1. Calculate derivatives of the following functions. Use logarithmic differentiation when appropriate. You need not carry out any algebra simplification. BOX YOUR FINAL ANSWER. We will only grade the answer you box.

(a) \(y = \frac{40t^5 - \sqrt{t}}{t^4 + 1}, \) \(\frac{dy}{dt} = \)

(b) \(f(x) = \sec^2(x) - \tan^2(x), \) \(f'(x) = \)

(c) \(f(x) = \sin^2(e^{2x^2 - 3x}), \) \(f'(x) = \)

(d) \(f(x) = \frac{(x^4 - 1)(x + 2)^3}{e^{x^2}\sqrt{x^3 - 4}}, \) \(f'(x) = \)

(e) \(f(x) = 2x^{arccos x}, \) \(f'(x) = \)

2. An object is moving along number line and its location at time \(t \) seconds is given by the function \(d(t) = 3t^3 - 5t^2 + 2t + 1 \) cm.

(a) What are the velocity and acceleration of the object at time \(t \)? Include UNITS.

(b) What is the maximum acceleration of the object during the time interval \([0, 1]?)? Explain.
3. An object is moving with parametric equations

\[
\begin{align*}
 x(t) &= e^{-t} \sin(\pi t), \\
 y(t) &= \cos(\pi t)
\end{align*}
\]

The location of the object at time \(t \) seconds is \(P(t) = (x(t), y(t)) \) and the path followed during the first 2 seconds is pictured below. Units on the axes are centimeters (cm).

(a) Find the horizontal and vertical velocity of the object at time \(t \).
(b) Find the slope of the curve when the object is located at \(P(1/2) \). Then find the equation of the tangent line at this point.
(c) Is the object moving faster at time \(t = 0 \) or at time \(t = 1 \)? Explain.
(d) Find the locations where the tangent line to the path is vertical.

4. The equation \(x^2 + xy + y^3 = 2 \) has the graph pictured:

(a) The point \(P = (0, \sqrt[3]{2}) \) is on the curve. Find an equation of the tangent line to the curve at the point \(P \).
(b) Let Q be the point on the curve whose x-coordinate is 0.1. Using linear approximation at P, estimate the y-coordinate of Q. In other words, if $Q = (0.1, y_o)$, estimate y_o using linear approximation. Leave your estimate in exact form.

5. Below is a picture of a portion of the graph of the equation:

$$\sin(x + 2y) = 2x \cos(y).$$

(a) Find $\frac{dy}{dx}$

(b) Write the equation of the tangent line to this curve at the origin $(0, 0)$ and sketch this tangent line in the picture.

(c) How many points on the curve have the x-coordinate 0.1? Just use the picture to answer this question. Let P be the point on the curve whose x-coordinate is 0.1 and which is closest to the origin among all the points with the x-coordinate 0.1. Using linear approximation at $(0, 0)$, estimate the y-coordinate of P.

(d) Is your estimate in part (a) bigger or smaller than the actual y-coordinate of P? Explain.

6. Find the equation of the tangent line to the curve

$$\sin x + \cos y = \sin x \cos y$$

at the point $(\pi, \pi/2)$.

7. Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high? (Note: The volume of a cone of height h having a base of radius r is given by the formula: $V = \frac{1}{3} \pi r^2 h$.)