HOMEWORK 8 FOR MATH 445A, SPRING 2013

DUE WEDNESDAY, JUNE 5

Problem 1. 12K

Problem 2. Let f be a chosen coordinate function on a line ℓ . Let A, B, C be three distinct points on ℓ such that the coordinates f(A), f(B), f(C) are all integers. Prove that at least one of the segments \overline{AB} , \overline{BC} , \overline{AC} has a midpoint with an integer coordinate.

Problem 3. Let $\triangle ABC$ be a triangle. Prove that the intersection point of the three angle bisectors of $\triangle ABC$ is equidistant from all three sides of the triangle.

Definition 1. The intersection point of the angle bisectors is called the *incenter* of $\triangle ABC$ and is denoted by I. The distance from the incenter I to any of the sides is denoted by r. The circle with the center I and radius r is *tangent* to all three sides and is called the *inscribed circle* of the triangle.

Remark 2. Unlike the *circumcenter*, the *incenter* always lies inside the triangle.

Problem 4. Let $\triangle ABC$ be a triangle with |AB| = c, |BC| = a, |AC| = b. Let $p = \frac{a+b+c}{2}$ be half of the perimeter, and let r be the radius of the inscribed circle. Prove the following formula for the area:

$$S_{\land ABC} = pr$$

Problem 5. Show that the lines containing the three altitudes of a triangle are concurrent.

Date: May 29, 2013.