Solutions to Math 126A Quiz 5

1. Find the Cartesian equation of the curve given by the following equation in polar coordinates:

$$r = 2 \sin \theta$$

Sketch the curve.

Solution. Using the conversion formula $y = r \sin \theta$, the equation becomes

$$r = 2(\frac{y}{r}).$$

That implies,

$$r^2 = 2y$$
.

Now using the conversion formula $r^2 = x^2 + y^2$, we get the Cartesian equation of the curve,

$$x^2 + y^2 = 2y.$$

Further by completing the square we get

$$x^2 + (y - 1)^2 = 1.$$

We can see that the curve is a circle centered at (0,1) of radius 1.

- 2. Consider the curve given by the vector equation $\mathbf{r}(t) = (\cos t, \sin t, 2t)$.
- (a) Find the length of the arc of the curve between the t=0 and $t=\pi$ (one half of a revolution).

Solution. The arclength of the curve is given by $s = \int_0^{\pi} |r'(t)| dt$.

Now
$$r'(t) = (-\sin t, \cos t, 2)$$
, which implies, $|r'(t)| = \sqrt{(\sin t)^2 + (\cos t)^2 + (2)^2} = \sqrt{5}$.

Thus arclength $s = \int_0^{\pi} \sqrt{5} dt = \sqrt{5}\pi$.

(b) Is parameterization $r(t) = (\cos t, \sin t, 2t)$ a natural parameterization of the curve? Justify your answer.

Answer. NO, the given parameterization of the curve is not a natural parameterization, since $|r'(t)| \neq 1$, as shown in part (a).

Remark. A natural parametrization is a parameterization with respect to the arclength. Thus a parameterization is natural if $|r'(t)| = 1 \iff s(t) = \int_0^t |r'(v)| \ dv = t$.