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Pick’s Theorem

Math 445 Spring 2013 Final Project

Byron Conover, Claire Marlow, Jameson Neff, Annie SpungPick’s Theorem provides a simple formula for the area of any lattice polygon. A latticepolygon is a simple polygon embedded on a grid, or lattice, whose vertices have integercoordinates, otherwise known as grid or lattice points. Given a lattice polygon P, the formulainvolves simply adding the number of lattice points on the boundary, b, dividing b by 2, and addingthe number of lattice points in the interior of the polygon, i, and subtracting 1 from i. Then the area
of P is + − 1.

The theorem was first stated by Georg Alexander Pick, an Austrian mathematician, in 1899.However, it was not popularized until Polish mathematician Hugo Steinhaus published it in 1969,citing Pick. Georg Pick was born in Vienna in 1859 and attended the University of Vienna when hewas just 16, publishing his first mathematical paper at only 17 (The History Behind Pick'sTheorem). He later traveled to Prague where he became the Dean of Philosophy at the University ofPrague. Pick was actually the driving force to the appointment of an up-and-coming mathematician,Albert Einstein, to a chair of mathematical physics at the university in 1911 (O'Connor). Pickhimself ultimately published almost 70 papers covering a wide range of topics in math such aslinear algebra, integral calculus, and, of course, geometry. His name still frequently comes up instudies of complex differential equations and differential geometry with terms like ‘Pick matrices,’‘Pick-Nevanlinna interpolation,’ and the ‘Schwarz-Pick lemma.’ He is, however, most rememberedfor Pick’s Theorem, which he published in his 1899 paper, “Geometrisches zur Zahlenlehre” (TheGeometric Theory of Numbers), in Sitzungber. Lotos, Naturwissen Zeitschrift (Sitzungber. Lotus,Natural Science Journal). Pick retired in 1927 and returned to Vienna, but fled to Prague in 1938
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when the Nazis invaded Austria. Tragically, after the Nazis invaded Czechoslovakia in 1939, Pickwas sent to Theresienstadt concentration camp in 1942 where he finally perished at 82 years old.Steinhaus included Pick’s Theorem in his famous book, Kalejdoskop matematyczny(Mathematical Snapshots), published in 1969, at which point the theorem garnered much moreattention than it did during Pick’s lifetime.
The Proof:

Pick’s Theorem states: Let P be a lattice polygon, and let B(P) be the numbe of lattice pointsthat lie on the edges of P and I(P) be the number of lattice points that lie on the interior of P. Thenthe area of P, denoted A(P) is equal to ( )+ ( ) − 1. This theorem allows one to find the area ofany lattice polygon, or a polygon whose vertices lie on points whose coordinates are integers,known as lattice points, with one simple equation.
This implies that the area of lattice polygons is always half-integers. We will prove thetheorem for rectangles, triangles, and then polygons of n-sides. The theorem is quite easy to provefor lattice rectangles.

Part :1 Rectangles

In this section we will discuss only rectangles whose sides coincide with lattice lines. Otherrectangles will be proven separately. Let P be a 3x4 lattice rectangle.  Lemma 11.5 tells us that the
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area of this rectangle is (base)x(height) 3x4 = 12.  If we apply Pick’s Theorem, we have B(P) = 14and I(P) = 6, so ( ) = ( )+ ( ) − 1 = + 6 − 1 = 12. Now suppose P is a general× rectangle, where m, n are the numbers of lattice points contained in the base and height,respectively. In terms of units, where a unit is the distance between any two consecutive latticepoints along a lattice line, P has ( − 1)( − 1) interior lattice points and 2m + 2n boundary lattice
points. Therefore ( ) = ( ) + ( ) − 1 = + ( − 1)( − 1) − 1 = + +– – + 1 − 1 = .
Part 2: Right Triangles

We will now prove that Pick’s Theorem can be applied to right triangles, where again thetriangles’ legs are parallel the grid lines. If we view our right triangle as half of the × rectanglethat we just proved with the addition of a diagonal, it becomes easier to prove.  Lemma 11.9 tells usthat the area of a right triangle is the product of its legs divided by 2, or half the area of the ×rectangle.  Therefore if we form a right triangle by connecting to of the opposite verticies of our× rectangle, the area is . Let T be this lattice right triangle. It is easy to count the number of
lattice points along both of the triangles legs, but counting the lattice points along the hypotenuese
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can be trickier. As shown below, the hypotenuse can go through some, many, or even no latticepoints. However, we will see that the number of points on the diagonal is not important.

