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Descartes and the Apollonian Gasket 
Prompt 

(1) Describe the construction of the Apollonian Gasket 

(2) State and prove Descartes’ theorem on four “kissing” circles. Explain the relevance to the 

Apollonian Gasket. 

Part 1 – The Construction of the Apollonian Gasket 
In order to describe the construction of the Apollonian gasket, we will first introduce 

some important terms: 

 Apollonian Gasket: One of several names for a series of circles, nested inside one large circle, 

and tangent to all others nearby. Also called Soddy Circles or Kissing Circles. 

 Radius of a circle: Distance from the center point to the edge of a circle. 

 Curvature of a circle: Inverse of the radius; ±1/r, + when dealing with the outer curvature, or 

curvature along the outside, and - for the inner. 

 Tangent: When two circles have a point in common. They must have the same slope at that 

point, so no intersection. 

 Descartes’ Theorem: The formula we'll be using to calculate all of our circles' sizes. It states: if 

the curvature of the first three circles are labeled c1, c2 and c3, respectively, the Theorem states 

that the curvature of the circle tangent to all three, d, is d = c1 + c2 + c3 ± 2 (sqrt (c1 * c2 + c2 * 

c3 + c3 * c1)).  

 

Figure 1 - The Apollonian Fractal 

To begin, draw three small circles C1, C2, and C3, each one of which is tangent to the other two 

circles. We say that C1, C2, C3 are “mutually tangent.” In the picture above, these would be the three 

largest internal circles. Then by Descartes’ theorem, there exist two circles, C4 and C5, which are 



tangent to all three of C1, C2, and C3. Those two circles, C4 and C5, are called apollonian circles. In the 

picture, one of those, let’s call it C4, is the outer circle, and the other, C5, is the small circle in the center 

of the original three. Since C4 is tangent to C1 and C2, we can apply the same process starting from 

those three circles, and the same goes for C5. In fact, we can do this with any set of three circles 

consisting of one circle from (C4, C5) and two from (C1, C2, C3). This gives us a pattern where beginning 

from 3 mutually tangent circles, we add 2 more (C4, C5) in one iteration (n=0) of this procedure. After a 

second iteration (n=1), we add (3 choose 2) * (2 choose 1) = 6. In general, we can add 2*3^n new circles 

at stage n, and giving a total of 3^n+1 +2 circles after stage n. This infinite set of circles is the Apollonian 

gasket.  

To calculate the curvature of the circle that is tangent to any set of 3 mutually tangent circles, we 

apply Descartes’ Theorem as described. The curvature has three possible results: Negative curvature 

means that all other circles are internally tangent to that circle, like C4. Positive curvature means that all 

other circles which are tangent to that circle are externally tangent to that circle, like C5.  Zero curvature 

means the “circle” is a line. In the case where we begin with 3 mutually tangent circles, this won’t 

happen; however, it is valid to begin with one (or, in fact, two or even three; however, neither of these 

describe the classical Apollonian Gasket) of the mutually tangent “circles” being a line.  

Finally, to compute the position of our new circle (C4 or C5, for example), we treat the centers as 

complex numbers of the form x + yi (i here is sqrt(-1)). We then let c_i = p_i * 1/r_i, and apply the 

complex version of Descartes’ algorithm as usual. For a more obviously geometric method of finding the 

center of the fourth circle, consider that we have three mutually tangent circles, and the radius of a 

fourth. Now the distance from the center of a circle to another circle is the sum of their radii. At this 

step, we may recalculate the radii of circles by setting r_i = 1/k_i, so that the radius of a circle which has 

the other circles internal to it becomes negative, as its curvature is; this allows us to collapse that special 

case easily into the standard case for calculating distances. Now, choose one of the three initial circles, 



and call it C_1. Draw a circle around the center of C_1 with radius r_1 + r_4, where r_4 is the radius of 

our unknown-position fourth circle. Follow the same procedure for the other two circles. Now there will 

be up to two points where all three of the constructed circles intersect. Any points where this is the case 

can be the center of a circle with radius r_4, and be mutually tangent to the initial three circles! 

There is another fractal called the Sierpinski triangle that is similar to the Apollonian gasket. The 

Sierpinski triangle is a fractal based on a triangle with four equal triangles inscribed in it. The central 

triangle is removed and each of the other three treated as the original was, and so on, creating an 

infinite regression in a finite space. The first step of creating a Sierpinski triangle is constructing a large 

equilateral triangle. The second step is finding the midpoint of each side of equilateral triangle, then 

connecting those midpoints to make a new triangle inside the bigger one. So far, we will have four equal 

triangles inside the bigger one, one of which will be inverted. Leave the upside down triangle alone, and 

apply the second step for other three triangles to make more small equilateral triangles. This is 

continued indefinitely to create a fractal pattern. Consider the state after the first iteration of this 

process, when there are three small equilateral triangles with one upside down in their center. This is 

quite similar to the situation when you have three mutually tangent circles in place of the upright 

triangles, and there is one circle in the center tangent to all three of them. 

