Practice Final Math 445A: Geometry for teachers June 1, 2014

Problem	Total Points	Score
1		
2		
3		
4		
5		
6		
7		
8		
Total		

- You may use the lists of postulates and theorems distributed in class and two-sided page of your own notes prepared for the final.

- No other notes, books, or electronic devices. Please turn off your cell phone.

- Show all your work to get full credit. Write your solutions on the pages provided. Use backs for scratch paper if you need it.

- Read instructions for each problem CAREFULLY.

(1) The statements below refer to the following diagram. In this diagram, we are given only that $\triangle ABC$ is a triangle, and D and E are points such that A * E * C and B * D * C. The angles $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are defined as shown in the diagram.

For each of the statements below, circle one of the following answers, both, or neither (2 points for each correct answer):

Euclidean: The statement is *true in Euclidean* geometry **Hyperbolic:** The statement is *true in Hyperbolic* geometry

- (a) **Euclidean Hyperbolic** If \overleftarrow{ED} || \overleftarrow{AB} , then $\triangle ABC \sim \triangle EDC$
- (b) Euclidean Hyperbolic If $\angle 3$ and $\angle A$ are supplementary, then ABDE is a trapezoid
- (c) Euclidean Hyperbolic If $m \angle 3 + m \angle A < 180^{\circ}$, then \overleftarrow{ED} and \overleftarrow{AB} are not parallel
- (d) Euclidean Hyperbolic $m \angle 3 > m \angle C + m \angle 2$.
- (e) Euclidean Hyperbolic $m \angle 3 > m \angle 1$.
- (f) Euclidean Hyperbolic $m \angle 4 + m \angle 2 = 180^{\circ}$.
- (g) Euclidean Hyperbolic $m \angle C + m \angle 1 + m \angle 2 \le 180^{\circ}$.
- (h) Euclidean Hyperbolic If |CE| < |CD|, then $m \angle 1 > m \angle 2$.
- (i) **Euclidean Hyperbolic** If there is a line ℓ such that $\ell \perp \overleftarrow{ED}$ and $\ell \perp \overleftarrow{AB}$ then $\overrightarrow{ED} || \overrightarrow{AB}$.

(2) (a) (2pts) Define the interior of a convex polygon.

(b) (8pts) Give a proof of the following fact in *Neutral Geometry*: if a quadrilateral is convex, then its diagonals intersect at a point that is in the interior of both diagonals and the quadrilateral.

You may use any theorems that come before Theorem 9.4.

(3) (10pts) Let ABC be a triangle and let AD, BE and CF be three concurrent cevians interseting at the point G. Prove that

$$\frac{S_{\triangle ABG}}{S_{\triangle CBG}} = \frac{AF}{FC}$$

(4) (10pts) Prove the "Height Scaling Theorem". You may use any theorem that comes prior to 12.17.

Theorem. If two triangles are similar, their corresponding heights have the same ratio as their corresponding sides.

(5) (a) State Pick's formula for the area of a lattice polygon.

(b) Prove Pick's formula for a right triangle with legs parallel to the lattice grid.

(6) (a) (2pts) Define a *cyclic* polygon.

(b) (8pts) Prove that a convex quadrilateral ABCD is cyclic if and only if $m \angle A + m \angle C = m \angle B + m \angle D = 180^{\circ}$. You may use anything that comes prior to 14.28.

(7) (10pts) Prove existence of an inscribed circle in Euclidean geometry: for any triangle ABC there exists a circle tangent to all three sides of ABC.You may use any of the theorems on the list except for the "Inscribed Circle Theorem".

(8) (a) (5pts) Define a planar graph. Define a connected graph. State Euler's formula for connected planar graphs.

(b) (5 pts) Let Γ be a connected planar graph which is not a tree with E edges and F faces. Prove the following inequality:

 $2E\geq 3F$

(c) (10 pts) Prove that a graph formed by five vertices, five sides and five diagonals of a pentagon is not planar.

