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Problem 1

(1) Let E2
pq ⇒ Hp+q be a first quadrant (homological) spectral sequence converging to H∗. Show that there

is an exact sequence (“The five-term exact sequence”):

H2 → E2
20

d2→ E2
01 → H1 → E2

10 → 0.

(2) Formulate and prove an analogous statement for a first quadrant cohomological spectral sequence.

For (1), let δ = d220 : E2
20 → E2

01. It’s easy to see that if we take homology at the second page, the third page
is

E2
01/ im δ · ·

E2
00 E2

10 ker δ

whereupon the four indicated terms stabilize. Since this is a first quadrant spectral sequence, it’s also easy to
see the relationship between these E∞pq terms and the filtration on Hp+q is

E∞01 = F0H1 · ·

E∞00 = H0 E∞10 = H1/F0H1 E∞20 = H2/F1H2

Hence we have a sequence

H2 � H2/F1H2
∼= ker δ ↪→ E2

20
δ→ E2

01 � E2
01/ im δ ∼= F0H1 ↪→ H1 � H1/F0H1

∼= E2
10 → 0

One can quickly check exactness of the induced five-term sequence, so the result follows.

For (2), let δ = d012 : E01
2 → E20

2 . The third page is

ker δ · ·

E00
2 E10

2 E20
2 / im δ

which again collapses, and the Epq∞ terms relate to the filtration on H∗ via

E01
∞ = H1/F 1H1 · ·

E00
∞ = H0 E10

∞ = F 1H1 E20
∞ = F 2H2
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Hence we have a sequence

0→ E10
2
∼= F 1H1 ↪→ H1 � H1/F 1H1 ∼= ker δ ↪→ E01

2
δ→ E20

2 � E20
2 / im δ ∼= F 2H2 ↪→ H2

which induces the exact sequence

0→ E10
2 → H1 → E01

2 → E20
2 → H2.

�

Problem 2 Let 0 → A∗ → B∗ → C∗ → 0 be a short exact sequence of complexes. Using spectral
sequences, show that there is an exact sequence in homology:

· · · → Hn+1(C∗)→ Hn(A∗)→ Hn(B∗)→ Hn(C∗)→ Hn−1(A∗)→ · · ·

Consider the double complex whose bottom two rows are

0 C1 B1 A1 0

0 C0 B0 A0 0

(where as usual we’ve toggled the sign on the B∗ column’s maps). Taking horizontal homology gives 0’s
everywhere since the rows are exact, so IIErpq collapses to 0 at r = 1, forcing the abutment to be trivial.

Hence IErpq ⇒ 0. Take vertical homology to get IE1
pq as

0 H1(C∗) H1(B∗) H1(A∗) 0

0 H0(C∗) H0(B∗) H0(A∗) 0

β1 α1

β0 α0

It’s easy to see the B∗ column stabilizes on the next page, so it must stabilize at 0, i.e. the above is exact at
Hn(B∗). Take horizontal homology to get IE2

pq as

H1(C∗)/ imβ1 0 kerα1

H0(C∗)/ imβ0 0 kerα0

It’s easy to see the C∗ and A∗ columns stabilize on the next page, so the above is exact at kerα0 and
H1(C∗)/ imβ1, i.e. the connecting map is an isomorphism. Hence we have a sequence

· · · → H1(A∗)
α1→ H1(B∗)

β1→ H1(C∗) � H1(C∗)/ imβ1 ∼= kerα0 ↪→ H0(A∗)
α0→ · · ·

which gives the desired long exact sequence. �
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Problem 3 Prove a subtler version of the 5-lemma: namely, what are the “minimal” conditions you
need to put on the following commutative diagram with exact rows to conclude that γ is injective? What
about surjective?

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ε

Consider the diagram as a double complex by flipping it horizontally and toggling the signs of the second and
fourth vertical arrows without loss of generality

We find IIE1
pq is

· 0 0 0 ·

· 0 0 0 ·

where · represents the kernel or cokernel of the appropriate map. The remaining pages do not change the
n = 2 and n = 3 antidiagonals, hence the filtration on these pieces of the abutment Hn are trivial, so
H2 = H3 = 0. In particular IE∞pq = 0 for p+ q = n = 2, 3.

Now compute IE1
pq:

ker ε ker δ ker γ kerβ kerα

coker ε coker δ coker γ cokerβ cokerα

If ker δ = kerβ = cokerα = 0, taking homology at ker γ does nothing at this page or the next, so
ker γ = IE∞21 = 0. Likewise if coker δ = cokerβ = ker ε, it follows that coker γ = 0. So, we have

• γ is injective if δ, β are injective and α is surjective

• γ is surjective if δ, β are surjective and ε is injective

This seems to essentially be the two “four lemmas”; I’m not sure if this is a “minimal” set of conditions in
any reasonable sense. They seem to be the most obvious conditions, if that’s worth anything. �

Problem 4 Let f : (A∗, dA)→ (B∗, dB) be a map of complexes. The mapping cone Cone(f)∗ is the total

complex of the double complex A∗
f→ B∗. It can be described explicitly as follows:

Cone(f)n := An−1 ⊕Bn, dn : An−1 ⊕Bn

−dA 0
−f dB


−−−−−−−−−−→ An−2 ⊕Bn−1.