 

Figure 2 – The Sierpinski Triangle 



Part 2 – The Descartes’ Circle Theorem 
 

When Rene Descartes first shared his circle theorem in 1643, his proof was incomplete. Many 

notable mathematicians had rediscovered it over the years independently and several different proofs have 

now been given. One such rediscovery was attributed to H. Beecroft, who published a complete proof in 

the journal, Lady’s and Gentlemen’s Diary, in 1842. In 1968, H. M. S. Coxeter published a simplification 

of Beecroft’s proof in the The American Mathematical Monthly. For the most part, we will follow this 

proof by Coxeter in [2] for the following theorem. Before attempting the proof, we will need some 

definitions of some unfamiliar terms. 

Definitions: 

incircle – Given any triangle, the incircle is the largest circle contained in the triangle which is tangent to 

all three of the sides. 

incenter – The center of the incircle. 

inradius – the radius of the incircle. 

excircle – Given a triangle, extend two sides in the direction opposite their common vertex. The circle 

tangent to both of these lines and to the third side of the triangle is called an excircle. 

excenter – The center of the excircle. 

exradius – The radius of an excircle. 

semiperimeter – Half of the perimeter of a polygon (we will be using the semiperimeter of a triangle, 

hence s=(a+b+c)/2 for our purposes). 

 curvature (or “bends”) of a circle – The curvature of a circle is defined as the reciprocal of the radius. 



oriented circle – A circle with an assigned direction of unit normal vector, pointing either inward or 

outward. A positive radius implies an inward pointing normal vector (smaller circle), and a negative 

radius implies an outward pointing normal vector (larger circle). 

 

 

Figure 1. Descartes configuration showing the two possible configurations: external contact and internal contact. 

 

Descartes’ Circle Theorem. In a Descartes configuration of four mutually tangent circles, the 

curvatures satisfy 

2 bi
2
 = (bi)

2
 .                          (1.1)  

 

It should be noted that the preceding theorem will apply to any Descartes configuration given that 

we define the curvature of the circles such that they are compatible in the sense that (i) the interiors of all 

four circles are disjoint, or (ii) the interiors are disjoint when all the orientations are reversed [1, pp. 339].  

 

 

 



Proof:   

The key to starting this proof was to recognize that the four mutually tangent circles are part of a 

configuration of eight circles, each passing through the three points of tangency of the three others. 

[*Note: for all summation notation, let the indices i start at 1, n = 4, and i < j , for i, j = 1, 2, 3, 4. 

Equations labeled (1.xx*) refer you to this note.] 

 

 

Figure 2. configuration of eight circles 

Let b1, b2, b3, b4, k1, k2, k3, and k4 be the bends (curvatures) of these eight circles, such that the 

circles with bends bi are mutually tangent, as are the circles with bends ki, where i = 1, 2, 3, 4. By 

definition, the curvature is the reciprocal of the radius of a given circle. Then the theorem states 2bi
2
 = 

(bi)
2
, holds. Similarly, 2 ki

2
 = (ki)

2
, also holds. Let a, b, c, s, r and re denote the sides (a, b, c), 

semiperimeter (s), inradius (r), and first exradius (re) of a triangle ABC, so that r
2
=(s-a)(s-b)(s-c)/s and 

re
2
=s(s-b)(s-c)/(s-a) [3, pp.60, 164 (Ex. 3)]. Any three mutually tangent circles can be considered as 

having centers A, B, and C and radii s-a, s-b, s-c (in the case of external contact), or else s, s-c, s-b 

(internal contact).  



 

                  Figure 3. external contact [2, pp. 7]    Figure 4. internal contact  [2, pp. 7] 

In the case of external contact, let 1/k1 = r, 1/b2 = s-a, 1/b3 = s-b, and 1/b4 = s-c. Hence, we have 

just defined the radii of the three mutually tangent circles with curvatures b2, b3, and b4, as well as the 

radius of the incircle of the triangle ABC with curvature k1. Expanding the right hand side of (1.1) we see 

that, 

(bi)
2
 = bi

2
 + 2bibj.   (1.2*) 

We know that r
2 
= (s-a)(s-b)(s-c)/s. Let’s invert this equation to obtain, 

1/r
2
 = s/(s-a)(s-b)(s-c). 

