurrent.

Chapter 16: Compass and Straightedge Constructions

Construction Problem 16.1 (Equilateral Triangle on a Given Segment). Given a segment AB and a side
of
←−−→
AB, construct a point C on the chosen side such that 4ABC is equilateral.

Construction Problem 16.2 (Copying a Line Segment to a Given Endpoint). Given a line segment AB
and a point C, construct a point X such that CX ∼= AB.

Construction Problem 16.3 (Cutting Off a Segment). Given two segments AB and CD such that CD > AB,
construct a point E in the interior of CD such that CE ∼= AB.

Construction Problem 16.4 (Bisecting an Angle). Given a proper angle, construct its bisector.

Construction Problem 16.5 (Perpendicular Bisector). Given a segment, construct its perpendicular bisector.

Construction Problem 16.6 (Perpendicular Through a Point on a Line). Given a line ` and a point A ∈ `,
construct the line through A and perpendicular to `.



Construction Problem 16.7 (Perpendicular Through a Point Not on a Line). Given a line ` and a point
A /∈ `, construct the line through A and perpendicular to `.

Construction Problem 16.8 (Triangle with Given Side Lengths). Given three segments such that the length
of the longest is less than the sum of the lengths of the other two, construct a triangle whose sides are congruent to
the three given segments.

Construction Problem 16.9 (Copying a Triangle to a Given Segment). Given a triangle 4ABC, a segment
DE congruent to AB, and a side of

←−−→
DE, construct a point F on the given side such that 4DEF ∼= 4ABC.

Construction Problem 16.10 (Copying an Angle to a Given Ray). Given a proper angle ∠ab, a ray −→c , and
a side of ←→c , construct the ray

−→
d with the same endpoint as −→c and lying on the given side of ←→c such that ∠cd ∼= ∠ab.

Construction Problem 16.11 (Copying a Convex Quadrilateral to a Given Segment). Given a convex
quadrilateral ABCD, a segment EF congruent to AB, and a side of

←−−→
EF , construct points G and H on the given

side such that EFGH ∼= ABCD.

Construction Problem 16.12 (Rectangle with Given Side Lengths). Given any two segments AB and EF ,
and a side of

←−−→
AB, construct points C and D on the given side such that ABCD is a rectangle with BC ∼= EF .

Construction Problem 16.13 (Square on a Given Segment). Given a segment AB and a side of
←−−→
AB, construct

points C and D on the chosen side such that ABCD is a square.

Construction Problem 16.14 (Parallel Through a Point Not on a Line). Given a line ` and a point A /∈ `,
construct the line through A and parallel to `.

Construction Problem 16.15 (Cutting a Segment into n Equal Parts). Given a segment AB and an integer
n ≥ 2, construct points C1, . . . , Cn−1 ∈ IntAB such that A ∗ C1 ∗ · · · ∗ Cn−1 ∗B and AC1 = C1C2 = · · · = Cn−1B.

Construction Problem 16.16 (Geometric Mean of Two Segments). Given two segments AB and CD,
construct a third segment that is their geometric mean.

Construction Problem 16.17 (The Golden Ratio). Given a line segment AB, construct a point E ∈ IntAB
such that AB/AE is equal to the golden ratio.

Construction Problem 16.18 (Parallelogram with the Same Area as a Triangle). Suppose 4ABC is a
triangle and ∠rs is a proper angle. Construct a parallelogram with the same area as 4ABC, and with one of its
angles congruent to ∠rs.

Construction Problem 16.19 (Rectangle with a Given Area and Edge). Given a rectangle ABCD, a
segment EF , and a side of

←−−→
EF , construct a new rectangle with the same area as ABCD, with EF as one of its

edges, and with its opposite edge on the given side of
←−−→
EF .

Construction Problem 16.20 (Squaring a Rectangle). Given a rectangle, construct a square with the same
area as the rectangle.

Construction Problem 16.21 (Squaring a Convex Polygon). Given a convex polygon, construct a square with
the same area as the polygon.

Construction Problem 16.22 (Doubling a Square). Given a square, construct a new square whose area is twice
that of the original one.

Circle Constructions

Construction Problem 16.23 (Center of a Circle). Given a circle, construct its center.

Construction Problem 16.24 (Inscribed Circle). Given a triangle, construct its inscribed circle.

Construction Problem 16.25 (Circumscribed Circle). Given a triangle, construct its circumscribed circle.



Constructing Regular Polygons

Construction Problem 16.26 (Square Inscribed in a Circle). Given a circle and a point A on the circle,
construct a square inscribed in the circle that has one vertex at A.

Construction Problem 16.27 (Regular Pentagon Inscribed in a Circle). Given a circle and a point A on
the circle, construct a regular pentagon inscribed in the circle that has one vertex at A.

Construction Problem 16.28 (Regular Hexagon Inscribed in a Circle). Given a circle and a point A on
the circle, construct a regular hexagon inscribed in the circle that has one vertex at A.

Construction Problem 16.29 (Equilateral Triangle Inscribed in a Circle). Given a circle and a point A on
the circle, construct an equilateral triangle inscribed in the circle that has one vertex at A.

Construction Problem 16.30 (Regular Octagon Inscribed in a Circle). Given a circle and a point A on the
circle, construct a regular octagon inscribed in the circle that has one vertex at A.


