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1 Lecture 1 (January 4): Basic definitions and
Examples
Scribe: Raymond Guo

We work over a field k. Often, we’ll restrict to fields with characteristic that is not
2 (it is often safer to assume this is the case).

1.1 Definition (Lie Algebra). Let g be a vector space over k, where the vector
spaces are supplied with a bilinear form [·, ·] : g× g→ g, such that

1. [x, x] = 0.

2. The Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

A vector space g endowed with such an operator is a Lie algebra.

By condition 1, we have 0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] =
[x, y] + [y, x] =⇒ [x, y] = −[y, x]. If char(k) ̸= 2, the condition [x, y] = −[y, x] is
equivalent to condition 1 above.

Recall that a k-linear map D : A → A is a derivation if D(ab) = D(a)b+ aD(b).
Then the Jacobi identity is equivalent to the condition that [c, ·] : g → g is a
derivation in this sense, for any element c ∈ g.

1.2 Definition (Lie Algebra Homomorphism). A map f : g1 → g2 is a Lie algebra
homomorphism if

1. f is k-linear.

2. f([a, b]) = [f(a), f(b)].

Monomorphisms, epimorphisms, and isomorphisms are defined in the usual manner
(in particular, isomorphisms have an inverse that is also a map of Lie algebras).

1.3 Example. Let A be any associative algebra with 1. Define [·, ·] : A×A→ A
by [a, b] = ab− ba. This makes A into a Lie algebra. For any associative algebra
A, we denote this lie algebra structure by Alie. We often work in the case where
A =Mn(k) (the set of all n×n matrices over k). In this case, we write Alie = gln(k).

Again pick V a vector space over k. Take the algebra Endk(V ) and define the
bracket [ϕ, ψ] = ϕ ◦ψ−ψ ◦ϕ. The corresponding Lie algebra is denoted gl(V ), and
is the same as the previous example except that we don’t make a choice of basis.

1.4 Example. Let (R3,×) be the 3-dimensional Euclidean space with the bracket
[u, v] = u× v (the cross product). This can directly be checked to be a Lie algebra.

1.5 Definition (Lie subalgebra). Define a subset H ⊂ g to be a Lie subalgebra if
it’s a subspace closed under the bracket.

1.6 Example. Consider H, the quaternions, as an associative algebra over the
reals (with the standard basis {1,i,j,k}). Consider Hlie, as in Example 1.3. Taking
the subspace spanned by i, j, and k gives a subalgebra that can be identified with
(R3,×).
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1.7 Definition (Lie Ideal). I ⊂ g is a Lie ideal if for all x ∈ g and a ∈ I, [x, a] ∈ I.
Claiming instead that [a, x] ∈ I yields the same definition.

1.8 Definition (Center). The center of a Lie algebra g is {x ∈ g : ∀a, [x, a] = 0}.

1.9 Definition (Adjoint Homomorphism). For g a lie algebra, we define the adjoint
homomorphism ad : g→ gl(g) by adx(y) = [x, y].

1.10 Exercise. Show that ad[x,y](z) = (adx ◦ ady − ady ◦ adx)(z). This shows that
ad is a Lie algebra homomorphism.

1.11 Remark. Note that we have ker ad = Z(g), directly from the definitions.

1.12 Example. sln(k) := {x ∈ gln(k) : Trace(x) = 0}. This is a Lie subalgebra
because Trace([x, y]) = 0 for any x, y ∈ gln(k). In fact, it can be shown conversely
that if Trace(x) = 0, we can write x = [y, z] for y, z ∈ g.

1.13 Exercise. Pick an element S ∈ gln. Let gl
S
n := {X ∈ gln : XTS = −SX}.

1. Show that glSn is a lie subalgebra of gln.

2. Find S ∈ gl3(R) such that (R3,×) ∼= glS3 (R).

1.14 Remark (Alternative description). Let B : V × V → k be a bilinear
form. Let dim(V ) = n, with gln = Endk(V ) = gl(V ). Consider the Lie subalgebra
{X ∈ gl(V ) : B(X(v), w) = −B(v,X(w))}. This is the same as Exercise 1.13. Once
we choose a basis {ei}ni=1, there exists an n×n matrix S such that B(v, w) = vTSw.
Here Si,j = B(ei, ej).
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2 Lecture 2 (January 6): More examples, Lie
algebra of a Lie group
Scribe: Haoming Ning

2.1 Example (Symplectic Lie Algebras). Let n = 2l and let

S =

(
0 Il
−Il 0

)
.

Denote sp2l := glS2l = {X ∈ gl2l : X
TS = −SX}. The lie algebra sp2l is called the

symplectic Lie algebra.

As a subexample, take n = 2 and V a 2-dimensional vector space. The bilinear
form B : V × V → k where B(v, w) = vTSw = v1w2 − v2w1 corresponds to the
matrix S.

2.2 Exercise. Check that x ∈ sp2n if and only if x is of the form

x =

(
a b
c −aT

)
,

where a, b, c ∈ gll, and b, c are symmetric.

2.3 Example (Orthogonal Matrices). Let S = I, then glSn = {X ∈ gln : XT =
−X}. This is called the orthogonal Lie algebra, and denoted son = glSn .

2.4 Exercise. Consider two cases for the orthogonal Lie algebra son.

1. When n = 2l + 1 is odd, let

S =

1 0 0
0 0 Il
0 Il 0

 ,

Check that so2l+1 = glS2l+1.

2. When n = 2l is even, let

S =

(
0 Il
Il 0

)
,

then one can check that so2l = glS2l.

2.5 Remark. Exercise 2.4 shows that S is not uniquely determined by glS .

2.6 Notation. We use the following notation for families of simple Lie algebras
over C.

sln+1 An

so2l+1 Bl

sp2l Cl

so2l Dl.

There are other simple Lie algebras denoted E6, E7, E8, F4, G2. These correspond
to the Dynkin diagrams, drawn below.
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An (n ≥ 1): c c c c c· · ·
1 2 3 n−1 n

Bn (n ≥ 2): c c c c c· · ·
1 2 3 n−1 n

Cn (n ≥ 3): c c c c c· · ·
1 2 n−2 n−1 n

Dn (n ≥ 4): c c c c c
c

· · · !!!!!

aaaaa
1 2 n−3 n−2

n−1

n

E6: c c c
c

c c
1

2

3 4 5 6

E7:

c c c
c

c c c
1

2

3 4 5 6 7

E8:

c c c
c

c c c c
1

2

3 4 5 6 7 8

F4: c c c c
1 2 3 4
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G2: c c
1 2

2.7 Remark. Lie algebras are geometric objects. However, We will study Lie
algebras in this course from the algebraic perspective.

2.8 Definition. Let A be an algebra over k. A map D : A→ A is a derivation if
D is k-linear and D(ab) = D(a)b+ aD(b). By definition, Derk(A) ⊆ Endk(A).

2.9 Exercise. LetD1, D2 ∈ Derk(A), then [D1, D2] = D1◦D2−D2◦D1 ∈ Derk(A).
Therefore, Derk(A) is a Lie algebra.

2.10 Example. Let A = k[x1, . . . , xn], consider the formal differentiation map
∂/∂xi : A→ A.

Claim: Any D ∈ Derk(A) is of the form D =
∑n
i=1 fi(x1, . . . , xn)∂/∂xi for

fi ∈ k[x1, . . . , xn]. Therefore Derk(A) is a free A-module of rank n. (Note that
this is related to the concept of D-modules).

2.11 Remark (Geometric interpretation of derivations). Let M be a smooth
manifold, A = C∞(M). Then DerC∞(M) is in one-to-one correspondence with
smooth vector fields X(M) onM , given by sending a vector field Y to the derivation
f 7→ Y f .

2.12 Example. Let G be a Lie group, A = C∞(G) and consider Der(A). The
multiplication map G×G→ G induces an action of G on A, given by G×A→ A
by (gf)(−) = f(g−1−). We denote this g · f .

2.13 Definition. Let G be a Lie group, A = C∞(G), D ∈ DerA. D is left
invariant if D(g · f) = g ·D(f) for every f ∈ C∞(G).

2.14 Exercise. If D1, D2 are left invariant, then [D1, D2] is too. So that the
left-invariant derivations form a Lie sub-algebra of Der(A).

2.15 Definition. For a Lie group G, we define LieG to be the Lie algebra of left
invariant derivations.
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3 Lecture 3 (January 9): Representations of Lie
Algebras
Scribe: Bashir abdel-Fattah

3.1 Example. If G is an algebraic group over k (that is, a group object in the
category Vark of varieties over k, or equivalently a variety with a group structure
such that multiplication and inversion are morphisms of varieties) with the algebra
of regular functions O(G) = k[G], then we can define

LieG := left-invariant derivations of O(G).

Then we can identify
LieG ∼= TeG = (me/m

2
e)

∗,

where me�Oe is the maximal ideal consisting of germs of regular functions vanishing
at e.

3.2 Example. Given the exact sequence

SLn(R) GLn(R) R×,det

by differentiating we induce the maps

sln(R) = TI SLn(R) gln(R) = TI GLn(R) T1 R× ∼= R .d(det)I

In fact, d(det)I is just the trace operator, because if we take any A ∈ gln(R) and
consider the path I + tA in GLn(R) (for some sufficiently small interval (−ϵ, ϵ))
passing through I at time t = 0 with velocity A, we see that

det(I + tA) = 1 + t · TraceA+O(t2),

so by taking the derivative at time t = 0 we have that

d(det)I(A) =
d

dt

∣∣
t=0

det(I + tA) = TraceA.

3.3 Exercise. Consider the unit quaternion group

S3 = {q ∈: ∥q∥ = 1}

Then Lie S3 ∼= (R3,×).

3.4 Definition (Lie Algebra Representation). Given a Lie algebra g over k,
a representation of g is a vector space V ∈ Vectk together with a Lie algebra
homomorphism ρV : g→ gl(V ). Alternatively, this is equivalent to specifying an
action G× V → V that is k-bilinear and satisfies [x, y] · v = x · (y · v)− y · (x · v)
for all x, y ∈ g and v ∈ V .

3.5 Definition (Morphism of Lie Algebra Representations). A morphism in the
category Repk g of representations of g is a linear map φ : V1 → V2 such that

φ(x · v) = x · φ(v)

for all x ∈ G and v ∈ V1.
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3.6 Example. If g = gl(V ), then the standard action of gl(V ) on V (that is, the
map gl(V ) × V → V given by (T, v) 7→ T (v) for T ∈ gl(V ) = EndVectk(V ) and
v ∈ V ) induces the standard representation

ρst : gl(V )
id−→ gl(V ).

3.7 Example. The adjoint representation of a Lie algebra g is the map

ad : g→ gl(g)

sending x ∈ g to the function adx : g→ g given by adx(y) = [x, y]. Alternatively,
this representation is described by the action g× g→ g given by (x, y) 7→ [x, y].

If G is a Lie group and g = LieG, then the action of G on itself by conjugation
gives a map Ψ : G → Aut(G) (that is, Ψ(g) is the map x 7→ gxg−1 for any
g ∈ G). Note that given any Lie group automorphism ψ : G → G, taking the
differential at the origin induces an automorphism dψe : TeG → TeG and thus
determines an automorphism g→ g via the canonical identification g ∼= TeG. Then

composing G
Ψ−→ Aut(G) → Aut(g) = GL(g) gives us a group representation

Ad : G→ GL(g). If G is a sub-Lie group of GLn(R), then the elements of G and
g are all matrices, and the adjoint group representation is given by the action of
G on g by conjugation (that is, given g ∈ G, the map Ad(G) : g→ g is given by
X 7→ gXg−1). Differentiating the map Ad : G→ GL(g) again gives us the adjoint
Lie algebra representation

ad = d(Ad)e : g→ gl(g).

3.8 Example. If A = C∞(M), then the action Derk(A ) × A → A given by
(D, a) 7→ Da determines an (almost always) infinite-dimensional representation of
Derk(A ).

In Repk g, we have the following operations:

1. Direct sums V1 ⊕ V2 (with the action x · (v1 ⊕ v2) = (xv1)⊕ (xv2) for x ∈ g,
v1 ∈ V1, and v2 ∈ V2)

2. Subrepresentations V ′ ⊂ V (where V ′ is a subspace of V that is closed under
the action of g on V ).

3. Tensor products V1⊗V2 (with the action given on pure tensors by x·(v1⊗v2) =
(xv1)⊗ v2 + v1 ⊗ (xv2), and extended to mixed tensors by linearity).