Let k be the the number of lattice points the hypotenusecontains, excluding the two pointsat the verticies.  Then the number of boundary points is m + n + 1 (the vertex at the right angle) + k.As we saw in Part 1, the × rectangle has ( − 1)( − 1) inteior points, so if we subtract fromthis the k points on the hypotenuse, the additional interior points are split between the two righttriangles we formed.  Therefore the right triangle we are interested in has( )( ) – interior points.
Checking Pick’s Theorem for lattice right triangles we see that ( ) = ( ) + ( ) − 1 =

+ ( )( ) − 1 = + + + + – – + – − 1 = 1 + − 1 = .This is what we expected to obtain, therefore Pick’s Theorem can be applied to lattice righttriangles.
Part 3: General Triangles

We will now show that Pick’s Theorem can be applied to general triangles.
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Knowing that Pick’s Theorem works for rectangles and right triangles, we can prove that itworks for arbitary triangles. When we proved that Pick’s Theorem applies to the area of righttriangles, we assumed that the triangle had two sides running directly through the two lattice linesin order to prove that we could create a lattice polygon.  We wish to continue to use this idea byenclosing generic triangles in rectangles, so we now need to prove that Pick’s Theorem applies totriangles that have just one side parallel to a lattice line and those with no sides parallel to latticelines. . In reality there are numerous cases to consider, but any triangle without anyside lyingdirectly on either of the lattice verticieswill all look more or less like our variation above, where anabitary triangle, D, can be extended into a rectangle with the addition of a few right triangles.  Inthis case three right triangles are required: A, B, and C.

A

BC

D
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Let triangle A have interior points IA and boundary points BA, triangle B have interior pointsIB and boundary points BB, ect.  Let the rectangle R have interior points IR and boundary points BR.We want to prove that A(D) = BD/2 + ID -1.
Since we know Pick’s Theorem applies to right triangles and rectangles, we know:
A(A) = BA/2 + IA -1A(B) = BB/2 + IB -1A(C)= BC/2 + IC -1A(R) = BR/2 + IR -1

Lemma 11.2 tells us that the area of R is the sum of the area of its decomposition. Therefore,
A(R) = A(A) +A(B) +A(C) +A(D)

If we solve for the area of D we find:
A(D) = A(R) – A(A) – (B) – A(C)(1) A(D) = IR – IA – IB – IC + (BR – BA – BB – BC)/2 + 2
Suppose our rectangle R is a m x n rectangle.  Therefore it has area A(R) = mn, with BR = 2m+ 2n, and IR = (m-1)*(n-1).  Because our rectangle R has common sides with triangles A, B, and C,and all three sides of our triangle D share sides these three triangles. We see that
(2) BR +BD = BA +BB+BC or(3) BR = BA +BB+BC - BD

Counting the interior points of our rectangle R we find:
(4) IR = IA + IB + IC +ID + (BA + BB + BC – BR) – 3
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The subtraction of 3 accounts for the fact that the vertices of triangle D are double counted.Substituting the value of BR from equation (3) into equation (4) leads to the result:
(5) IR = IA + IB + IC + ID+ BD – 3

Now if we substitude the value of IR and BR from equations (5) and (3), into equation (1), with a bitof alegbra we find:
A(D) = IR – IA – IB – IC + (BR – BA – BB – BC)/2 + 2A(D) = IA + IB + IC + ID+ BD -3– IA – IB – IC + (BR – BA – BB – BC)/2 + 2A(D) = ID + BD -3 + (BR – BA – BB – BC)/2 + 2A(D) = ID + BD -3 + (BA +BB+BC - BD – BA – BB – BC)/2 + 2A(D) = ID + BD -3 + (-BD)/2 + 2A(D) = ID +(BD – [BD/2]) -3 + 2A(D) = ID + BD/2 -1

This final result is exactly what we wished to prove.
Now suppose one side of our triange lies on either of the lattice verticies and the other twodo not.
We can form a rectangle by drawing two right triangles whose hypotenuses are theremaining two sides of the triangle, since any triangle has two accute angles. The proof that Pick’sTheorem applies to such a triangle follows directly from the previous proof except we can eliminatetriangle C, meaningwe only have to subtract 2 in equation (4), since only two vertices will becounted twice.

