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Abstract (I) 

 

 

 In this paper, we will present the concepts of planar graphs, 

Euler’s characteristic formula, and Platonic solids and show their 

relationships to one another. After first defining planar graphs, 

we will prove that Euler’s characteristic holds true for any of 

them. We will then define Platonic solids, and then using Euler’s 

formula, prove there exists only five. 

 

 

Existence of Planar Graphs (II) 

 

 

A planar graph is one that can be drawn on a plane in such a way 

that there are no "edge crossings," i.e. edges intersect only at 

their common vertices. Or informally, a graph is planar if the nodes 

of the graph can be rearranged (without breaking or adding any edges) 

so that no edges of the graph cross. The first graph shown below 

is planar, although you might not think so, the next two graphs are 

the same graph and confirms that it is planar. This is what I 

mentioned before about “rearranged” the diagram to eliminate the 

crossings.. 

  

  Examples:  

 

Here are another two examples to show the concept of planar graph:   

 

 

 

 

 

 

 

 

Planar graph consists of vertices/nodes, edges, and 

faces/regions. When a planar graph is drawn with no crossing edges, 



it divides the plane into a set of regions, called faces. We count 

the unbounded area outside the whole graph as an exterior face, and 

there are interior faces such as the area containing all the edges 

adjacent to it. Here is the example:  

 

 (left: this graph has 7 faces, 9 vertices, and 14 

edges) 

Also, there is one type of planar graph: trees. Free 

tree is any connected graph with no cycles. It may look 

like the real tree with many branches. Yet, free tree 

doesn’t have any interior faces because it doesn’t 

contain cycles, it only has a whole exterior face, and 

a cycle in a graph means there is a path from an object 

back to itself. 
 

 

 

 

 

Euler and his Characteristic Formula (III) 

 

 

Leonhard Euler was a Swiss Mathematician and Physicist, and 

is credited with a great many pioneering ideas and theories 

throughout a wide variety of areas and disciplines. One such area 

was graph theory. Euler developed his characteristic formula that 

related the edges (E), faces(F), and vertices(V) of a planar graph, 

namely that the sum of the vertices and the faces minus the edges 

is two for any planar graph, and thus for complex polyhedrons.  More 

elegantly, V – E + F = 2.  We will present two different proofs of 

this formula. 



 

 

Proof by Induction on Number of Edges (IV) 

Theorem 1: Let G be a connected planar graph with v vertices, e 

edges, and f faces. Then 

v - e + f = 2  

Proof: Suppose G is a connected planar graph. We will proceed 

to prove that v - e + f = 2 by induction on the number of edges.  

Base case: Let G be a single isolated vertex. Then it follows 

that there is exactly one vertex, on face (the infinite exterior 

face) and zero edges, thus v - e + f = 1 - 0 + 1 = 2, so the formula 

holds.  

Now let us assume that G contains v vertices, e edges, and f 

faces, and v - e + f = 2. No we will show that this graph can be 

simplified to the base case and maintain a Euler Characteristic 

value of 2 by removing or contracting edges. There are two cases 

to consider.  

Case 1: the edge connects two vertices, but does not an edge 

belonging to a closed face. We can then contract this edge to remove 

it, and combine the vertices to a single vertex. By doing this, we 

reduce the number of edges by one, the number of vertices by one, 

and the number of faces remains unchanged since this edge did not 

bound a face. Also note that the the connectivity of the graph is 

unchanged because the edge was simply condensed so the paths through 

the vertices of that edge now lie on a single vertex and are 

unbroken. We then see that the formula becomes (v - 1) - (e - 1) 

+ f =  

v - e + f - 1 + 1 = v - e + f = 2, by the inductive hypothesis, so 

it holds. We then repeat this for all such edges. But these are not 

the only possible edges in our graph, so we have to consider removing 

the edges correspond to our second case. 

 Case 2: Suppose e is an edge that is part of a Jordan curve (or 

polygon) that separates two faces. If the edge is of this type, we 

simply remove it from the graph. Doing this will obviously reduce 

the number of edges by one, and since the edge separated two faces, 

those faces will no longer be separated, so the number of faces will 

also decrease by one. Note that as a consequence of the Jordan Curve 

Theorem (or polygon theorem in the case of straight edge segments), 

there will still be a path around the other side of the edge that 

was removed, so the graph remains connected. We then have  

v - (e - 1) + (f - 1) = v - e + f + 1 - 1 = v - e + f = 2, again 

by our inductive hypothesis. We continue removing edges of this kind 

till there are no more.  



