MATH 342 Lin Alg II Winter 2004 Practice problems

Name: _

1. Let a, b be positive real numbers. Using Cauchy-Schwartz inequality, prove that

$$\sqrt{ab} \le \frac{a+b}{2}$$

- 2. Compute the QR-factorization of $A = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 2 & 3 \\ -1 & -1 & 1 \end{bmatrix}$.
- 3. Find least square solutions and least square errors for Ax = b in three ways:
 - computing the orthogonal projection of b onto ColA
 - constructing the normal equations
 - using the QR-factorization of ${\cal A}$

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$.
(b) $A = \begin{bmatrix} 4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & 5 \end{bmatrix}$, $b = \begin{bmatrix} 9 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

- 4. Find A^{10} for $A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$.
- 5. Make a change of variable x = Py which transform quadratic forms below into quadratic forms without cross-product terms. Give P and new quardatic forms. Classify quadratic forms.
 - (a) 6xy + 8yz.
 - (b) $-5x^2 + 4xy 2y^2$.
- 6. Let A be a symmetric 2×2 matrix. Prove that eigenvalues of A are real.
- 7. Let \mathbf{P}_3 have the inner product given by evaluation at (-2, -1, 1, 2). Find the best approximation to $t^3 + 17t$ by polynomials in the span of 1, $t, t^2 81t + 100$.
- 8. Find the maximal and minimal values of the function f(x, y, z) = x + y + z on the unit sphere $x^2 + y^2 + z^2 = 1$.