Part 4: Overview
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We have already showed that Pick’s Theorem is true for lattice rectangles and three sidedlattice polygons. We now need to prove that Pick’s Theorem is true for 4, 5, 6 … k – 1 sidedpolygons and therefore it is also valid for k-sided polygons.  Because this will amount to infinitework, we will simply prove that Pick’s Theorem is additive.  That is, if we can apply Pick’s Theoremto two polygons, then we can also apply it if we connect the two polygons.
Suppose we have a polygon P that can be subdivided into two polygons P1 and P2. Let P1have I1 interior points and B1 boundary points,and P2 have I2 interior points and B2 boundarypoints. Assume that the common diagonal of P1 and P2 has d lattice points.  Let P have total Bboundary points and I interior points. Thus Pick’s Theorem states:
A (P) = A (P1) + A (P2) = (I1 +B1/2 -1) + (I2 + B2/2 – 1)
Clearly any interior point of P1 or P2 is also an interior point of P, and since two of thediagonal points lie on the boundary of P, d – 2 is the number of common boundary points of P1 andP2 are also interior points to P. Therefore, I = I1 +I2 + d – 2 .  Similar logic show that B = B1 + B2 -2(d –2) – 2.

Therefore:
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Part 5: Inner Diagonal

Now we  wish to prove that Pick’s Theorem applies to convex polygons.  Theorem 10.19tells us that in a convex polygon with n sides, the measure of the internal angles is 180(n-2).Therefore we can bisect any convex polygon into (n – 2) non-overlapping triangles, because thesides are semi parallel and a triangle has internal measure of 180.   Since Pick’s Theorem works forgeneral triangles and it has an additive property, Pick’s Theorem also applies to general convexpolygons.
We can also generalize Pick’s Theorem to certain non-convex polygons. If, for any polygon,every angle ABC, the angle with measure less than 180 is within the polygon, then we can bisect thepolygon into triangles and Pick’s Theorem applies.  The proof has two cases:
1) Every side of the triangle is within the polygon, there for we can split out polygon into n-2triangles and Pick’s Theorem applies.2) There exists a side of the polygon AC that does not live within the polygon, therefore weneed to prove that Pick’s Theorem applies to polygons with holes in them.

Part 6:  Polygons with Holes

First, we will assume that we have a simple polygon P that has interior points I andboundary points B, therefore ( ) = + − 1. Let’s now insert a ‘hole’ of dimensions 1x1, or a1x1 polygon made up of interior points of P, into the polygon. When inserting a 1x1 rectangle intoour polygon we would expect the area to decrease by 1 area unit.  A 1x1 hole is a rectangle witharea 1, it has Bh=4 and Ih=0. So A (H) = Bh/2+IH -1= 4/2 +0-1= 1.
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We would expect out polygon with the hole PH, to have area ( ) = ( ) – ( ) = +– 1 – + − 1 = + − 1 – + 0 − 1 = + − 1 – 1 = + , exactly what wewanted to prove
Therefore, Pick’s Theorem applies to polygons, and polygons with a single hole in them.We can generalize our theorem to include polygons with any number of holes in them, or a hole ofany dimensions. By viewing the hole as simply another polygon, we can find the area of theoriginal polygon sans the hole and subtract the area of the hole, both of which we can find usingPick’s Theorem. Thus we have the area of the polygon with a hole.