3.9 Exercise. Prove that the tensor product construction above does indeed
determine a representation of g.

Repk g is an abelian tensor/monoidal category. The identity object with respect to
the tensor product is the trivial representation g×k → k that is identically equal
to zero.

3.10 Definition. A representation V is irreducible/simple if it doesn’t have
any nontrivial subrepresentations (that is, no nonzero proper subrepresentations).
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3.11 Definition. A representation V is faithful if the map ρV : g → gl(V ) is
injective (equiv. if x · V = 0 implies x = 0).

3.12 Definition. A representation V is indecomposable if there are not any
nontrivial subrepresentations V1, V2 ⊂ V such that V = V1 ⊕ V2.

3.13 Example. Ways of constructing new representations from old ones:

1. The tensor power representation Tn(V ) =
⊗n

1 V = V ⊗n (that is, inductively
applying the binary tensor product of representations defined previously).

2. The symmetric group Σn on n elements acts on V ⊗n by permuting the
factors (i.e., σ · (v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)). This action
commutes with the action of g on V ⊗n, thus we can define the symmetric
power representation

SnV := V ⊗n/Σn

:= V ⊗n/⟨σ · (v1 ⊗ · · · ⊗ vn)− v1 ⊗ · · · ⊗ vn : σ ∈ Σn, v1 ⊗ · · · ⊗ vn ∈ V ⊗n⟩.

We denote the equivalence class of v1 ⊗ · · · ⊗ vn in SnV by v1 · v2 · · · · · vn.

3. We define Γn(V ) := (V ⊗n)Σn = {t ∈ V ⊗n : σ · t = t for all σ ∈ Σn}.

3.14 Exercise. If char k = 0, then there is an isomorphism

sym : Sn(V )→ Γn(V )
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4 Lecture 4 (January 11): Examples of represen-
tations of gl(V )
Scribe: Justin Bloom

4.1 Notation. The following notations will be used throughout:

1. Sn(V ) = V ⊗n/⟨σ(v1 ⊗ · · · ⊗ vn)− v1 ⊗ · · · ⊗ vn⟩σ ∈ Σn, called ‘coinvariants’
of action by Σn, denoted also (V ⊗n)Σn

2. Γn(V ) = (V ⊗n)Σn ⊂ V ⊗n, the elements fixed by Σn, such as

v ⊗ · · · ⊗ v,

and
v1 ⊗ v2 + v2 ⊗ v1

for n = 2, called ‘invariants’.

3.
∧n

(V ) = V ⊗n/⟨σ(v1 ⊗ · · · ⊗ vn) + (−1)|σ|v1 ⊗ · · · ⊗ vn⟩σ∈Σn .

We also have representations built from these, each with a graded algebra structure
concatenating tensors together:

1. S∗(V ) =
⊕

n≥0 S
n(V )

2. Γ∗(V ) =
⊕

n≥0 Γ
n(V )

3.
∧∗

(V ) =
⊕

n≥0

∧n
(V ).

The first two are infinite dimensional, but for the last, we have
∧m

(V ) = 0 for m >
dim(V ) if char k ̸= 2.

4.2 Remark. Assume char k = 0. We have a map

Sym : Sn(V )→ Γn(V )

v1 . . . vn 7→
∑
σ∈Σn

σ(v1 ⊗ vn).

4.3 Exercise. Show the following:

1. Sym respects action of gl(V ).

2. Sym is an isomorphism.

4.4 Remark. Assume char k = p > 0, n = p. Then we have an exact sequence

V (1) → Sp(V )
Sym−−−→ Γp(V )→ V (1),

where V (1) is V with a ‘Frobenius twist’.

Notice vp 7→
∑
σ∈Σp

σ(v⊗p) = 0, so V (1) ↪→ ⟨vp⟩ ⊂ Sp(V ).
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4.5 Example. Let V =
⊕n

i=1 kxi, i.e. {x1, . . . , xn}is a basis. Take A =
k[x1, . . . , xn] ∼= S∗(V ).

We have
Sd = k[x1, . . . , xn](d),

the degree d monomials.

We have an action

gln ↪→ Derk(A )

(aij) 7→
∑

1≤i,j≤n

aijxi
∂

∂xj
.

4.6 Exercise. Check that this defines the same action on S∗(V ) as the one in
Example 3.13., i.e. the one induced by the action on the tensor representation
Tn(V ) for each n.

Repesentations of sl2 :

Recall that

sl2 =

{(
a b
c d

)
| a+ d = 0

}
.

So sl2 is has dimension 3, with standard basis (check)

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
,

and relations
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

4.7 Remark. An object V ∈ Rep sl2 is the data of

1. A vector space over k,

2. 3 linear operators satisfying the above bracket relations.

For a representation V, h is diagonalizable as an operator on V , since h is a
semi-simple element of sl2.

4.8 Example. V = kx+ ky = S1(V ), the standard representation of 2. Then

h : x 7→ x; y 7→ −y,

so kx = V1 and ky = V−1, the eigenspaces corresponding to values 1,−1. We also
have

e : x 7→ 0; y 7→ x,
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f : x 7→ y; y 7→ x

We have
S2(V ) = k[x, y](2) = kx2 + kxy + ky2,

and an action by derivation:

h(x2) = 2xh(x) = 2x2,

h(xy) = yh(x) + xh(y) = 0,

h(y2) = 2yh(y) = −2y2,
e(x2) = 0,

e(xy) = x2,

e(y2) = 2yx,

f(x2) = 2xy,

f(xy) = y2,

f(y2) = 0.

We may continue on S3(V ) :

h(x3) = 3x2h(x) = 3x3,

h(x2y) = x2h(y) + yh(x2) = x2y,

h(xy2) = xh(y2) + y2h(x) = −xy2,
h(y3) = 3y2h(y) = −3y3.

...

Notice on each of the Si(V ) the monomials are a basis of eigenvectors of h.

4.9 Definition. For λ ∈ k, V ∈ Rep sl2, if λ is an eigenvalue of h acting on V , λ is
called a weight of V. The eigenspace Vλ of the value λ is called the λ-weightspace
of V.

4.10 Lemma. If λ is weight of V ∈ Rep sl2, then

e : Vλ → Vλ+2,

f : Vλ → Vλ−2,

h : Vλ → Vλ.

In particular, if λ is the largest weight of V, e(Vλ) = 0, and if λ is the smallest
weight of V , f(Vλ) = 0.
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5 Lecture 5 (January 13): Classification of irre-
ducible representations of sl2
Scribe: William Dudarov

Let V ∈ Rep sl2. We first prove our lemma from last class.

5.1 Lemma. If λ is a weight of V , then

e : Vλ 7→ Vλ+2

f : Vλ 7→ Vλ−2

h : Vλ 7→ Vλ.

Proof. Let v ∈ Vλ. Note that

h(ev) = ehv + 2ev

= e(λv) + 2ev

= (λ+ 2)ev.

We have the same calculation for f . ■

5.2 Proposition. Let k = k, and let V be a finite-dimensional irreducible repre-
sentation of sl2. Then

1. V ∼=
⊕

λ∈k Vλ,

2. e, f : Vλ → Vλ±2.

Proof. We only need to prove 1. Let λ be an eigenvalue of h as an operator on
V , i.e. let λ be a weight of V . Then Vλ ̸= 0. Consider

⊕
µ∈{λ+2Z} Vµ ⊆ V. By

lemma 5.1 above, this is an sl2-invariant subspace in V . Since V is irreducible,

V =
⊕

µ∈{λ+2Z}

Vµ.

■

What can λ be?

5.3 Example. Consider V = k[x, y](d) with basis {xd, xd−1y, . . . , yd} and dimen-
sion d+ 1.

xd xd−1y . . . xyd−1 yd.
f(d) f(d−1)

e(1) e(2)

f(2)

e(d−1)

f(1)

e(d)

∗


[h, e] = 2e

[h, f ] = −2f
[e, f ] = h
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#


evi = (d− i)vi+1

fvi = ivi−1

hvi = (2i− d)vi
V(d) = {v0, . . . , vd}

F = 1a (ex*)

vd = xd

vd−1 = xd−1y

...

v0 = yd

5.4 Definition. V(d) ∼= k[x, y](d) (as in #) is the highest weight module of
weight d.

5.5 Proposition. If k has characteristic 0, then V(d) is irreducible.

Proof. Towards contradiction, suppose not. Then there is some W ⊊ V(d) and
weight vector w ∈W with w = avi, i = 0, . . . , d. But, using the relations (#), we
get the entire highest weight module V(d) of weight d by applying e and f . ■

5.6 Remark. Let the characteristic of k be p. Let’s consider V (p).

xp
f(p)−−−→ xp−1y → · · · → yp.

fxp = 0

exp = 0,

and this implies that kxp ⊆ V (p) is a sub-representation and so is kyp. This means
that V (p) is not irreducible, but it is indecomposable.

5.7 Theorem (Classification of irredudible representations of sl2.). Let k be
algebraically closed with characteristic 0.

1. Any finite-dimensional irreducible representation of sl2 is isomorphic to V(d).

2. dim(Vλ) ≤ 1 for all λ.

Proof. Let λ be a weigth of V . All of the weights of V sit in an arithmetic
progression {λ+ 2Z} by lemma 5.1 above. The dimension of V is finite, and there
exist λmax and λmin weights, with λmax − λmin = 2N for N ∈ N0. Let v

+ be the
weight vector for λmax. Our claim then is that

V =
⊕
i≥0

kf iv.

We observe that e(v) = 0, e : Vλmax
→ Vλmax+2. We now prove the claim - we need

to show that
⊕

i≥0 kf
iv is invariant under h, f, e.
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1. By construction, it’s invariant under f .

2. h(f iv) = (λmax − 2i)f iv.

3. (Ex*) e(f iv) = i(λmax − (i− 1))f i−1v.

This finished the proof of the claim. Observe that we showed that dim(Vλmax−2i ≤ 1.
What can λmax be ? Let dim(V ) = d+ 1. Then we must have

fd+1v = 0

(and fdv ̸=). But then efd+1v = 0, implying that (d + 1)(λmax − d)fdv = 0, so
λmax = d = 0. We claim that from here, we get

V ∼= V (d)

v+ ← vd ∼= xd

f iv+ ← i!

d!
vd−i.

■

Some homework problems:

5.8 Exercise. 1. Extend the proof of Theorem 5.7 to any k.

2. For char p, the complete list of the irreducible modules is V (0), . . . , V (p− 1).
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6 Lecture 6 (January 18): BGG resolution for sl2,
Weyl character formula
Scribe: Soham Ghosh

Last time:(Representations of sl2/C) Recall that isomorphism classes of irreducible
finite dimensional representations of sl2} are in one-one correspondence with the
representations V (d) ∼= k[x, y](d), such that dimV (d) = d+ 1, for all d ∈ Z.

6.1 Exercise (Homework problems (contd.)). adsl2 : sl2 → gl(sl2) ∼= gl3 be the
adjoint representation. Calculate e, f, h 7→? as matrices.

Verma modules and Weyl character formulas (for sl2)

6.2 Notation. λ ∈ k; M(λ)− highest weight module of weight λ (Verma module)

M(λ) =
⊕

i≥0 kf
iv+ along with sl2-action:

1. f(f iv+) = f i+1v+

2. hv+ = λv+, h(f iv+) = (λ− 2i)f iv+

3. e(f iv+) = i(λ− i+ 1)f i−1v+ (in particular, ev+ = 0)

M(λ) is often seen as:

v+

fv+

f2v+

...

6.3 Exercise. Show that M(λ) is an sl2-representation.

6.4 Proposition. M(λ) satisfies the universal property.

1. hv+ = λv+; ev+ = 0.

2. For all (W,w+) ∈ Rep sl2 satisfying (i), there exists unique ϕ :M(λ)→ W
sending v+ 7→ w+.

6.5 Exercise. Prove Proposition 6.4.

Let λ = d ∈ Z. By the universal property M(d) ↠ V (d) mapping v+ 7→ v+, and
thus f iv+ 7→ f iv+ for all 0 ≤ i ≤ d. Since V (d) is finite dimensional, the higher
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iterations f iv+ for i ≥ d+ 1 map to 0 in V (d).

ker(λ) M(λ) V (d)

v+ v+

fv+ fv+

...
...

fdv+ fdv+

fd+1v+ fd+1v+

...
...

