MATH 342 Lin Alg II Winter 2004 Practice Midterm

Name: _____

1. Let $A = \begin{bmatrix} 0.75 & 0.5 \\ 0.5 & 0.75 \end{bmatrix}$

(a) Find eigenvalues and eigenvectors of A.

(b) Consider a discrete dynamical system $x_{k+1} = Ax_k$. Classify the origin as an attractor, repeller or a saddle point of this dynamical system.

Let x_0 be the initial state of the dynamical system defined above. Compute the state x_{100} of the system for

1.
$$x_0 = \begin{bmatrix} 3\\ 3 \end{bmatrix}$$

2. $x_0 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$
3. $x_0 = \begin{bmatrix} -1\\ 5 \end{bmatrix}$

(d) What is the direction of the greatest repulsion and greatest attraction of the dynamical system above? Estimate the long term growth rate of x_k .

2. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation defined by the matrix $A = \begin{bmatrix} -1 & 0 & -3 \\ 3 & 2 & 3 \\ 0 & 0 & -2 \end{bmatrix}$,

T(x) = Ax. Determine whether there exists a basis of \mathbf{R}^3 relative to which the matrix of T is diagonal.

- 3. Let $A = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 2 & 3 \\ -1 & -1 & 1 \end{bmatrix}$. Diagonalize A if possible.
- 4. Let $T: \mathbf{P^3} \to \mathbf{P^2}$ be a linear transformation given by the differential: for a polynomial p(t),

$$T(p(t)) = p'(t).$$

Compute the matrix of this linear transformation relative to the bases $< 1, t, t^2 >$ of \mathbf{P}^2 and $< 1, t, t^2, t^3 >$ of \mathbf{P}^3 .

- 5. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation defined by the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 2 & 3 \\ -1 & -1 & 1 \end{bmatrix}$. and let $\mathcal{B} = \langle b_1, b_2, b_3 \rangle$ where $b_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Compute the matrix of T relative to the basis \mathcal{B} .
- 6. Compute A^{10} for the following matrices A. (Hint: find eigenvalues of A first. Choose an approach to the problem depending on whether eigenvalues are real of complex numbers).

•

7. Let

$$u_{1} = \begin{bmatrix} 0\\1\\-4\\-1 \end{bmatrix}, \quad u_{2} = \begin{bmatrix} 3\\5\\1\\1 \end{bmatrix}, \quad u_{3} = \begin{bmatrix} 1\\0\\1\\-4 \end{bmatrix}, \quad u_{4} = \begin{bmatrix} 5\\-3\\-1\\1 \end{bmatrix}$$

Determine whether $\langle u_1, u_2, u_3, u_4 \rangle$ form an orthogonal basis of \mathbf{R}^4 . Is this an orthonormal basis?

Let

$$y = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}$$

Compute coordinates of y relative to the basis $\langle u_1, u_2, u_3, u_4 \rangle$.

8. Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 2 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$
. Find basis and dimension of $(Col A)^{\perp}$.

9. Let
$$A = \begin{bmatrix} -\sqrt{3}/2 & 0.5 \\ -0.5 & -\sqrt{3}/2 \end{bmatrix}$$
.

- Describe geometrically the linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ defined by the matrix A.

- Describe geometrically the transformation $T^{(10)}$ (the 10-th iteration of T).

- Write down the matrix A^{10} .