Recall that the group M of all rigid motions is generated by the following three “families” of elements:

1. Translations $t_{\vec{a}}$ ($t_{\vec{a}}\vec{v} = \vec{v} + \vec{a}$)
2. Rotations around the origin counterclockwise ρ_{ϕ}.
 Rotation preserves the origin, and can be described by a rotation matrix
 \[\rho_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \]
3. And just ONE reflection r - reflection through (around, over, under or without respect to) the x-axis. The reflection r also fixes the origin and correspond to the matrix $r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Any orientation-reversing rigid motion of the plane can be obtained by subsequent compositions of a reflection r followed by a rotation followed by a translation; for orientation-preserving motion skip the reflection.

Definition. Let s_1, \ldots, s_n be n points on the plane. The center of gravity is the point whose coordinates are the arithmetic means of the coordinates of s_i:
\[
p = \frac{s_1 + \ldots + s_n}{n}
\]

Exercise. Show that rigid motions preserve centers of gravity.

Hint: Since the group of all rigid motions is generated by translations, rotations and a reflection, it suffices to do the exercise for those three. So, here is a reformulation:

Exercise 1. Show that the following rigid motions preserve centers of gravity:
1. Rotation ρ_{ϕ}.
2. Translation $t_{\vec{a}}$.
3. Reflection through the x-axis r.

Recall that we denote by M the group of all rigid motions of the plane. An (orthogonal) subgroup $\mathcal{O} < M$ is the subgroup of all motions which fix the origin. A subgroup $T < M$ is the subgroup of all translations of the plane.

Definition. A subgroup of M is called *discrete* if it does not contain arbitrarily small rotations or translations.

Exercise 2. Show that a discrete subgroup of \mathcal{O} is a finite group.

Date: July 16.