Thus, ker(λ) := ker(M(d) ↠ V (d)) =
⊕

i>d kf
iv+ = M(−d − 2). So we have

the following short exact sequence, known as the BGG resolution (Bernstein-
Gelfand-Gelfand) of V (d):

0→M(−d− 2)→M(d)→ V (d)→ 0

Weyl Character formula:

6.6 Definition. Let V be a sl2 representation. Assume:

1. V =
⊕

λ∈k Vλ, where Vλ are the weight spaces.

2. dimVλ <∞.

The character of the representation V is given by χV (t) :=
∑
λ∈k dimVλt

λ.

Claim: χV (t) is an additive function χV (t) : Rep sl2 → Z[tλ], i.e., for all short
exact sequences

0→ V1 → V1 → V3 → 0,

we have χV2 = χV1 + χV3 .

Observation: χM(d)(t) =
∑
i≥0 dimVd−2it

d−2i =
∑
i≥0 t

d−2i = td

1−t−2 .

By additivity and BGG resolution, we obtain:

χV (d)(t) = χM(d)(t)− χM(−d−2)(t) =
td − t−d−2

1− t−2
=
t1+d = t−1−d

t− t−1

.



Lie Algebras 21

7 Lecture 7 (January 20): Universal Enveloping
Algebra and PBW basis
Scribe: Leo Mayer

7.1 Definition. Let g be a Lie algebra over k. The Universal Enveloping Algebra
U (g) is an associative unital algebra over k satisfying the following properties:

1. There exists a k-linear map i : g→ U (g) such that

i([x, y]) = i(x)i(y)− i(x)i(y)

2. For any associative unital algebra A over k and k-linear map j : g → A,
satisfying (1), there exists a unique algebra homomorphism j̃ : U (g) → A
making the following diagram commute:

g A

U (g)

j

i j̃

7.2 Lemma. If U (g) exists, then it is unique up to unique isomorphism (com-
muting with the structure map).

Proof. General nonsense. ■

We now need to show that U (g) indeed exists. Let

T (g) =
⊕
n≥0

g⊗n

be the tensor algebra, where the multiplication map

g⊗n⊗ g⊗m → g⊗(n+m)

is defined on simple tensors in the natural way and extended linearly. Let I be the
2-sided ideal of T (g) given by

I = ⟨x⊗ y − y ⊗ x− [x, y] | x, y ∈ g⟩

We can finally define
U (g) := T (g)/I.

7.3 Lemma. U (g) := T (g)/I satisfies conditions for the Universal Enveloping
Algebra.

Proof. We define i as the composition

g→ T (g)→ T (g)/I.

Then condition (1) of Definition 7.1 is satisfied by construction of I. Condition (2)
of Definition 7.1 is left as an exercise. ■
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We have a functor Lie : Alg
k
→ Liek from the category of associative unital algebras

over k to the category of Lie algebras over k. This construction gives a left adjoint
to the functor Lie- U : Liek → Alg

k
, i.e. we have for any Lie algebra g and

associative unital algebra A that

HomLiek
(g,Lie(A)) ∼= HomAlg

k
(U (g), A).

Indeed, the property (2) of Definition 7.1 states that the map j 7→ j̃ is an isomor-
phism between the Hom sets.

7.4 Remark. Note that we have an equivalence of additive categories Repk g
∼=

U (g) mod . Since the latter category is an abelian category, we conclude the
former is as well.

7.5 Remark. The algebra U (g) is actually a Hopf algebra under the maps

∇ : U (g)→ U (g)⊗U (g) defined by x 7→ x⊗ 1 + 1⊕ x

ϵ : U (g)→ k defined by x 7→ 0, 1 7→ 1

S : U (g)→ U (g) defined by x 7→ −x

which are defined first for x ∈ g and then extended multiplicitavely to all of U (g).

7.6 Remark. The category of modules over a Hopf algebra is monoidal. We have
already seen that Repk g is a monoidal category. It turns out the above equivalence
of categories respects the monoidal structure.

We next turn to the Poincare-Birkhoff-Witt (PBW) theorem. Before doing so, we
need to recall some definitions.

7.7 Definition. A graded algebra is an algebra A with a decomposition A =
⊕

iA
i

such that the multiplication map decomposes as

Ai ⊗Aj → Ai+j

7.8 Example. The polynomial algebraA = k[x1, . . . , xn]. HereA
i = k[x1, . . . , xn](j),

the subspace of homogeneous degree i polynomials.

7.9 Definition. An associative unital algebra A is filtered if there exists a chain
of subspaces

. . . ⊂ Ai ⊂ Ai+1 ⊂ . . .

satisfying
Ai ·Aj ⊆ Ai+j

7.10 Example. A = k[x1, . . . , xn], and Ai is subspace of polynomials of degree at
most i.

7.11 Definition. If A is filtered, the associated graded algebra gr∗A is defined by

griA = Ai/Ai−1

and
gr∗A =

⊕
griA.
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7.12 Exercise. Verify that we have

(Ai/Ai−1)⊕ (Aj/Aj−1)→ Ai+j/Ai+j−1

7.13 Theorem (Poincare-Birkhoff-Witt). The algebra U (g) has a filtration such
that gr∗ U (g) ∼= S∗(g).

We first define the filtration on U (g). Set

Ti(g) = k ⊕ g⊕ . . .⊕ g⊗i,

and set
U i(g) = Ti(g)/(Ti(g) ∩ I),

where I was the two-sided ideal of T (g) which defined U (g). Then the U i(g) will
define a filtration on U (g).

Explicitly, if x1, . . . , xn is a basis for g, then U d(g) will be generated by

{xi1 · xi1 · . . . · xim | m ≤ d}

7.14 Proposition. Let x ∈ U p(g) and y ∈ U q(g)

1. xy ∈ U p+q(g)

2. xy − yx ∈ U p+q−1(g)

3. U p(g) is generated as a vector space by

{xα1
1 xα2

2 . . . xαn
n | α1 + . . .+ αn ≤ p}.

Proof. 1. Clear.

2. We use induction on p. For the base case p = 1, we have x ∈ g and
y = y1 . . . yq, where each yi ∈ g. We have

xy = x(y1 . . . yq) = (xy1)y2 . . . yq = (y1x)y2 . . . yq + [x, y1]y2 . . . yq

since xy − yx = [x, y] in U (g). Note that [x, y1]y2 . . . yq ∈ U q(g) We can
continue using the commutator relations to ”push x right” and arrive at

xy = y1y2 . . . yqx+ r,

where r ∈ U q(g), and we conclude xy − yx ∈ U q(g).

The inductive step is similar, and left as an exercise.

3. By part (2), we can commute any of the products xi1 . . . xim mod U m−1.

■
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8 Lecture 8 (January 23): Proof of the Poincare-
Birkhoff-Witt theorem
Scribe: Jackson Morris

Last Time: We defined the Universal Enveloping Algebra U (g) of a Lie algebra g
and placed a filtration on it:

U n(g) = Tn(g)/Tn(g) ∩ I,

where I = ⟨x⊗y−y⊗x− [x, y]|x, y ∈ g⟩ is the two sided ideal of the tensor algebra
T (g) previously defined. Additionally, we proved Proposition 7.14.

Here are some immediate corollaries.

8.1 Corollary. 1. gr∗ U (g) is commutative. (This follows directly from Propo-
sition 7.14(2).)

2. There is a surjective linear map φ : S∗(g)→ gr∗(U (g)). In particular, for a
basis {x1, . . . , xn} of g, let {z1, . . . , zn} be the corresponding basis for S1(g);
then φ(zi) = xi.

8.2 Theorem (Poincare-Birkhoff-Witt, Theorem 7.13). The map φ : S∗(g) →
gr∗ U (g) is an isomorphism. Alternatively, {xi1 , . . . , xim |m ∈ Z≥0, i1 ≤ . . . ≤ im}
is a basis for U (g).

For example, let g = sl2. Fix the basis {e, h, f} with the relations we have discussed.
The PBW theorem says that a basis for U (sl2) is {eahbf c}.

1. eh · e = e(eh) + 2e2 = e2h+ 2e2

2. (ehf)(ehf) = (ehf)2 = e2h2f2 + 4e2hf2 + 4e2f2 − eh3f (this answer was
offered by Nelson and verified by Leo).

Proof. We already know that {xi1 , . . . , xim |m ∈ Z≥0, i1 ≤ . . . ≤ im} is a generating
set. Now, we must show that the xi are linearly independent. This is involved;
the idea is that we will construct a linear map f : U∗(g) → S∗(g) shich takes
generators to generators such that

f(xα1
1 · · ·xαn

n ) = zα1
1 · · · zαn

n .

If we can do this, we’re good!

Construction:

Define a map f̃ : T (g)→ S∗(g) such that

1. f̃(xi1 ⊗ . . .⊗ xim) = zi1 · · · zim for i1 ≤ . . . ≤ im.

2. f̃(I) = 0.
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Notice that if (2) is satisfied, then we can pass to the quotient, i.e. get our desired
map f : U (g) → S∗(g). Let’s formalize this; we are defining (1) on the simple
tensors. Now, if we extend this with the Lie brackets, then (2) will be satisfied.

Inductively, we define f̃ on xj1 ⊗ · · · ⊗ xjm by induction on m and the number

of transpositions in (j1 . . . jm). When m = 0, f̃(1) = 1 and for i1 ≤ . . . ≤ im, we
define

f̃(xi1 ⊗ · · · ⊗ xim) := zi1 · · · zim .

Now, suppose we have xj1 ⊗ · · · ⊗ xjm ∈ g⊗m. Let (jtjt+1) be a transposition.
Define

f̃(xj1 ⊗ · · · ⊗ xjm) := f̃(xj1 ⊗ · · · ⊗ xjt+1
⊗ xjt ⊗ · · · ⊗ xjm)

+f̃(xj1 ⊗ · · · ⊗ [xjt , xjt+1
]⊗ · · · ⊗ xjm).

Notice that the bracket [xjt , xjt+1 ] ∈ g⊗m−1. We claim now that this is well-defined.
The first case, when two transpositions are non overlapping is formal; the second
case, where two transpositions are overlapping, reduces to the Jacobi Identity
(check).

Now, we need to show that f̃(I) = 0. So, we need to show that

f̃(A(xi ⊗ xj − xj ⊗ xi − [xi, xj ]B) = 0

for any simple tensors A and B; everything in I is a k-linear combination of these
guys. But this is true from our definition and verification. So, we are done. ■
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9 Lecture 9 (January 25): Nilpotent and solvable
Lie algebras
Scribe: Ranjan Pradeep

Last Time: Why do we care about universal enveloping algebras?

1. Equivalence of categories, giving a category of representation of lie algebras

2. Abelian category for modules over universal enveloping algebra, allowing
homological algebra

3. In order to quantize, you often study the enveloping algebra rather than the
lie algebra

Consequences of the Poincare-Birkhoff-Witt Theorem

9.1 Corollary. 1. The universal map from the Lie algebra g to U (g) is a
monomorphism, ie. i : g→ U (g) is injective

2. U is an additive functor

U (g1⊕ g2) = U (g1)⊗U (g2)

3. U (g) has no zero divisors

4. Because we have a “leading” term, one can often do induction in U (g)

9.2 Remark (Symmetrization Map). There is a map s (in char k = 0) that takes
a monomial to a symmetric element

s : S∗(g)→ U (g)

zi1zi2 . . . zim →
1

n

∑
σ∈Σn

xσ(i1)xσ(i2) . . . xσ(im)

This will be an isomorphism of vector spaces (in char 0). Summarizing:

T (g)/Σn ∼= S∗(g)
∼−→
s
T (g)Σn ∼= U (g)

9.3 Remark (On the center of U (g)).

9.4 Example.
g = sl2 with basis (e, h, f)

9.5 Definition. (char k ̸= 2) Casimir element: c = ef + fe+ 1
2h

2.

Claims:

1. adc = 0 in End(sl2) (equivalently, ade(c) = adf (c) = adh(c) = 0).

2. Center is a polynomial algebra on c,

Z(U (g)) ∼= k[c].
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This preserves the action of g so we can compute invariants (invariants are elements
V g = {v ∈ V, g · v = 0, ∀g ∈ G}, ie. elements that commute with everything)

S∗(g)g
∼−→ U (g)g

∼−→ Z(U (g))

Nilpotent and Solvable Lie Algebras

9.6 Definition. 1. Let I, J be ideals in g. Then

[I, J ] := ⟨[xi, yi], xi ∈ I, yi ∈ J⟩

is the ideal generated by all commutators

2. [g, g] is the derived subalgebra of g

3. The derived series of g is defined by

g0 = g, g(i) = [g(i−1), g(i−1)].

