MIDTERM Math 445A: Geometry for teachers May 2, 2014

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

- You may use the lists of axioms and theorems and one-sided page of your own notes prepared for the midterm.

- No other notes, books, or electronic devices. Please turn off your cell phone.

- Show all your work to get full credit. Write your solutions on the pages provided. Use backs for scratch paper if you need it.

- Read instructions for each problem CAREFULLY.

- There are four problems total, each problem is worth 10 points.

- If you are asked to prove a theorem from the textbook, you can use use any theorem/lemma/corollary that comes prior to it.

(1) This is a multiple choice question. For each question, circle **one** correct answer; try to choose the most general one. Complete and correct answer is worth 2 points, incomplete but correct answer is worth 1 point, any other answer or no answer - 0 points.

What is a *incomplete but correct answer*? If the statement is true in Neutral geometry but you only circle Euclidean or Hyperbolic, then the answer is considered correct but incomplete.

Neutral: The statement is <i>true in Neutra</i>		geometry			
Euclidean: The statement is <i>true in Euclide</i>		ean geometry			
Hyperbolic: The statement is <i>true in Hyperbolic</i> geometry				olic geometry	
None: The stater		ment is not true in Neutral geometry			
(a)	Neutral	Euclidean	Hyperbolic	None	If two lines are parallel then the inte- rior alternate angles are congruent
					not atternate angles are congruent.
(h)	Neutral	Euclidean	Hyperbolic	None	There exists a line ℓ and a point A
(0)	ivedirai	Lucilacan	nypersone	rome	not on ℓ such that there are no lines
					through A parallel to ℓ .
<i>/</i>					
(c)	Neutral	Euclidean	Hyperbolic	None	If all three angles of a triangle are congruent then it is regular
(d)	Neutral	Euclidean	Hyperbolic	None	There exists a rectangle.
< /			V I		5
		D 111	TT 1 1.	NT	
(e)	Neutral	Euclidean	Hyperbolic	None	If all four angles of a quadrilateral are 90° then it is a rectangle.

(2) (a) (2pts) Define alternate interior angles for two distinct lines cut by a transversal

(b) (8pts) Prove Theorem 7.19, The Alternate Interior Angles Theorem (In Neutral geometry):

If two distinct lines are cut by a transversal making a pair of congruent alternate interior angles, then the lines are parallel.

 (3) (a) (7pts) Prove Theorem 10.10, "45 - 45 - 90", in Euclidean geometry: A triangle has interior angle measures 45°, 45°, 90° if and only if it is an isosceles right triangle.
 (b) (3pts) Only one direction of Theorem 10.10 is still true in Hyperbolic geometry. Which one? Justify your answer both for the direction which is true and for the one which is not. You may accompany your answer with a clear drawing on a Poincare disk. (4) Show that there exists a regular octagon (polygon with 8 vertices) in Neutral geometry.