
Name Section

Practice problems for the Final
Math 126, Section A

Material covered after Midterm II

1. Find and classify critical points of the function

(a) f(x, y) = xy2 − 2x2 − y2

Solution.

fx = y2 − 4x = 0
fy = 2xy − 2y = 0
Solving, we get 3 critical points: (0, 0), (1, 2), (1,−2).

To classify the critical points we have to use the Second Derivative test. We compute

fxx = −4 fyy = 2x− 2 fxy = 2y

Hence, D = fxxfyy − f 2
xy = −4(2x− 2)− 4y2 = 8− 8x− 8y2.

At the critical point (0, 0), D = 8, fxx = −4. Hence (0, 0) is a local maximum.

At the critical points (1, 2), (1,−2), D = −32. Hence, (1, 2), (1,−2) are saddle points.

(b) f(x, y) = 3xy − x2y − xy2

Solution.

fx = 3y − 2xy − y2 = 0
fy = 3x− x2 − 2xy = 0
Subtracting, we get
3(y − x) = y2 − x2 ⇒
3(y − x) = (y − x)(y + x) ⇒
y = x or y + x = 3
If y = x, then plugging into the first equation we get y = 0 or y = 1. Hence we obtain
two critical points in this case: (0, 0) and (1, 1)
If y + x = 3, the plugging x = 3 − y into the first equation, we get y = 0 and y = 3.
Hence, we obtain two new critical points: (3, 0) and (0, 3).

To classify the critical points we have to use the Second Derivative test. We compute

fxx = −2y, fyy = −2x, fxy = 3− 2x− 2y
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Hence, D = fxxfyy − f 2
xy = 4xy − (3− 2x− 2y)2.

At the critical point (0, 0), D = −9. Hence (0, 0) is a saddle point.

At the critical point (1, 1), D = 3, fxx = −2. Hence, (1, 1) is a local maximum.

At the critical point (3, 0), D = −9. Hence, (3, 0) is a saddle. Since the equation is
symmetric in x and y, we conclude that (0, 3) is also a saddle.

2. Find the points on the surface xy2z3 = 1 which are closest to the origin.

Solution. We have to minimize the function f = x2 +y2 +z2 where (x, y, z) are points
on the surface given by the equation xy2z3 = 1. Hence, we have to solve

fx = 2x + 2zzx = 0

fy = 2y + 2zzy = 0

We can find zx, zy by implicitly differentiating the equation of the surface xy2z3 = 1.
Applying ∂

∂x
and using the product rule, we get

y2z3 + 3xy2z2zx = 0 (∗)
Now applying ∂

∂y
and using the product rule again, we get

2xyz3 + 3xy2z2zy = 0 (∗∗)
None of the x, y, z can be zero since (x, y, z) is a point on the surface xy2z3 = 1. Solving
the equation (*) for zx and the equation (**) for zy, we get

zx = − z

3x
, zy = −2z

3y

Now plug zx, zy into equations for fx, fy. We get

x + z(− z

3x
) = 0, y + z(−2z

3y
) = 0

Hence,
3x2 = z2, 3y2 = 2z2

Finally, plugging x = ± z√
3
, y2 = 2z2

3
into the equaion of the surface, we get

± z√
3

2z2

3
z3 = ± 2z6

33/2
= 1

The “−” sign is not possible, and solving for z we get z = ±3
1
4 2−

1
6 = ± 4√3

6√2
. Hence,

the closest points are

(3−
1
4 2−

1
6 ,±3−

1
4 2

1
3 , 3

1
4 2−

1
6 ), (−3−

1
4 2−

1
6 ,±3−

1
4 2

1
3 ,−3

1
4 2−

1
6 )
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3. (a) Reverse the order of integration and then evaluate the integral

1∫

0

1∫

√
y

√
x3 + 1 dxdy

Solution. The integral in reversed order is

1∫

0

x2∫

0

√
x3 + 1 dydx

(You need to draw a picture of the region D given by {(x, y) : 0 ≤ y ≤ 1,
√

y ≤ x ≤ 1}
to find , integration limits in the reversed order)

Now, integrate
1∫
0

x2∫
0

√
x3 + 1 dydx =

1∫
0

(y
√

x3 + 1)
∣∣∣
x2

0
dx =

1∫
0

x2
√

x3 + 1 dx = 2(x3+1)
3
2

9

∣∣∣∣
1

0
= 4

√
2

9
− 2

9

(b) Evaluate the following integral

1∫

0

1∫

x2

x sin(πy2) dydx

Solution. We reverse the order of integration first.

1∫

0

√
y∫

0

x sin(πy2) dxdy

and then evaluate
1∫
0

√
y∫

0
x sin(πy2) dxdy =

1∫
0
( x2

2
sin(πy2)

∣∣∣
√

y

0
) dy = 1

2

1∫
0

y sin(πy2) dy = − cos(πy2)
4π

∣∣∣
1

0
= 1

2π

4. Find the volume of the solid bounded by the cylinder x2 +y2 = 1 and the planes y = z,
x = 0, z = 0 in the first octant.
Do this problem in two ways: using rectangular coordinates, and then using polar
coordinates.

Solution. The region here is 1/4 of the circle x2 + y2 = 1, the quarter in the first
quadrant. The function is z = y. Hence, we need to evaluate

∫ ∫

D
ydxdy

I. Cartesian coordinates.

∫ ∫

D
ydxdy =

1∫

0

√
1−x2∫

0

y dydx =

1∫

0

y2

2

∣∣∣∣∣

√
1−x2

0

dx =
1

2

1∫

0

(1− x2)dx =
1

3

3



II. Polar coordinates.

∫ ∫

D
ydxdy =

π
2∫

0

1∫

0

(r sin θ)r drdθ =

π
2∫

0

1∫

0

(sin θ)r2 drdθ =




π
2∫

0

sin θ dθ







1∫

0

r2dr


 =

1

3

5. Compute the volume of the solid bounded by the paraboloids z = x2 + y2 from below
and z = x2

2
+ y2

2
+ 1 from above.

Solution. First, find the intersection of two paraboloids:
x2 + y2 = x2

2
+ y2

2
+ 1

x2 + y2 = 2
This is the equation of the projection of the intersection onto the xy-plane. The solid
in questions lies above this circle, so we take

D = {(x, y) : x2 + y2 = 2}

The integral computing the volume of the solid is

V =
∫ ∫

D
(
x2

2
+

y2

2
+ 1− x2 − y2)dxdy =

∫ ∫

D
(1− x2

2
− y2

2
)dxdy

Changing to polar coordinates, we obtain

2π∫

0

√
2∫

0

(1− r2

2
)rdrdθ = π

6. Evaluate the double integral
∫ ∫

D
(x2 + x + y2) dA

where D is the region

D = {(x, y) : x2 + y2 ≤ 4 and y ≥ x}

Solution. In polar coordinates

D = {(r, θ) : r ≤ 2 and
π

4
≤ θ ≤ 5π

4
}

Hence, the integral in polar coordinates is

5π
4∫

π
4

2∫

0

(r2 + r cos θ)rdrdθ =

5π
4∫

π
4

2∫

0

(r3 + r2 cos θ)drdθ =

5π
4∫

π
4

(
r4

4
+

r3

3
cos θ)

∣∣∣∣∣
2

0

dθ =

5π
4∫

π
4

(4 +
8

3
cos θ)dθ = 4θ +

8

3
sin θ

∣∣∣∣
5π
4

π
4

= 4π − 8
√

2

3
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