9.7 Definition. g is a simple lie algebra if it does not have proper nontrivial ideals.
Note that this is by convention unlike groups, where a cyclic group of order p is
simple, a one dimensional lie algebra is not simple.

9.8 Remark. If g is simple, then [g, g] = g and the derived series terminates
immediately. Since the center can not be the whole ring, Z(g) = 0

9.9 Example. sl2 is simple unless char k = 2, In character 2, Z(sl2) ⊃
(
1 0
0 1

)
.

The identity matrix will be in the center because it has zero trace, and so the
center is not zero.

9.10 Definition. A lie algebra is solvable if the derived series terminates in a
finite number of steps

9.11 Definition. The descending (lower) central series of g is given by:

g0 = g, g1 = g(1) = [g, g], gi = [g, g(i−1)]

9.12 Definition. g is nilpotent if the descending central series terminates

9.13 Remark. Nilpotent implies solvable, but solvable does not imply nilpotent

9.14 Example. Take g = gln.

bn- consisting of upper triangular matrices is known as a Borel subalgebra, and
is solvable

un- consisting of strictly upper triangular matries (ie. with 0s on the main diagonal)
is nilpotent, and is the unipotent radical of bn

un is an ideal inside bn, so one can quotient to get a short exact sequence

0→ un → bn → tn → 0 where,

tn- consisting of diagonal matrices, with every element off the diagonal being zero,
is known as the Cartan subalgebra.
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9.15 Remark. Is gln simple? No, since [gln, gln] = sln, and since λ · In is central.

9.16 Definition. Rad g is the maximal, solvable ideal in g.

9.17 Exercise. Show that the radical Rad g of a lie algebra g is well defined.

9.18 Definition. g is semi-simple if and only if Rad g = 0

9.19 Theorem (Weyl’s complete reducibility theorem). In char k = 0, g is
semi-simple ⇐⇒ Repk g is semi-simple (i.e., every representation is completely
reducible).

9.20 Remark. 1. g /Rad g is semi-simple (this is well-defined since Rad is an
ideal).

2. simple implies semi-simple.

3. In char k = 0, being semi-simple lie algebra is equivalent to being direct sum
of simple lie algebras.
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10 Lecture 10 (January 27): Engel’s theorem
Scribe: Nelson Niu

Today we discuss two analogous theorems on the common eigenvalues of Lie
algebras—one for nilpotent Lie algebras, the other for solvable Lie algebras.

10.1 Definition. For g ⊆ gl(V ), we say that x ∈ g is nilpotent if xn = 0 in gl(V )
for some n.

10.2 Definition. We say that x ∈ g is ad-nilpotent if it is nilpotent in the adjoint
representation; that is, if adx ∈ gl(g) is nilpotent.

10.3 Remark. If g is nilpotent as a Lie algebra, then by definition adx is nilpotent
for all x ∈ g (i.e. every element of g is ad-nilpotent).

10.4 Remark. The two definitions above are not equivalent. For example, if g is
an abelian Lie algebra, then adx = 0 for every x ∈ g, so every x ∈ g is ad-nilpotent.
But certainly not every x ∈ g must be nilpotent: take, for example, the abelian and
thus nilpotent Lie algebra of diagonal matrices—certainly not all of its elements
are nilpotent.

On the other hand, ad-nilpotence does relate to the nilpotence of the entire Lie
algebra: Engel’s theorem states that if every element of a Lie algebra is ad-nilpotent,
then the Lie algebra must be nilpotent. This result will be a consequence of the
following theorem.

10.5 Theorem. Given g ⊆ gl(V ), if g consists of nilpotent elements, then there
exists a common eigenvector v ∈ V such that g v = 0.

The idea is that if g consists of all nilpotent elements, you could make its elements
strictly upper triangular by finding the Jordan form.

Also note that we don’t need any additional assumptions on the base field k: it
doesn’t need to be algebraically closed, because the eigenvalue we’re looking for is
0, and it doesn’t need to have characteristic 0 either.

Proof. Induct on n = dim g. When n = 1, we can write g = kx. Now just take
an eigenvector for x: as x is nilpotent, the eigenvalue must be 0, and every other
element of kx should have the same eigenvector and eigenvalue.

For the inductive step, assume the result holds when dim g < n, and let H be
a maximal proper Lie subalgebra of g. Then H acts on g /H via ad. By the
inductive hypothesis, there is a common eigenvector x̄ ∈ g /H for which H x̄ = 0;
or equivalently, there exists x ∈ g with x /∈ H for which [H, x] ⊆ H. So if we let
N g(H) be the normalizer of H in g, consisting of all x′ ∈ g for which [H, x′] ⊆ H,
we can write that H ⊊ N g(H) ⊆ g. As N g(H) is also a subalgebra of g but H is
maximal, it follows that N g(H) = g. Hence [H, g] ⊆ H.

Now let W be the subspace of V consisting of all w ∈ V for which Hw = 0. By
the inductive hypothesis, W ̸= 0. We claim that W is a g-stable subspace of V ;
that is, for all w ∈W and x ∈ g, we have xw ∈W . Indeed, for all h ∈ H, we have
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that [h, x] ∈ H, so [h, x]w = 0 = hw and thus

h(xw) = x(hw) + [h, x]w = x(0) + 0 = 0,

implying that xw ∈W . So g acts on W .

Finally, note that H must have codimension 1 in g: if not, we could always find
some nonzero proper subalgebra g′ ⊊ g /H and lift it to a proper subalgebra g̃′ ⊊ g
with H ⊊ g̃′, contradicting the maximality of H. So there exists z ∈ g with z /∈ H
for which g = H+kz. We have that z acts nilpotently on W , so there exists an
eigenvector v ∈W for z with eigenvalue 0. Then v is the common eigenvector we
seek:

g v = (H+kz)v = H v + kzv = 0 + k0 = 0.

■

There is analogous theorem (and proof) for solvable algebras, but it is more involved,
as not all eigenvalues will be 0 as in the nilpotent case.

As promised, Engel’s theorem follows.

10.6 Theorem (Engel). Let g be a Lie algebra. If every x ∈ g is ad-nilpotent,
then g is nilpotent.

Proof. Apply the previous theorem to the adjoint representation ad: g→ gl(g) (so
take V = g). Then there exists a common eigenvector z ∈ g such that adx(z) = 0
for all x ∈ g. In other words, z ∈ Z(g), so Z(g) ̸= 0.

Now induct on dim g, modding out the center, building an ascending central series
(i.e. with abelian quotients). Then g /Z(g) is nilpotent by induction, implying that
g is nilpotent via lifting. ■

Note that nilpotent Lie algebras are analogous to p-groups in having nontrivial
centers.

10.7 Remark (on “flags”). Let n = dimV and fix g ⊆ gl(V ) with all nilpotent
elements. Then our earlier theorem implies the existence of a common eigenvector
vn ∈ V for which g vn = 0. Taking Vn = kvn ⊆ V and modding it out, we are left
with a space of dimension dim(V/Vn) = n− 1.

Now repeat this process on V/Vn: again we find a common eigenvector v̄n−1 ∈ V/Vn
(the residue of some vn−1 ∈ V ) for which g v̄n−1 = 0 in V/Vn (and thus g vn−1 ⊆ Vn).
Take Vn−1 = kvn + kvn−1 ⊃ Vn.

Iterating this process, we obtain a basis {v1, . . . , vn} for V and nested subspaces
Vn ⊂ · · · ⊂ V1 = V given by Vi = kvi + · · ·+ kvn satisfying gVi ⊆ Vi+1. This basis
induces an isomorphism gl(V ) ≃ gln that sends g to u−n, the strictly (zeroes along
the diagonal) lower triangular matrices of size n× n.

We call the nested sequence of subspaces Vn ⊂ · · · ⊂ V1 = V a “flag”; here it
satisfies gVi ⊆ Vi+1.

10.8 Corollary. Given a nilpotent Lie algebra g and any ideal H ⊆ g, we have
H∩Z(g) ̸= 0.
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As mentioned, there are analogous results for solvable Lie algebras, although now
we must assume that k is algebraically closed (to have the necessary eigenvalues)
and has characteristic 0.

10.9 Theorem. If g ⊆ gl(V ) is solvable (i.e. its derived series terminates), then
there exists a common eigenvalue v ∈ V for g: for all x ∈ g, there exists some
λx ∈ k for which xv = λxv.

Proof. See [Hum73] II.4.1. ■

10.10 Remark. If g ⊆ gl(V ) is solvable, then there exists a flag 0 ⊊ V1 ⊂ V2 ⊂
· · · ⊂ Vn = V for which gVi ⊆ Vi. So there exists a basis for which g consists of
the upper triangular matrices. (Compare this to the nilpotent case.) In a way, the
upper triangular matrices are the “ultimate” solvable Lie algebras.

10.11 Exercise. The assumption that k has characteristic 0 is crucial in the
solvable case. If instead k had characteristic 2, show that in gl2 with

x =

(
0 1
1 0

)
and y =

(
0 0
0 1

)
,

we have that [x, y] = x, making H = kx+ky solvable. Is there a common eigenvalue?

Next time, we will cover Jordan decomposition.
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11 Lecture 11 (January 27): Lie’s theorem and
Lie’s lemma
Scribe: Eric Zhang

We start with a proof of a corollary from last time:

11.1 Corollary (Corollary 10.8). Given a nilpotent Lie algebra g and any ideal
H ⊆ g, we have H∩Z(g) ̸= 0.

Proof. Note that g acts on the ideal H via the adjoint action. Since g is nilpotent,
there exists v ∈ H such that g v = 0 which implies v ∈ Z(g). ■

11.2 Exercise. Find all nilpotent, non-abelian, 3-dimensional lie algebras, up to
isomorphism.

Recall Lie’s theorem and note the assumption on the base field k.

11.3 Theorem (Lie’s theorem). Let char k = 0 and k = k. If g ⊆ gl(V ) is solvable
(i.e. its derived series terminates), then there exists a common eigenvector v ∈ V
for g: for all x ∈ g, there exists some λx ∈ k for which xv = λxv.

11.4 Corollary. Let char k = 0 and k = k. Any irreducible representation of a
solvable lie algebra is 1-dimensional.

Proof. Let g ⊆ gl(V ) be an irreducible representation. By Lie’s theorem, there
exists a common eigenvector v ∈ V which spans a 1-dimensional g-invariant
subspace (v). Hence V = (v) and is of 1-dimensional by irreducibility. ■

11.5 Corollary. Let char k = 0 and k = k. Then g solvable implies [g, g] nilpotent.

Proof. (Exercise.) Consider the adjoint action restricted to [g, g] and the induced
short exact sequence 0 → Z([g, g]) → [g, g] → ad([g, g]) → 0. It suffices to show
that ad([g, g]) is nilpotent. Note ad([g, g]) = [ad g, ad g] as ad preserves lie bracket.
Since g is solvable, it follows from Lie’s theorem (here we use the assumption on k)
that ad g ⊆ bn. Thus [ad g, ad g] ⊆ [bn, bn] = un and is nilpotent. ■

We then turn to a more general lemma.

11.6 Theorem (Lie’s lemma). Let char k = 0 and k = k. For g ⊆ gl(V ) and
H ⊆ g any ideal, denote the restricted representation as V ↓H . Suppose

(
V ↓H

)
λ

is a weight space. Then
(
V ↓H

)
λ
is a g-invariant subspace of V.

11.7 Remark. It can be shown that Lie’s theorem follows from Lie’s lemma.

11.8 Proposition. Let char k = 0 and k = k. Suppose g is any lie algebra and
V ∈ Rep(g) is irreducible. Then

1. If x ∈ Rad(g), then x acts by a particular scalar λ on V.

2. If x ∈ [g,Rad(g)], then x acts by zero on V.
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Proof of part 1. If Rad(g) = 0, then the statement is vacuously true. Assume
Rad(g) ̸= 0. Recall Rad(g) is solvable and consider its action on V . By Lie’s
theorem (here we need the assumption on k), there exists a common eigenvector
v ∈ V such that xv = λv for all x ∈ g . It follows that span(v) is a Rad(g)-invariant
subspace. In particular, span(v) ⊆ (V ↓Rad(g)

)
λ
which implies the latter is a

nontrivial weight space. Then by Lie’s lemma, (V ↓Rad(g)

)
λ
is g-invariant. By

irreducibility of V ∈ Rep(g), we may conclude V = (V ↓Rad(g)

)
λ
and it follows

that x acts by scalar on V. ■

Proof of part 2. (Exercise.) To see [g,Rad(g)] acts by 0 on V , it suffices to show
its generators acts by 0. Recall [g,Rad(g)] is spanned by [x, y] where x ∈ g and
y ∈ Rad(g). Then [x, y] acts on V as [x, y]v = (xy)v − (yx)v = x(yv) − y(xv).
Note [g,Rad(g)] ⊆ Rad(g) and, by part 1 yv = λv,∀y ∈ [g,Rad(g)] for a fixed λ.
It follows that [x, y]v = x(yv)− y(xv) = x(λv)− λ(xv) = 0. ■

11.9 Definition (reductive lie algebra). A lie algebra g is reductive if g /Z(g) is
semisimple, or equivalently, if Rad(g) ⊆ Z(g).