It is clear that there are only two cases to consider since 

an edge can either belong to a closed face, or does not. So if we 

continue to remove edges in the two ways described above we will 

get back to the base case of a single vertex, and as established 

above, Euler's Characteristic holds for a single vertex. Thus it 

hold for any connected planar graph.  

         QED. 

 We will now give a second, less general proof of Euler’s 

Characteristic for convex polyhedra projected as planar graphs.  

 

 

 

Descartes Vs Euler, the Origin Debate(V) 

Although Euler was credited with the formula, there is some 

debate in the math community on the original origins of  V-E + F 

=2, and many believe the true creator to actually be Descartes in 

1630. His theorem is said to have stated “The sum of the deficiencies 

of the solid angles of a polyhedron is always eight right angles”. 

Deficiencies are defined to be the amount by which the sum of the 

plane angles at the solid angle, fall short of four right angles, 

so essentially 360-sum of the angles at the vertex.  To visualize 

this, take a cube which has 8 vertex points, each vertex is made 

up of 3 right angles. So the deficiency of a cube is 8 right angles 

because at each vertex the deficiency is 1 right angle. 

Using Descartes theorem, the sum of solid angles= 2pi(V-2), he then 

infers that the number of plane angles is 2F+2V-4. Since the number 

of plane angles is always 2E, using substitution and dividing 

everything by 2, we get F+V-2 = E. Rearranging this equation we 

arrive at Euler’s characteristic formula V-E+F=2, hence it is just 

a small step from Descartes deficiencies formula to Euler’s 

characteristic formula, so who is the true creator? 

 

 

 

Proof by Summing Interior Angle Measures(VI) 

 

 

       As a tribute to the uncertainty in origin, it is fitting 

that we will now show a proof of Euler’s characteristic formula 

using angle sums, as Descartes had.  

 

 

Suppose we have a polyhedron with E=Edges, V=Vertices, and 

F=Faces.  We can make an embedded planar graph so that all edges 



are straight lines. Using this planar graph we will formulate two 

different equations for the sum of the interior angle measures of 

the polyhedron, and by setting those two equations equal to each 

other we will be left with the equation V-E+F=2 

Sum of the interior angle measures, part I: 

 The sum of the interior angle measures can be found by summing 

the interior angle measures of each face independently, and 

adding them together. 

 Each face of the polyhedron is itself, a n-gon.  

 By Corollary 10.22, we know that the interior angle sum of an 

n-gon is (n-2)180, where n is the number of sides. 

 Each face has the same n, so the sum of the interior angle 

measures of all the faces, would just be F(n-2)180. 

 Let us distribute the F: (F*n - 2F)180. 

 Does F*n equal E, the total edges in the polyhedron? 

 No, since each edge is a member of 2 faces, F*n would be double 

counting each edge. 

 So, F*n = 2E. 

 Let us substitute this into our angle sum equation: 

(2E-2F)180. 

 So in conclusion, the total interior angle sum of the 

polyhedron = (2E-2F)180 

 

 

 Sum of the interior angle measures, part II: 

 The vertices of the polyhedron can be classified as either: 

interior vertices (IntV), or exterior vertices (ExtV). Where 

interior vertices are those completely surrounded by faces, 

and exterior vertices are those that are not. 

 The total angle sum will be the sum of the angles in conjunction 

with the interior vertices and the exterior vertices. 

 We know the interior vertices will each contribute 360 to the 

angle sum measures, (IntV)360 

 We know that the exterior vertices will contribute (180-theta) 

where the theta is the measure of the exterior angle. There 

will be at least two exterior angles. So the total interior 

angle sum contribution will be ((180- 

theta(1))+(180-theta(2)))*(ExtV). 

 If we distribute, we have: (ExtV)180 

-(ExtV)(theta(1))+(ExtV)180 - (ExtV)(theta(2)). 

 Group these together: 

360(ExtV)-2*(Extv)(theta(1)+theta(2)). 

 By Corollary 10.21, we know that the sum of the exterior angles 

is 360. So(Extv)(theta(1)+theta(2))= 360. 



 By substitution: 360(ExtV)-2*360 = the total contribution of 

the exterior vertices to the total interior angle sum. 

 To get the total interior angle sum, we sum the contributions 

of the exterior and interior vertices and we have: 

360(ExtV)-2*360 +360(IntV). 

 Pull out 360: 360(ExtV + IntV) + 2*360 = total sum of interior 

angles. 