An Application of Pick’s FormulaIt can be proven by the use of Pick’s Formula that the minimum possible area of any convexlattice pentagon ABCDE is 5/2.
Consider the vertex A. Since every integer is either odd or even there are exactly fourpossibilities: either both the x and y coordinates of A are even, both are odd, the x-coordinate iseven and the y-coordinate is odd, or the x-coordinate is odd and the y-coordinate is even.  Insummary, A belongs to one of the following four classes: (Odd, Odd), (Even, Even), (Odd, Even) and(Even, Odd).  Clearly, this is also true of the other four vertices (Kedlaya, Poonen, and Vakil 118-120).
Recall that the sum of two odd or two even numbers is even while the sum of an even andan odd is odd.  If we call this property of an integer its “parity” we can summarize with thestatement that, if two integers have the same parity, their sum is even and if two integers havedifferent parities their sum is odd.
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Consider the midpoint formula which states that in the Cartesian Model if M is the midpoint
of and where = , and = ( , ) then = , . If both
sums + and + are even then M has integer coordinates. Hence, if two integers havethe same parity, there sum is even.  Hence the midpoint of two distinct points in the same parityclass will have integer coordinates.

Notice that there are five vertices of ABCDE while there are only four “parity classes”. By thepigeonhole principal then it can be concluded that at least two of the vertices of ABCDE belong tothe same parity class. Without loss of generality, we can say that one of these two vertices is A.There are two cases:  the point with the same parity as A is one of the adjacent vertices (B or E) orone of the other vertices (C or D). We can call these cases 1 and 2.
In case 1, we can state without loss of generality that A and B belong to the same parityclass. Hence it can be concluded that the midpoint (M) of has integer coordinates. There arethen two subcases:  either M is in the same parity class as A and B, or it is not. We can call thesecases 1a and 1b.
In case 1a, since M has the same parity of A and B, we know that the midpoints of and, which we can call N and O, also have integer coordinates. Additionally, we know by thedefinition of a midpoint that N ≠ O because A*M*B and A*N*M and M*O*B. We also know by thedefinition of a polygon that M, N and O are distinct from C, D, and E.  Hence, in Case 1a, there are atleast additional three lattice points on the boundary. Hence I ≥ 0 and B ≥ 8. We can use Pick’sformula to conclude: ≥ 0 + − 1. In case 1a ≥ 3.
In case 1b, M belongs to a different parity class than A and B. By the pigeonhole principle, Mand one of the remaining vertices (C, D, E) have the same parity class. We can rename this vertex F.
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The midpoint of (N) has integer coordinates, since they belong to the same parity class.  By thePolygon Splitting Theorem, we know that, since ABCDE is convex, the diagonal is in the interiorof ABCDE. Hence N is a lattice point in the interior of ABCDE. Hence ABCDE has at least one latticepoint in its interior (N) and at least one additional boundary point (M).  Hence l ≥ 1 and B ≥ 6. Wecan use Pick’s formula to conclude that ≥ 1 + − 1. In case 1b ≥ 3.
In case 2, C or D belongs to the same parity class as A. Without loss of generality, we can sayA and C have the same parity. Hence the midpoint (M) of the diagonal has integer coordinates.As in case 1b, we can conclude that this point is in the interior of ABCDE by the Polygon SplittingTheorem. Hence, in case , there is at least one interior lattice point for ABCDE. Hence l ≥ 1 and B ≥ 5.We can use Pick’s formula to conclude ≥ 1 + − 1. In case 1b ≥ 5/2.

We can summarize with the following chart:
Case Min B Min I Min Area

1a 8 0 3
1b 6 1 3
2 5 1 5/2

Hence we can conclude that the area of any convex lattice pentagon is larger than or equal to 5/2.
Now all that remains is to show there is a lattice pentagon with area 5/2.Consider a pentagon withthe vertices : (0,0) , (0,1), (1,2), (2,1) and (1,0).
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See diagram:

Image Source: (Kedlaya, Poonen, and Vakil 119)
As this pentagon is convex and has no additional boundary points and one interior point, weknow that I = 1 and B = 5 hence = 1 + − 1 = . Hence it has been shown that there exists aconvex pentagon with integer coordinates with area 5/2, and it has been proven that every convexpentagon with integer coordinates has an area of at least 5/2. Therefore, it can be concluded thatthe minimum area of a convex pentagon is 5/2.
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