11.10 Example. gln is not simple nor semisimple (since it has nontrivial center)
but it is reductive. So are sln, sp2m, SO2n, and SO2n+1.

11.11 Example. Simple or semisimple lie algebras are reductive because they
have zero center or radical.

11.12 Remark. The following inclusion relations holds.

1. simple =⇒ semisimple =⇒ reductive

2. abelian =⇒ nilpotent =⇒ solvable

11.13 Definition (Generalized eigenspace). Let x ∈ g . A generalized eigenspace
is V(λ) = {v ∈ V : (x− λI)nv = 0}.

11.14 Remark. If x ∈ g is nilpotent, then V(0) = V.

11.15 Proposition (Jordan canonical form). Let k = k and x ∈ gl(V ). Then there
exists unique (λ1, . . . , λs) ∈ ks and (n1, . . . , ns) ∈ N s such that V =

⊕s
i=1 V(λi)

where dimkV(λi) = ni. If we choose basis for each V(λi), then x can be put into
Jordan blocks.

11.16 Definition. For x ∈ gl(V ), then x is semisimple if x is diagonalizable, or
equivalently if the minimum polynomial of x has distinct roots.
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12 Lecture 12 (February 1): Bilinear forms and
reductive Lie algebras
Scribe: Raymond Guo

Last time, we claimed that if V is a irreducible representation of g, then [g,Rad(g)]
acts by 0 on V . This was left as an exercise, but we go over the proof now. If
x ∈ [g,Rad(g)] then x = [y, z], y ∈ g and z ∈ Rad(g). By Proposition 11.8(1), x
acts by a particular scalar λ on V , that is, zv = λv for all v ∈ V . Thus, we have,

[y, z]v = y(zv)− z(yv) = y(λv)− λ(yv) = 0.

Note, for x in Jordan Canonical form and with

V(λ) = {v ∈ V | (x− λI)nv = 0},

we have the invariant subspace decomposition

V =

s⊕
i=1

V(λi).

12.1 Definition (Rational Canonical Form). Letting L : V → V be a linear map
from a vector space to itself, we give V an k[x] module structure by letting x act
by L. With this, we can place the k[x] module V in rational canonical form by
writing

V ∼=
ℓ⊕
i=1

k[x]

di(x)

where each di is a polynomial and di|di+1. dℓ is the minimal polynomial.

12.2 Remark. x is semisimple if and only if the minimal polynomial of x has
distinct roots.

12.3 Definition. Let x ∈ gl(V ). x = xs + xn is a Jordan decomposition if xs is
semisimple, xn is nilpotent, and [xs, xn] = 0.

12.4 Proposition. For such a decomposition, there exist p, q ∈ k[t] such that
xs = p(x) and xn = q(x).

Proof. Shown in [Hum73], uses the Chinese Remainder Theorem. ■

12.5 Proposition. The Jordan decomposition exists.

Proof. Write x in Jordan canonical form. The diagonal is the semisimple part and
the strictly upper triangular entries are the nilpotent part. ■

12.6 Proposition. The Jordan decomposition is unique for all matrices.

Proof. Suppose xs+xn = x′s+x
′
n with xs and x

′
s semisimple, xn and x′n nilpotent.

Then xs − x′s = xn − x′n. We conclude that the LHS is semisimple (diagonalizable)
and the RHS is nilpotent, but the only diagonalizable nilpotent matrix is 0. ■
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12.7 Corollary. Let x, y ∈ gl(V ), such that [x, y] = 0. Then

1. all generalized eigenspaces of V with respect to x are y-invariant.

2. [y, xs] = [y, xn] = 0.

Proof. x ∈ g. x = xs + xn =⇒ adx = adxs
+ adxn

is a Jordan decomposition for
adx, from which the result follows. ■

12.8 Remark. If the characteristic of k is 0, g is solvable if and only if [g, g] is
nilpotent. This does not hold in characteristic p.

12.9 Example. Let char(k) = 2. We have a 4-dimensional lie algebra with
generators y1, y2, x1, x2. Let us have [x1, x2] = 0 and [y1, y2] = y1. Let us also
have [y1, x1] = x2, [y1, x2] = x1 [y2, x1] = 0, [y2, x2] = x2 (to show that this is a lie
algebra, we require that the characteristic of k is 2, in order to check the Jacobi
identity. For example, [[y1, y2], x1] + [[y2, x1], y1] + [[x1, y1], y2] = x2 + 0 + x2 =
2x2 = 0) We claim this defines a lie algebra.

L = ⟨x1, x2⟩ ⊂ g is an abelian ideal. g /L = ⟨y1, y2⟩ is solvable. Thus 0 ⊂ L ⊂ g
demonstrates that g is solvable. We show that [g, g] is not nilpotent. Note that
[g, g] = ⟨y1, x1, x2⟩ = h, [h, h] = L, and [h, L] = L, whereby we see [g, g] is not
nilpotent.

12.10 Definition (Invariant Bilinear Operator). Let B : g× g→ k be a bilinear
form. B is said to be invariant if it satisfies B([x, y], z) = B(x, [y, z]) for all
x, y, z ∈ g. (Humphreys calls this associative instead).

12.11 Example. Let V ∈ Repk g be a finite dimensional representation with
ρ : g → gl(V ). BV : g× g → k defined by BV (x, y) = Trace(ρ(x)ρ(y)) is such a
form.
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13 Lecture 13 (February 3): Killing Form
Scribe: Goutham Seshadri

13.1 Proposition. BV as defined in Example 12.11 is bilinear, symmetric and
invariant.

Proof. Bilinearity is a consequence of linearity of the trace, and symmetry comes
from the fact that Trace(ab) = Trace(ba). To show that Bv is invariant, we need
to show that BV satisfies BV ([x, y], z) = BV (x, [y, z]) for all x, y, z ∈ g. Directly
computing, and using the fact that Trace(ab) = Trace(ba) again, we see that

BV ([x, y], z)− BV (x, [y, z]) = Trace(ρ([x, y])ρ(z))− Trace(ρ(x)ρ([z, y]))

= Trace [(ρ(x)ρ(y)− ρ(y)ρ(x))ρ(z)]− Trace [ρ(x)(ρ(y)ρ(z)− ρ(z)ρ(y))]
= Trace(ρ(x)ρ(y)ρ(z)− ρ(y)ρ(x)ρ(z)) = 0.

■

13.2 Lemma. BV is “additive”; i.e. that for any short exact sequence 0→ V1 →
V2 → V3 → 0 in Rep g, BV2

= BV1
+BV3

.

Proof. Homework. ■

13.3 Theorem. If g is a Lie algebra, V ∈ Repk g, and BV is non-degenerate then
g is reductive (i.e. g /Z(g) is semisimple).

Proof. It suffices to show that [g,Rad g] = 0, since this immediately implies that
Rad g ⊆ Z(g) and thus, g /Z(g) is semisimple.

Let W be an irreducible representation of g, then by Proposition 11.8, [g,Rad g]
acts as 0 on W , so that BW (x,−) = 0 for all x ∈ [g,Rad g]. By Lemma 13.2 and
induction on the composition series of V , we must have that BV (x,−) = 0 for all
x ∈ [g,Rad g]. But this means that [g,Rad g] ⊆ kerBv = 0, by non-degeneracy of
BV . ■

13.4 Remark. gln, sln, sp2n and the other classical Lie algebras can be shown to
be reductive via this theorem by considering the standard representation.

13.5 Definition (The Killing Form). Kg := Trace(adx ad y)

13.6 Example. We can compute the matrix of Ksl2 with respect to e, h, f by
starting with the ad matrices:

ad e =

0 −2 0
0 0 1
0 0 0

 , adh =

2 0 0
0 0 0
0 0 −2

 , ad f =

 0 0 0
−1 0 0
0 2 0


We end up with the following matrix which is non-degenerate unless char(k) = 2:

Ksl2 =

0 0 4
0 8 0
4 0 0


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13.7 Lemma. If B is an invariant, symmetric, bilinear form on g and I ⊂ g is
an ideal, then I⊥ := {x ∈ g | B(I, x) = 0} is an ideal.

Proof. Given any x ∈ I⊥ and y ∈ g, we must show that [y, x] ∈ I⊥. But for any
z ∈ I, invariance of B gives that B(z, [y, x]) = B([z, y], x) = 0 since [z, y] ∈ I and
x ∈ I⊥. ■

13.8 Theorem (Cartan’s Criterion). If char(k) = 0 and k = k̄, then g is a solvable
Lie algebra if and only if BV (x, y) = 0 for all x ∈ g, y ∈ [g, g].

Proof. See [Hum73] Section 4.3. ■

13.9 Theorem (Lie’s Theorem). g is semisimple if and only if its associated
Killing form, Kg is non-degenerate.

Proof. (⇐= ) Suppose Kg is non-degenerate. Then by Theorem 13.3, g is reductive.
But for all x ∈ Z(g), Kg(x,−) = 0 so that Z(g) ⊆ kerKg = 0. We conclude that g
is semisimple.

( =⇒ ) Suppose I = kerKg ̸= 0. Then I is an ideal by the invariance of Kg.
Moreover KI = (Kg) ↓I (Homework), so that KI = 0. But by Cartan’s criterion
(Theorem 13.8), I must be solvable, so that g cannot be semisimple. ■
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14 Lecture 14 (February 6): Categorical proper-
ties of representations and homological algebra
Scribe: Haoming Ning

14.1 Lemma. Let B be a symmetric bilinear form on V , let U ⊆ V such that
B ↓U is non-degenerate, then V = U ⊕ U⊥.

Sketch of proof. Pick a basis e1, . . . , em for U , complete it to a complementary
bases em+1, . . . , en for U⊥. Define

Q =

(
A B
BT C

)
, P =

(
I −S
0 I

)
where S = A−1B. Then

PTQP =

(
A 0
0 ∗

)
.

■

14.2 Exercise. Check the detail in the proof of the above lemma.

14.3 Lemma. Let g be a semi-simple Lie algebra, I ⊆ g an ideal. Then the killing
form Kg ↓I is non-degenerate. (Recall that when char(k) = 0, then g is semi-simple
if and only if Kg is non degenerate.)

Proof. By homework Kg ↓I= KI . Suppose that KI is degenerate. Let H =
I ∩ I⊥ ⊆ g, then H is an ideal in g. We have KH = Kg ↓H= 0, so that Kg(a, b) = 0
for every a, b ∈ I ∩ I⊥. By Cartan’s criterion, H is solvable. But then g has a
solvable ideal H, contradicting the semi-simple hypothesis. ■

14.4 Theorem. Let g be semi-simple. Then g =
⊕s

i=1 gi where gi are simple.

Proof. We induct on the dimension of g. If g is not simple, there exists an ideal
I ⊆ g. By Lemma 14.3, Kg ↓I≠ 0 (so that I is semi-simple). By Lemma 14.1,
g = I ⊕ I⊥. Apply induction to I, I⊥. ■

14.5 Theorem. If g is semi-simple, then Der g = ad g := {adx | x ∈ g}. That is,
all derivations are inner.

Note that this can be viewed as an additive analogue of the Noether-Skolem theorem
for central simple algebras.

Weyl complete reducibility theorem

Recall the following facts and operations on Repk g:

• Repk g is an abelian category.

• Tensor operation ⊗R exists on Repk g.
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• Inner Homk(V,W ), where g acts on φ : V →W by x · φ(v) = φ(v)− φ(xv)
for every x ∈ g. (Note that in Hopf algebras: x ∈ H, (S ⊗ 1) ·∆(x) we have
x 7→

∑
S(x′)⊗ x′′). Note also that Homg(V,W ) = Homk(V,W )g.