 And the ExtV+IntV we know to just be V 

 So, 360V +2*360 = total sum of the interior angles. 

 

 

 Next we will set these two equations equal to one another: 

 360V+2*360 = (2E-2F)180 

 Now if we divide all parts by 360: V+2 = E - F. 

 Now rearrange the variables: V-E+F=2 

 

 

Thus we have proved that V-E+F = 2 QED. 

 

 

 

Platonic Solids (VII) 

 

Theorem 2. There are exactly ve Platonic solids 

 

 

 The Platonic Solids are, by definition, three dimensional 

figures in which all of the faces are congruent regular polygons 

such that each vertex has the same number of faces meeting at it. 

There are exactly five of such shapes, all of which are listed below 

with the number of vertices, edges, and faces of the solid. 



 

 

 So by for the tetrahedron, cube, octahedron, dodecahedron, and 

icosahedron respectively V - E + F = 4 - 6 + 4 = 8 - 12 + 6 = 6 - 

12 + 8 = 20 - 30 + 12 = 12 - 30 + 20 = 2. This fits Euler’s Formula 

which we proved earlier since these are all convex polyhedrons. 

 

 

 People have been discussing these solids for thousands of years, 

but the ancient Greeks studied platonic solids particularly 

extensively. In fact, they are named after the very famous Greek 

philosopher, Plato. At that time, though, they were seen as far more 

than just the geometric figures that students would treat them to 

be today. Plato associated the solids with the very classical 

elements that he believed made up everything in the universe.  

  

 The classical elements, air, water, fire, and earth, were each 

associated with a different Platonic solid. Earth was associated 

with the cube, air with the octahedron, water with the icosahedron, 

and fire with the tetrahedron.  

 

 

 To tie the Platonic solids to the planar graphs, each platonic 

solid has a planar graph as shown below. 



 

 

 

 

Proof that there are 5 Platonic Solids using Euler’s Formula 

 

 

Let’s denote the following for a polyhedron: 

 

 

F: the number of faces 

E: the number of edges 

V: the number of vertices 

n: the number of edges surrounding each face 

c: the number of edges that meet at each vertex 

 

 

Note that for a regular platonic solid, the number of faces 

surrounding each vertex must be the same for each face and the number 

of edges that meet at each vertex must be the same for each vertex, 

so it makes sense to refer to n and c. 

 

 

Part of being a platonic solid is that each face is a regular 

polygon. Since the least number of sides of a regular polygon is 

3, . There must also be at least 3 edges at each vertex, 

so . 

 

Since each edge will appear as the edge of exactly two faces, 

multiplying the number of faces by the number of edges surrounding 

each face will double-count each edge, i.e. F * n = 2E.  

 

 



Since each edge will meet at each at exactly 2 vertices, multiplying 

the number of edges that meet at each vertex by the number of 

vertices will double-count each edge, i.e. V * c = 2E 

 

 

Solving these two equations for F and V respectively, we 

obtain:  

Now, by substituting into Euler’s Formula (V - E + F = 2), we 

obtain:  

by factoring  

 

 

E must be positive, since it does not make sense to have a 0 or 

negative edged polyhedron, so, since a positive times a positive 

is the only way to get a positive number (like 2) in multiplication, 

 

 

 

So, by algebra, 

 

 

 

First, let’s consider 

 

 
 

Since , we have that  , so  



 

, So  

, So  

 

Since c only makes sense as an integer and we already have that 

, this implies that c can only be 3, 4, or 5. 

 

 

By applying the same reasoning n, we obtain that n can only be 3, 

4, or 5. 

 

 

From , when n = 3, we have , so n < 6, so 

we still have n = 3, 4, or 5. 

 

 

From , when n = 4, we have , so n < 4, so 

we have that n = 3. 

 

 

From , when n = 5, we have , so n < 10/3 

< 4, so we have, again, that n = 3. 

 

 

We have shown that these are the only possibilities and they 

correspond to the Platonic solids by the following chart: 



 

. 

 

 

Conclusion (VIII) 

  

 

  Clearly, there exist planar graphs and exactly 5 platonic 

solids. Moreover, there are some interesting applications for 

planar graphs, such as design problems for circuits, subways, 

utility lines, and coloring maps of countries: like the exercise 

we proved in class before (coloring countries sharing borders with 

2 different colors). Furthermore, we learned the proofs for Euler 

characteristic. Yet, Euler characteristic has so many other 

properties we are not discussed here. But I hope that at the very 

least this paper give some notes on the importance of Euler's 

formula and platonic solids. 
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