MATH 251, Fall 2003 Final Exam

Name: ____

Please, write clearly. No books, notes or calculators are allowed. SHOW ALL YOUR WORK.

(20) 1. Compute the following limits

a) $\lim_{x \to \infty} x^{\frac{1}{3x}}$

b) $\lim_{x \to 0} \frac{x^2}{\sin x}$

(20) 2. State the definition of the derivative of a function f(x) at a point x = a. Using ONLY the definition, compute the derivative of x^2 at x = 2.

(40) 3. Differentiate the following functions

a)
$$\frac{(x^3+1)(x-2)^5(x+1)}{(x-5)^6(x-1)^2}$$

b) $\arcsin x + \arccos x$

c) $(\sin x)^{\cos^2 x}$

d) Compute the second derivative of $\tan x$

(20) 4. Find an equation of the tangent line to the curve

$$\frac{1}{x} + \frac{1}{y} = 1$$

at the point (2,2).

(40) 5. Sketch the graph of the function $\frac{\mathbf{x}}{(\mathbf{x}+\mathbf{2})^2}$. Find and classify critical points, indicate the intervals where the function is increasing/descreasing, concave up/down, indicate inflection points, behaviour at infinity, domain, and vertical and horizontal asymptotes.

(20) 6. Show that the equation $x^5 + x = 5$ has exactly one real solution.

(20) 7. Estimate $\sin(\frac{\pi}{314})$ by linear approximation.

(20) 8. The bottom of a closed rectangular box is twice as long as it is wide. The volume of the box is 576cm³. Find the dimensions of the box which would minimize its total surface area.