• Duals V ♯ = Homk(V, k). If dimV <∞, then HomK(V,W ) ≃ V ♯ ⊗k W .

• Jordan-Holder theorem holds in this category.

• Schur’s lemma holds. If V,W are irreducible representations of g, then
Homg(V,W ) = 0 for V ̸≃W , and Endg(V ) = k = Endk(V )g.

Recall also the following facts on homological algebra:

To show that Repk g (category of finite dimension representations) is semi-simple
(every object is a direct sum of simple ones), it is equivalent to show that
Ext1g(V,W ) = 0 for every V,W , which implies that every short exact sequence
0→W → U → V → 0 splits.

14.6 Fact. The functor V 7→ V g = Homg(k, V ) is left exact, we denote this functor
simply by V g. Therefore we may define its right derived functor Extig(k, v) = RiV g.

We define in general Extig(V,W ) = RiHomg(V,W ).

14.7 Fact. Ext has the long exact sequence. Any short exact sequence 0→ V ′ →
V → V ′′ → 0 gives

0→ Homg(W,V
′)→ Homg(W,V )→ Homg(W,V

′′)→ Ext1g(W,V )→ . . . .

14.8 Fact. We have Extig(V,W ) ≃ Extig(k, V
♯ ⊗k W ). Define H∗(g, V ) :=

Ext∗g(k, V ).

Now let g be a semi-simple Lie algebra.

14.9 Definition (Casimir element). Let B be a nondegenerate invariant symmetric
bilinear form on g. Let xi be a basis of g. Choose xi to be the dual basis with
respect to B, so that B(xi, x

j) = δij . Define cB =
∑
xix

i ∈ U (g). In the case
that B = K is the Killing form on a semisimple Lie algebra g (so that K is
nondegenerate), then we call cK = c the Casimir element of g.



Lie Algebras 40

15 Lecture 15 (February 8): Casimir Element
Scribe: Bashir Abdel-Fattah

15.1 Proposition. If g is a semisimple Lie algebra and B is a nondegenerate
invariant symmetric bilinear form on g, then

(1) cB is independent of the choice of basis for g.

(2) cB ∈ Z(U (g)).

(3) If V is a representation of g (with respect to the action ρ : g→ gl(V )) and
B = BV , then define

cρ :=
∑

ρ(xi)ρ(x
i) ∈ gl(V )

(note that the Lie algebra homomorphism ρ : g→ gl(V ) extends uniquely to
a k-algebra homomorphism U (g) → gl(V ) by the universal property of the
universal enveloping algebra, and that cρ is the image of cB ∈ U (g) under
this map). Then Trace(cρ) = dim g.

Proof. (1) Calculate (see [Hum73] section 6.2).

(2) Consider the map

Endk(g) ∼= g#⊗ g→ g⊗ g
M−→ U (g)

(noting that B determines a canonical isomorphism g# ∼= g by mapping x ∈ g
to B(x,−) ∈ g#, hence there is a canonical isomorphism g#⊗ g ∼= g⊗ g).
Then cB is the image of idg ∈ Endk(g) in U (g) under the above composition
of morphisms of representations. Thus the fact that idg is ad-invariant
(i.e., idg ∈ Endk(g)

g), it follows that cB is also ad-invariant and hence
cB ∈ Z(U (g)).

(3) Given the basis {x1, . . . , xn} of g and the corresponding dual basis {x1, . . . , xn},
we have that BV (xi, x

j) = Trace(ρ(xi)ρ(x
j)) = δji by definition. Then we

can calculate

Trace cρ = Trace(

n∑
i=1

ρ(xi)ρ(x
i)) =

n∑
i=1

Trace(ρ(xi)ρ(x
i)) =

n∑
i=1

1 = n = dim g

■

15.2 Theorem. If g is a semisimple Lie algebra and V is an irreducible repre-
sentation of g, then there exists an element cV ∈ Z(U (g)) which acts on V as a
scalar λ ∈ k. If V is not the trivial representation V = k, then λ ̸= 0.

Proof. Take B = BV , and let I = kerB and J = I⊥. Then J is semisimple,
g = I ⊥ J , and B|J is nondegenerate. Let

c = cV := c(B|J ) ∈ Z(U (J)) ⊆ U (J) ⊆ U (g).
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We already know that cV commutes with every element of J by the fact that it’s
in Z(U (J)), and it also commutes with every element of I because cV is a sum of
products of elements in J , all of which commute with I by the fact that

[I, J ] ⊆ I ∩ J = {0},

so c = cV ∈ U (g). This also means that the map V → V, v 7→ cv is in fact
an endomorphism of representations (since c(xv) = x cv for all x ∈ g), and
Endg(V ) ∼= k by Schur’s lemma, so cV must act by a scalar on V .

15.3 Exercise. If V is an irreducible representation of a semisimple Lie algebra g,
then BV ≡ 0 if and only if V is the trivial representation.

By the exercise, if V is nontrivial then J = (kerB)⊥ ̸= 0, so

Trace cV = dim J ̸= 0

and cV must in fact act by a nontrivial scalar. ■

15.4 Theorem. Suppose char(k) = 0, k = k, and g is a semisimple Lie algebra over
k. Then the category Repk g is semisimple (meaning that every finite-dimensional
representation of g is completely reducible).

Proof. This is equivalent to showing that Ext1g(V,W ) = 0 for all V,W ∈ Rep g.
We proceed via the following steps

Step 1: Show that Ext1g(k, V ) = 0 for every irreducible representation V

Step 3⁄2: Show that Ext1g(k, V ) = 0 for any arbitrary representation V by induction
on the length of the composition series of V and by using the long exact
sequence for Ext1.

Step 2: Conclude that Ext1g(V,W ) ∼= Ext1g(k, V
# ⊗W ) = 0 for every V,W ∈ Rep g.

In order to prove step 1, suppose that V is a nontrivial representation V ̸∼= k, and
suppose for the sake of contradiction that Ext1g(k, V ) ̸= 0. Then there exists a
short exact sequence of representations

0 −→ V −→W −→ k −→ 0.

Let {v1, . . . , vn} be a basis for V ⊂W , and complete it to a basis {v1, . . . , vn, w̃}
of W , so that W ∼= V ⊕ kw̃ as a vector space. Let c = cV be a central element that
acts on V by a nonzero scalar λ ∈ k. Then the action of c on W has the matrix
expression 

λ 0 · · · 0 ∗
0 λ · · · 0 ∗
...

...
. . .

...
0 0 · · · λ ∗
0 0 · · · 0 0

 =

[
λIn ∗
0 0

]

with respect to the basis {v1, . . . , vn, w̃}. Proof to be continued...

■
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16 Lecture 16 (February 10): Weyl complete re-
ducibility theorem
Scribe: Justin Bloom

We continue with the proof of Theorem 15.4 from last time.

Proof. (of Theorem 15.4, continued) By the matrix representation, c has a 0-
eigenvector, say w. We claim now kw is g-invariant and hence W = V ⊕ kw is a
splitting of the short exact sequence of representations.

Let x ∈ g. Then c · xw = xcw = 0 since c ∈ U (g) is central, and hence xw is also
a 0-eigenvector for c. But the eigenspace of 0 for c is kw, so xw ∈ kw, proving our
claim.

Consider the case where V ∼= k the trivial irreducible representation, with a short
exact sequence

k ↪→W ↠ k.

If k ↪→W is the embedding to the g-subspace kv, we have W = kv ⊕ kw as vector
spaces, where the image of w generates k in W ↠ k. If x ∈ g is any element, we
have the matrix representation of x is[

0 ∗
0 0

]
since kv is g-invariant. Since g is semisimple and char k = 0, we may consider an
arbitrary simple component of s ⊂ g acting on W by restriction. Since s is simple,
[s, s] = s, and hence the matrix representation for any x ∈ s acting on W must
have ∗ = 0. Then this is true also of any x ∈ g so g acts trivially on W , and the
short exact sequence splits. Hence Ext1g(k, k) = 0, and we conclude Ext1g(k, V ) = 0
for any finite dimensional representation V . ■

16.1 Example. Let g = sl2, and consider the Casimir element

cB =
∑

xix
i ∈ Z(U )

for a basis {xi} of g and {xi} dual w.r.t B.

Let V = k2 the standard representation for g = ⟨e, f, h⟩, i.e. matrices

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

Let B = BV , i.e. B(x, y) = Trace(ρV (x)ρV (y)). Find a dual basis for B, and
compute cB :
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First, we compute some traces, identifying e, f, h with their matrices:

Trace(eh) = 0, Trace(e2) = 0
Trace(fh) = 0, Trace(h2) = 2
Trace(ef) = 1, Trace(f2) = 0.

Then we have dual elements

e⊥ = f, h⊥ =
1

2
h, f⊥ = e,

so our Casimir element is

cB = ef +
h2

2
+ fe = 2ef +

h2

2
− h.

Now consider the adjoint representation: the killing form is 4
8

4

 .

The dual basis is then

e⊥ =
f

4
, h⊥ =

h

8
, f⊥ =

e

4

and

c =
ef

2
+
h2

8
− h

4
.

Note c and cB generate the same linear subspace.

(Abstract) Jordan decompositions

Let g be semisimple Lie algebra. Jordan decomposition:

adx = (adx)s + (adx)n

for derivations (adx)s, (adx)n. Since all derivations are inner, there exists x̃s, x̃n
such that (adx)s = ad x̃s and (adx)n = ad x̃n. We also have x̃s, x̃n gives a Jordan
decomposition

x = x̃s + x̃n

called the abstract Jordan decomposition.

For any representation V , ρV : g → gl(V ), we have ρ(x̃s) = ρ(x)s and ρ(x̃n) =
ρ(x)n.

16.2 Proposition. If g′ ⊂ g is any Lie subalgebra and x ∈ g′, then xs, xn are both
in g′ .
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17 Lecture 17 (February 13): Root decomposi-
tions and Root spaces
Scribe: William Dudarov

Root decompositions

Let k = k be of characteristic 0, and let g be a semisimple Lie algebra over k.

17.1 Definition. A subalgebra t ⊆ g is toral if it consists entirely of semisimple
elements.

17.2 Example. For sln, we have the example of a subalgebra of diagonal matrices
of the form diag(a1, . . . , an), such that a1 + · · ·+ an = 0.

17.3 Proposition. Toral subalgebras are abelian.

The proof is in [Hum73], Section 8.1.

The classification of semisimple Lie algebras rests on the choice of maximal toral
subalgebra h.

17.4 Remark. Making such a choice of h a maximal toral subalgebra, h is abelian
by Proposition 17.3, and so adg h is simultaneously diagonalizable.

17.5 Remark. h = Cg(h), i.e. h is self-normalizing ([h, x] = 0 =⇒ x ∈ h).

17.6 Definition. ACartan subalgebra (CSA) of g is a nilpotent self-normalizing
Lie sub-algebra.

An observation: note that any maximal toral subalgebra is a Cartan subalgebra,
and any Cartan subalgebra is abelian.

17.7 Definition. The rank of g is the dimension of h.

17.8 Remark. All CSAs are “conjugate” - that is, in a finite-dimensional Lie
algebra over a field of characteristic 0, all CSAs are isomorphic, and conjugate
under automorphisms.

Root spaces

Let h ⊆ g be a Cartan subalgebra. Then h is simultaneously diagonalizable, which
is equivalent to

g =
⊕
α

gα,

where the gαs are the eigenspaces of g with respect to the action of h. That is, if
we let h∗ = Homk(h, k), and let α run over the elements of h∗, we get the above
direct sum for g where

gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.

Note that g0 = h. Denote by Φ the α ∈ h∗ such that α ̸= 0.

17.9 Definition. Fix h ⊆ g, and let g =
⊕

α∈h∗ gα = g0⊕
⊕

α∈Φ gα.
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1. α ∈ Φ is called a root for g.

2. Φ is called a root system for g.

3. The eigenspace gα is called a root space.

17.10 Example. Let g = sl2 be generated by

e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
.

We have that g = kh⊕ ke⊕ kf . Our Cartan subalgebra is the one generated by h,
h = kh. We have

1. [h, h] = 0,

2. [h, e] = 2e,

3. [h, f ] = −2f.

What are our roots α? We have α(h) = 2,−α(h) = −2.

The root system Φ can be represented as the following.