Show that there is a long exact sequence

· · · → Hn+1(Cone(f)∗)→ Hn(A∗)→ Hn(B∗)→ Hn(Cone(f)∗)→ Hn−1(A∗)→ · · · .
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Minor note: I assume the double complex A∗
f→ B∗ is anticommutative, whereas a “map of complexes” in

my experience has commutative squares.

Consider the double complex

0 An−1 An−1 ⊕Bn Bn 0

0 An−2 An−2 ⊕Bn−1 Bn−1 0

−dA

πA

dn dB

πA

One can check this has exact rows and columns. Hence we have an exact sequence of chain complexes

0→ B∗ → Cone(f)∗ → A[−1]∗ → 0,

which from Problem 2 gives rise to a long exact sequence

· · · → Hn+1(Cone(f)∗)→ HnA∗ → Hn(B∗)→ Hn(Cone(f)∗)→ Hn−1(A∗)→ · · · .

�

Problem 5 Establish the Künneth spectral sequence for complexes (it’s ok to use the classical Künneth
formula as in [Weibel, 3.6.3] if you feel that you need to): Let R be a (commutative) ring and C∗, D∗
complexes of R-modules bounded below. Assume the Cn are flat for all n. Show that there is a convergent
spectral sequence

E2
pq =

⊕
s+t=q

TorRp (Hs(C∗), Ht(D∗))⇒ Hp+q(C∗ ⊗R D∗)

where Hp+q(C∗ ⊗R D∗) stands for the homology of the total complex.

Let P∗· → D∗ be a Cartan-Eilenberg resolution. Consider the double chain complex

E0
pq = Totq(C∗ ⊗ P∗p)

where the vertical maps are the usual total complex maps, and the horizontal maps are induced by the
horizontal maps from P∗· → D∗. Take horizontal homology to get

(IIE1
pq)

T = Hp(Totq(C∗ ⊗R P∗·)) = Hp

( ⊕
s+t=q

Cs ⊗R Pt·

)
=
⊕
s+t=q

Hp(Cs ⊗R Pt·) =
⊕
s+t=q

Cs ⊗R Hp(Pt·) =
⊕
s+t=q

Cs ⊗R δp0Dt

= δp0 Totq(C∗ ⊗R D∗),

where we’ve used the following facts: ⊕ is finite; homology commutes with finite sums; homology commutes
with Cs ⊗R − since Cs is flat; Pt· → Dt is a projective resolution, so taking homology gives zeros except at
the very bottom when it gives Dt. That is, we’re left with just Totq(C∗ ⊗R D∗) in the p = 0 column. Thus
we’ll be able to recover the abutment exactly, not just the associated graded object. Take vertical homology
to get

(IIE2
pq)

T = δp0Hq(Tot◦(C∗ ⊗R D∗)).

The sequence stabilizes here, so the nth piece of the abutment is Hn(Tot◦(C∗ ⊗R D∗)) (since p = 0 gives
the only non-zero term and n = p+ q).
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On the other hand, take vertical homology of E0
pq to get

IE1
pq = Hq(Tot◦(C∗ ⊗R P∗p))

and then take horizontal homology to get

IE2
pq = Hp(Hq(Tot◦(C∗ ⊗R P∗·))) = Hp

( ⊕
s+t=q

Hs(C∗)⊗R Ht(P∗·)

)
=
⊕
s+t=q

Hp(Hs(C∗)⊗R Ht(P∗·)) =
⊕
s+t=q

TorRp (Hs(C∗), Ht(D∗)),

where we’ve used the following facts: the Künneth formula quoted below; ⊕ is finite; homology commutes
with finite sums; Ht(P∗·) → Ht(D∗) is a projective resolution; Tor is computed in the usual way. This
application of the Künneth formula uses the fact that P∗· is projective, hence flat, and B(P∗·) is projective,
hence flat, which was proved in class; it also uses the fact that Ht(P∗·) is projective, hence flat, so the Tor
term vanishes, and we have an isomorphism. In all we have a (convergent) spectral sequence⊕

s+t=q

TorRp (Hs(C∗), Ht(D∗))⇒ Hp+q(C∗ ⊗R D∗).

1 Theorem (Künneth formula for complexes)
Let P and Q be right and left R-module complexes, respectively. If Pn and d(Pn) are flat for each n,
then there is an exact sequence

0→
⊕
p+q=n

Hp(P )⊗Hq(Q)→ Hn(P ⊗R Q)→
⊕

p+q=n−1
TorR1 (Hp(P ), Hq(Q))→ 0.

�
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