We know that k1= 1/r by definition. Squaring each side we get k1
2
 = 1/r

2
. Hence, 

k1
2
 = s/(s-a)(s-b)(s-c),   (transitivity) 

 = s (b2b3b4).          (substitution) 

Since s is the semiperimeter of triangle ABC, s = (s-a) + (s-b) + (s-c). Hence, by substitution and algebra,  

k1
2 
= [(s-a) + (s-b) + (s-c)] b2b3b4 = (1/b2 + 1/b3 + 1/b4) b2b3b4 = b2b3 + b2b4 + b3b4. 

Therefore,  

k1
2 
= b2b3 + b2b4 + b3b4.   (i) 



In the case of internal contact Let 1/k1=re, 1/b2=-s, 1/b3=s-c, and 1/b4=s-b. (The minus sign is used to 

specify the internal contact.) Hence, we have just defined the radii of the three mutually tangent circles 

with curvatures b2, b3, and b4, as well as the radius of the first excircle of the triangle ABC with curvature 

k1.  

We know that re
2 
= s(s-b)(s-c)/(s-a). Let’s invert this equation to obtain, 

1/re
2
 = (s-a)/-s(s-b)(s-c) 

We know that k1= 1/re by definition. Squaring each side we get k1
2
 = 1/re

2
. Hence, 

k1
2
 = (s-a)/-s(s-b)(s-c),           (transitivity) 

 = (s-b-c) (b2b3b4).   (substitution) 

Hence, by substitution and algebra,  

k1
2
 = (s-b-c) b2b3b4 = (1/b2 + 1/b3 + 1/b4) b2b3b4 = b2b3 + b2b4 + b3b4. 

Therefore,  

k1
2 
= b2b3 + b2b4 + b3b4.   (i) 

Similarly, if we instead choose the three mutually tangent circles with bends k2, k3, and k4, and 

the incircle (or excircle) b1, we would find that k3k4+k2k4+k2k3=b1
2
 (which becomes useful in 1.5). Notice 

that, initially, we were able to choose the three mutually tangent circles arbitrarily. Hence, we can 

permute the subscripts 1, 2, 3, 4 to obtain: (ii) k2
2
 = b3b4+b4b1+b1b3, (iii) k3

2
 = b1b4+b4b2+b2b1, and (iv) k4

2
 

= b3b1+b1b2+b2b3. Adding together the equations (i), (ii), (iii), and (iv), we get 

k1
2
 + k2

2
 + k3

2
 + k4

2 
= b3b4 + b2b4 + b2b3 + b3b4 + b4b1 + b1b3 + b1b4 + b4b2 + b2b1 + 

b3b1 + b1b2 +b2b3,    (1.3) 

which can also be written as,  



ki
2
 = 2 bibj.   (1.4*) 

Similarly, as we hinted in the previous paragraph, if we selected three mutually tangent circles with 

curvatures ki and the respective incircle bi, we get 

 

bi
2 
= 2 kikj.    (1.5*)  

Therefore, combining (1.2), (1.4) and (1.5) we obtain, 

(bi)
2
 = bi

2
 + 2bibj = bi

2
 + ki

2
 = 2 kikj + ki

2
 = (ki)

2
. (1.6*) 

Hence,  

bi = ki.    (1.7) 

We want to show that bi
2
 = ki

2
.  

Consider, 

-b1
2 
+ (b2 + b3 + b4)

2 
= -b1

2 
+ b2

2 
+ b3

2 
+ b4

2 
+ 2 (b2b3 + b2b4 + b3b4) 

= -b1
2
+ b2

2 
+ b3

2 
+ b4

2 
+ 2k1

2
 

     = -b1
2
 + k1k3 + k1k4 + k3k4 + k1k2 + k1k4 + k2k4 + k1k3 + k1k2 + k2k3 + 2k1

2 

     = 2k1 (k2 + k3 + k4) + 2k1
2
 

     = 2k1 (k1 + k2 + k3 + k4) 

= 2k1ki 

= 2k1bi. 

Thus,   



-b1 + b2 + b3 + b4 = 2k1. 

Adding four such equations after squaring each side, we obtain  

bi
2
 = ki

2
.   (1.8) 

Therefore, by (1.6) and (1.8), 2bi
2
 = bi

2
 + ki

2
 = (bi)

2
, which completes the proof. 

☐ 

   An immediate consequence of the Descartes’ circle theorem is that given the curvature of three 

mutually tangent circles, we can solve for the curvatures of the two circles that are mutually tangent to all 

three original circles. From this new collection of four mutually tangent circles, we can then arbitrarily 

choose three of them, and solve for the curvature of two new circles that are mutually tangent to this 

selection of three circles. This process can be repeated indefinitely, which is the process used for 

constructing an Apollonian Gasket. 
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