α−α

Root system for sl2

17.11 Example. Let g = sl3. We have h generated by

h1 =

1 0 0
0 −1 0
0 0 0

 and h2 =

0 0 0
0 1 0
0 0 −1

 , with h3 = h1 + h2 =

1 0 0
0 0 0
0 0 −1

 .
We have

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 ,
and

f1 =

0 0 0
1 0 0
0 0 0

 , f2 =

0 0 0
0 0 0
0 1 0

 , f3 =

0 0 0
0 0 0
1 0 0

 .
We have the decomposition

sl3 = h⊕
3⊕
i=1

kei ⊕
3⊕
i=1

kfi.
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18 Lecture 18 (February 15): Killing form and
sl2-triples
Scribe: Soham Ghosh

We continue with Example 17.11 we saw in last class.

18.1 Example. g = sl3. Let

h1 =

1
−1

 h2 =

 1
−1

 h3 = h1 + h2

e1 =

 1
 e2 =

 1
 e3 =

 1


f1 =

1

 f2 =


1

 f3 =


1


Recall the decomposition sl3 = h⊕

⊕3
i=1 kei ⊕

⊕3
i=1 kfi.

Let α1, α2 ∈ h⋆ and let α3 = α1 + α2. Let K be the Killing form on g, and
henceforth we shall write ⟨x, y⟩ for K(x, y). K|h×h is non-degenerate. We have

isomorphism h
∼−→ h⋆.

(adh1)(e1) = [h1, e1] = 2e1 (adh1)(e2) = [h1, e2] = −e2
(adh1)(e3) = (adh1)([e1, e2]) = [h1, [e1, e2]] = [[h1, e1], e2] + [e1, [h, e2]]

[2e1, e2] + [e1,−e2] = [e1, e2] = e3

So we have, in matrix form:

adh1 =



2
−1

1
0

0
−2

1
−1


adh2 =



−1
2

1
0

0
1
−2

−1


We have ⟨hi, hj⟩ = Trace(adhi, adhj). Note that ⟨h1, h1⟩ = 12 = ⟨h2, h2⟩ and
⟨h1, h2⟩ = −6. Thus, α1(h1) = 2, α1(h2) = −1.

We claim that α1 = h⋆α1
, i.e., α1(h) = ⟨hα1

, h⟩ for all h. Note that hα1
= h1

6 and

hα2 = h2

6 . To find the angle ϕ between h1 and h2, we see that cosϕ = ⟨h1,h2⟩
∥h1∥∥h2∥ =

−1/2, i.e., ϕ = 2π/3.
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2π/3 α

Type A2 rank 2 Root system for sl3

The following are the root system diagrams of type B2 rank 2 and type G2 root
systems:

3π/4
α

Type B2 rank 2 Root system

5π/6
α

Type G2 Root system

18.2 Lemma. Let g be a semisimple Lie algebra, h ⊂ g be a Cartan subalgebra,
and K be a Killing form on g. Then:

1. g = h⊕
⊕

α∈Φ gα is Root space decomposition of g.

2. α, β ∈ Φ, then [gα, gβ ] ⊂ gα+β. In particular if α + β /∈ Φ, and α ̸= −β,
then [gα, gβ ] = 0.

3. α+ β ̸= 0 implies K(gα, gβ) = 0.

4. For all α ∈ Φ, K|gα × g−α
is non-degenerate.

Proof. For (2), note that if x ∈ gα and y ∈ gβ , then [h, [x, y]] = [[h, x], y] +
[x, [h, y]] = α(h)([x, y]) + β(h)([x, y]) = (α + β)(h)([x, y]), which implies that
[x, y] ∈ gα+β .
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For (3), let x ∈ gα, y ∈ gβ and suppose K(x, y) ̸= 0. Then

α(h)K(x, y) = K([h, x], y) = −K(x, [h, y]) = −β(h)K(x, y),

which implies α = −β.

For (4) note that K is non-degenerate, and by (3), we have K(gα, gβ) = 0 if
α+ β ̸= 0, and K(gα, h) = 0 implying K|gα × g−α

is non-degenerate. ■

Upshot: Given a semisimple Lie algebra g, we get a root space decomposition
with root space Φ, by choosing a Cartan subalgebra h. We get a decomposition of
g into simple lie algebra g =

⊕
gi, (gi simple), such that h =

⊕
hi, where hi is a

Cartan subalgebra in gi, which yields a root system Φi for gi, such that Φ =
⊔

Φi.

sl2-triples

For all roots α ∈ Φ, there exists a triple ⟨e, hα, f⟩ ⊂ g such that hα ∼= sl2, α(hα) = 2,
e ∈ gα, and f ∈ g−α.

Note that we have an isomorphism h
∼−→ h⋆ via the Killing form K given by α 7→ hα,

the dual of α, defined by α(h) = ⟨hα, h⟩ for all h ∈ h. Let hα = 2Hα

⟨α,α⟩ (have to

show ⟨α, α⟩ ̸= 0 for this). We can define ⟨α, β⟩ := ⟨hα, hβ⟩, whereby we have
α(hα) = ⟨hα, hβ⟩ = β(hα).

sl2: ⟨h⟩ := h, where h =

(
1
−1

)
. Recall decomposition sl2 = kh⊕ ke⊕ kf .

Define α : h → k by α(h) = 2. Then hα = h
4 and ⟨h, h⟩ = 8. Also we see then

α(h) = ⟨hα, h⟩ = ⟨h4 , h⟩ = 2.

hα =
2hα
⟨α, α⟩

=
2hα
⟨hα, hα⟩

=
2h/4

⟨h/4, h/4⟩
=

h/2

8/16
= h
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19 Lecture 19 (February 17): Blitz through semi-
simple Lie algebras
Scribe: Leo Mayer

19.1 Proposition (Properties of Φ). The following are the properties of root
systems:

1. Φ spans H⋆.

2. dim gα = 1 for all α ∈ Φ.

3. For all α, β ∈ Φ we have Sα(β) ∈ Φ. In particular, if α ∈ Φ, then −α ∈ Φ.

4. No other multiple of α ∈ Φ is a root.

5. If α, β ∈ Φ, the subspace
⊕

n∈Z gβ+nα is a representation of 2 (in particular,
we there are r ≤ q ∈ Z such that β + rα, β + (r + 1)α, . . . , β + qα are all
roots).

6. [gα, gβ ] = gα+β.

7. β(hα) =
2⟨α,β⟩
⟨α,α⟩ ∈ Z.

Observation: Since Q ⊂ R ⊂ C ⊂ k, we may consider HQ, the Q vector space
spanned by {hα|α ∈ Φ}. We may also consider HR := HQ⊗R. The following
properties hold:

1. Let {α1, . . . , αs} be a basis for H∗. Then each α can be written as α =
∑
ciαi,

where ci ∈ Q.

2. For all α, β, (α, β) ∈ Q.

3. KH∗
Q ×H∗

Q
is positive definite.

Summary: E = QΦ and ER = E ⊗Q R, K defines an inner product (−,−) on ER.
The following conditions (∗) hold

1. 0 ̸∈ Φ, |Φ| <∞, Φ spans E.

2. If α ∈ Φ, then −α ∈ Φ, and no other scalar multiple of α is in Φ.

3. If α, β ∈ Φ, then Sα(β) ∈ Φ.

4. If α, β ∈ Φ, then ⟨β, α⟩ ∈ Z, where ⟨β, α⟩ := 2(β,α)
α,α

Abstract Root Systems

Let E be a Euclidean vector space, i.e. a real vector space with an inner product
denoted (−,−). If µ ∈ E, define the reflection Sµ by Sµ(λ) = λ − ⟨λ, µ⟩µ. The
perpendicular hyperplane to µ is Pµ = {λ ∈ E|⟨λ, µ⟩ = 0}.

19.2 Definition. An abstract root system in E is a subset Φ ⊂ E satisfying the
four conditions (∗) above.
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Simple Roots

Choose a vector t ∈ E not normal to any root in Φ. We then get a decomposition
Φ = Φ+

∐
Φ−, where Φ+ := {α ∈ Φ | (α, t) > 0}, and similarly for Φ−. Such a

decomposition is called a polarization.

19.3 Definition. A root α ∈ Φ+ is simple if α ̸= β + γ for all β, γ ∈ Φ+.

Some facts:

1. If α ∈ Φ+, then α is a sum of simple roots.

2. If α, β are simple, then (α, β) ≤ 0

3. The simple roots in Φ+ are linearly independent.

19.4 Definition. Let ∆ = {α1, . . . , αs} be the set of simple roots in Φ+. The
Cartan matrix is the matrix (aij), where aij = ⟨αi, αj⟩. The Dynkin diagram is
the graph where:

1. The vertices are simple roots.

2. The number of edges between αi and αj is ⟨α, β⟩⟨β, α⟩.

3. If ∥αi∥ > ∥αj∥, there is an arrow pointing from αi to αj .
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20 Lecture 20 (February 24): Abstract root sys-
tems and Weyl group
Scribe: Jackson Morris

The idea here is that to each semi-simple Lie algebra, we can assign a root system
Φ. Remember that an abstract root system is a euclidean vector space E such
that: Φ spans E; |Φ| <∞; 0 /∈ Φ; for every α ∈ Φ, we have −α ∈ Φ and that no

other scalar multiplies of α are; ⟨β, α⟩ = 2 (β,α)
(α,α) ∈ Z, where parantheses denote the

killing form; rkΦ=dimE.

Fact: If Φ is irreducible, then there are at most 2 different root lengths, short
roots and long roots.

For rank 2, we have that A1 ×A1 and A2 have only one root length, while B2 and
G2 have two root lengths.
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21 Lecture 21 (February 27)
Scribe: Nelson Niu

The type A root system

Consider the An−1 type root system Φ (corresponding to the simple Lie algebra sln).
The reflections generating its Weyl group W can be thought of as transpositions,
making every element of W a permutation; so W ∼= Sn. More precisely, if we
identify its underlying (n− 1)-dimensional Euclidean space with

E =

⊕n
i=1 R ei

R(e1 + · · ·+ en)
,

where each ei acts on the diagonal matrix Ejj ∈ sln (with a 1 in the jth row, jth

column and zeroes everywhere else) by ei(Ejj) = δij , then each simple root αi in
∆ = {αi}n−1

i=1 can be identified with ei − ei+1 = (0, . . . , 0, 1,−1, 0, . . . , 0), with a 1
in the ith entry and a −1 in the (i+ 1)th entry.

These n− 1 simple roots determine the n(n− 1)/2 positive roots ei− ej with i < j,
each of which can be written as a sum of consecutive simple roots:

ei − ej = (ei − ei+1) + · · ·+ (ej−1 − ej) = αi + · · ·+ αj−1.

In terms of the An−1 Dynkin diagram, consisting of the n − 1 simple roots in a
line with a single edge connecting each pair of consecutive roots, the positive roots
are given by adding simple roots along connected edges. One can visualize this as
a triangle of positive roots written above the line of simple roots in the Dynkin
diagram.

Then the Weyl group W ∼= Sn acts by permutations on the entries of these roots.
Simple reflections, corresponding to simple roots, are transpositions : the reflection
Sαi

swaps the ith and (i+ 1)th components of the vector, so it corresponds to the
transposition (i, i+ 1). These transpositions generate the rest of the permutations
in W .

We can also think of W as acting on the Weyl chambers, the cones given by
subdividing the space E with the hyperplanes determined by the roots. One of
these chambers is the fundamental Weyl chamber : its scalar products with
simple roots are always positive. In the An−1 case, since the scalar product of
a vector with simple root αi = ei − ei+1 is just its ith entry minus its (i + 1)th

entry, the fundamental Weyl chamber consists of all vectors (a1, . . . , an) ∈ E with
a1 > · · · > an.

In the An−1 case, you can get from any root to any other root via elements of W ;
that is, for all α ∈ Φ, its orbit W (α) is equal to all of Φ. This is true in general if
every root has the same length; i.e. if the root system is simply-laced .

21.1 Definition. A root system is simply-laced if there are no multi-edges in its
Dynkin diagram; equivalently, its Cartan matrix has only 0 and −1 entries outside
the main diagonal.
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A root system is simply-laced if and only if all of its roots are the same length.
The irreducible simply-laced root systems are exactly the type A, type D, and type
E root systems; unsurprisingly, we call these the ADE type root systems.

21.2 Proposition. There are at most two root lengths in any irreducible root
system.

Proof. By inspection of the three irreducible rank 2 root systems. ■

If Φ is an irreducible root system that is not simply-laced, it has exactly two lengths
of roots, short roots and long roots. Elements of the Weyl group cannot change
root lengths. But the Weyl group orbit of a short root is the set of all short roots;
the Weyl group orbit of a long root is the set of all long roots.

We think of the positive roots as “larger” than the negative roots; motivated by
this, we can define an ordering on a root system as follows.

21.3 Definition. Fix a root system Φ with simple roots ∆ ⊂ Φ. Given α, β ∈ Φ,
we write α ⪰ β if α− β ∈ Z≥0∆. (Note that α− β need not be in Φ+.)

21.4 Definition. Fix a root system Φ with simple roots ∆ = {αi}si=1 ⊂ Φ inducing
positive roots Φ+ ⊂ Φ. Given α ∈ Φ+, we can write α =

∑
i ciαi, and we define

the height of α to be heightα =
∑
i ci. We call the root with maximal height the

longest or maximal root .

The maximal root is always a long root (if there are two different lengths of roots),
and the root space corresponding to the maximal root commutes with the entire
Lie algebra: it is in the algebra’s center. It is often convenient to begin at the
maximal root when performing induction and go down by height.

Serre relations

Root systems help us classify (semi)simple Lie algebras.

21.5 Definition. An isometry φ : (Φ,∆)→ (Φ′,∆′) of root systems with fixed
simple roots is a linear map φ : E → E′ of their underlying Euclidean spaces that
preserves lengths (so (α, β)E = (φ(α), φ(β))E′) and sends Φ to Φ′ and ∆ to ∆′.

21.6 Theorem. Let g and g′ be semisimple Lie algebras over an algebraically
closed field of characteristic 0. Then

1. g is simple if and only if its root system is irreducible.

2. g ∼= g′ as Lie algebras if and only if there is an isometry between their root
systems.

So the classification of simple Lie algebras comes down to the classification of
irreducible root systems, or equivalently Dynkin diagrams. Indeed, every Dynkin
diagram is the Dynkin diagram for some irreduicble Lie algebra. This can be
proven directly by explicitly constructing a simple Lie algebra of each type, or it
can be proven more generally with a rule for converting Dynkin diagrams to the
generators and relations of the corresponding Lie algebra and proving that the
resulting Lie algebra is simple.
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Let g be a semisimple Lie algebra, Φ be its corresponding root system, (aij) be its
Cartan matrix given by

aij = ⟨αi, αj⟩ =
2(αi, αj)

(αj , αj)

so that
Sαi

(β) = β − ⟨β, αi⟩αi,

∆ = {α1, . . . , αs} ⊂ Φ be a fixed set of simple roots, Φ+ be the positive roots, and
Φ− be the negative roots. Then each positive root α ∈ Φ+ gives rise to an sl2
triple in g: ⟨eα, hα, fα⟩.

In particular,

hα =
2hα
(α, α)

,

where hα is dual to α, so that α(hα) = 2. Then we choose eα ∈ gα and fα ∈ g−α
so that

(eα, fα) =
2

(α, α)
.

Then [hα, eα] = 2eα, [hα, fα] = −2fα, and [eα, fα] = hα, making ⟨eα, hα, fα⟩ an sl2
triple.

We have the following decomposition of g, modeled after the strict lower triangular,
diagonal, and strict upper triangular decomposition of n.

21.7 Theorem (Triangular decomposition). We have

g = n− ⊕ h⊕ n+,

where
n− =

∑
α∈Φ−

gα and n+ =
∑
α∈Φ+

gα .

Here n− ⊕ h is a Lie subalgebra of g, known as the negative Borel subalgebra,
as is h⊕ n+, known as the positive Borel subalgebra.

We have that

• {eαi
| αi ∈ ∆} generates n+,

• {fαi | αi ∈ ∆} generates n−, and

• {hαi
| αi ∈ ∆} generates h.

So together, {eαi
, hαi

, fαi
| αi ∈ ∆} generates g subject to the Serre relations,

which we will give next class.
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22 Lecture 22 (March 1): Serre relations
Scribe: Eric Zhang

Let g be semisimple over k = k with chark = 0. Let Φ be a root system and
Φ+ be positive roots. Each positive root α ∈ Φ+ gives rise to an sl2 triple in g:
⟨eα, hα, fα⟩. Denote the simple roots as ∆ = {α1, . . . , αs}. The Cartan matrix is
denoted as (aij) where aij = ⟨αi, αj⟩. Then g = n− ⊕ H⊕ n+ where n− = ⊕ g−α
and n+ = ⊕ gα for α ∈ Φ+.

22.1 Theorem. ei, hi, and fi have the following relations:

S1. [hi, hj ] = 0

S2. [hi, ej ] = aijej and [hi, fj ] = −aijfj
S3. [ei, fj ] = δijhi

S4. (ad ei)
1−aijej = 0

S5. (ad fi)
1−aijfj = 0

Proof. S1 holds because H is abelian. To see S2 holds, note [hi, ej ] = αi(hi)ej =

αj(
2Hαi

(αi,αi)
)ej = 2

(αi,αi)
αj(Hαi

)ej =
2

(αi,αi)
(αj , αi)e

j = ⟨αj , αi⟩ej . Similar argument

applies to [hi, fj ]. Relation S3 comes from sl2. Relation S4 and S5 are usually
called Serre’s relations. Note [eαi , eαi ] ∈ gαi+αj

and [eαi , [eαi , eαi ]] ∈ g2αi+αj
. So

(ad ei)
rej ∈ gαj+rαi

. Then {β + rα}r≥0 is a α−string of roots through β which
translates at the length of this root string. In particular, r = −⟨β, α⟩. Then this
reduces to verifying the vaildity of the relations on all rank 2 root sytstems. ■

22.2 Theorem (Serre’s relation). Let Φ be a root system and ∆ = {α1, . . . , αs} be
simple roots for a choice of polarization. Let g is a complex lie algebra generated
by {ei, hi, fi}1≤i≤s subjected to relations S1 to S5. Then g is semisimple with root
system Φ.
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23 Lecture 23 (March 3):Representation of Simple
Lie Algebras
Scribe: Ranjan Pradeep

We have g (simple, complex lie algebra), Φ, Φ±, ∆ = {α1, . . . , αn} (simple positive
roots), Φ+ = {β1, . . . βn}, R = ZΦ ⊂ E ⊂ h∗ (lattice),

• Weight lattice:
Λ = {λ ∈ h∗|⟨λ, α⟩ ∈ Z, α ∈ Φ}

• Dominant integral weights:

Λ+ = {λ ∈ h∗|⟨λ, αi⟩ ≥ 0}

• Basis of fundamental dominant integral weights:

{ω1 . . . ωn}|λ =
∑
⟨λ, αi⟩ωi

⟨ωi, αi⟩ = δij

This geometry is responsible for representation theory. There is, in general, a corre-
spondence between dominant integral weights (Λ+) and irreducible representations
of a lie algebra. Recall, as categories we have Repk g = U (g)− mod .

In the decomposition,
g = h− ⊕ h⊕ n+

The first term is generated by negative weights E−Bi
and the last term is generated

by positive weights EBi
. Let V ∈ Repk g. We have weight space decomposition:

⊕λ∈h∗Vλ, where Vλ = {v ∈ V |hv = λ(h)v}

1. decomposition in eigenspaces: dimV <∞ =⇒ V = ⊕λ∈h∗Vλ

2. EαVλ ⊂ Vλ+α, α ̸= 0

23.1 Remark. If dimV =∞ some of this doesn’t work. BBG introduced
the Category O, which includes the conditions necessary to do weight theory

23.2 Definition. V ∈ Repk g is a highest weight module of weight λ if
∃v+ ∈ V such that

(a) hv+ = λ(h)v+

(b) n+v+ = 0

(c) V = gv+

Construction of universal highest weight moduleMλ, Verma module:
Take the universal embedding algebra, kill the positive part and everything
necessary from Cartan

U(g)/⟨U(n+), h− λ(h).1|h ∈ h⟩
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3. Claim: For all V of highest weight λ, any highest weight module V is an
image of Mλ

Mλ → V

4. For all λ, Mλ has a unique max submodule and a unique simple quotient

max sub→Mλ → V (λ)

This is a beginning of the BGG resolution, helps prove the Weyl character
formula in general

5. Let V be a module of highest weight λ. dimVλ = 1, dimVµ <∞ for all weight
µ of V such that µ ⊂ {λ−

∑
ciαi|ci ∈ Z≥0}

6. dimV (λ) <∞ ⇐⇒ λ ∈ Λ+
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24 Presentation Notes

24.1 Root systems of Type An

Presenter: Jackson Morris

Here, we will provide an explicit construction to prove the existence of complex
simple Lie algebras of type An. We work over a field k of characteristic different
from 2.

Let g = sln+1, recalling that

sln+1 = {X ∈ gln+1 : trX = 0}

. Lie algebras of this sort are called special linear Lie algebras. The simplest
Lie algebra, it is the one we have become the most familiar with throughout the
course. We take for the Cartan subalgebra the subalgebra h of diagonal matrices
in g. Let Ei,j denote the matrix with a 1 in position (i, j) and 0 elsewhere. This
subalgebra has the basis {Ei,i − Ei+1,i+1 : 1 ≤ i ≤ n}. Now, it is clear that h is a
toral subalgebra since each matrix here is diagonal. To see maximality, suppose
that m is another toral subalgebra containing h. Since m is toral, it is abelian.
Then, for any X ∈ h and Y ∈ m, XY = Y X. But for any entry bij in the matrix
Y , this says that ajbij = bijai, where ai is the i-the entry of X along the main
diagonal. Since our choice of X was arbitrary, though, it must be that Y ∈ h,
showing maximality.

The other root spaces ofvg are given by the basis {Eij : i ̸= j}. Observe the
following brackets:

[Eij , Eji] = Eii − Ejj ∈ h

[[Eij,Eji
], Eij ] = 2Eij ̸= 0

This implies that the a basis of Φ is

{Eij : i ̸= j}

24.2 Root systems of Type Bn and Cn

Presenter: William Dudarov

In this note, we provide explicit constructions to prove the existence of complex
simple Lie algebras of types Bn and Cn, covering two of the four types of classical
Lie algebras.

That is, we take a family of Lie algebras existing “in nature,” and show it is of
type Bn, and another family, showing it is of type Cn.

We work with a field k not of characteristic 2, and follow the book by Erdmann &
Wildon.

Type Cn:

We start off with the case of type Cn since it is slightly simpler.
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Let g = glS2n, where S is the matrix

S =

[
0 In
−In 0

]
.

Recall that this means that

g = {X ∈ gl2n : XTS = −SX}.

Lie algebras of this sort are called symplectic Lie algebras, often denoted
sp2n. This terminology comes from symplectic geometry, the study of symplectic
manifolds - a special kind of smooth manifold arising in classical mechanics.

At any point of a symplectic manifold, the tangent space is a vector space equipped
with a non-degenerate skew-symmetric bilinear form whose group of structure-
preserving transformations is the Lie group Sp(2n, k), with corresponding Lie
algebra sp2n.

We show that these Lie algebras sp2n are of type Cn.

We can also describe g the following way:

g =

{[
m p
q −mT

]
: p = pT , q = qT

}
.

This is because if X is in gl2n with XTS = −SX,[
a b
c d

]T
S = S

[
a b
c d

]
,

which yields [
−cT aT

−dT bT

]
=

[
−c −d
a b

]
.

We take for our Cartan subalgebra the subalgebra h of diagonal matrices in g.

Let H ∈ h have diagonal entries denoted x1, . . . , xn,−xn, . . . ,−xn. Then

H =

n∑
i=1

xi(ei,i − ei+n,i+n),

where ei,j is the matrix with a 1 in the (i, j)th position and zeroes everywhere else.

This is in fact a maximal toral subalgebra since all of the elements are semi-
simple/diagonalizable (in fact, already diagonal!), and if h ⊂ m a toral subalgebra,
since m is toral and thus abelian, then for X ∈ h, Y ∈ m, we have XY = Y X. We
show that Y ∈ h, i.e. Y is diagonal. Note xjyi,j = yi,jxi, so that yi,j = 0 when
i ̸= j so that Y is diagonal and h is maximal, as desired.

What are the root spaces of g?
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They are given by the basis

mi,j = ej,i − en+j,n+i for 1 ≤ i ̸= j ≤ n
pi,j = ei,n+j + ej,n+i for 1 ≤ i < j ≤ n
pi,i = ei,n+i for 1 ≤ i ≤ n
qj,i = pTi,j = en+j,i + en+i,j for 1 ≤ i < j ≤ n
qi,i = en+i,i for 1 ≤ i ≤ n.

Checking the bracket with h, we have

[H,mi,j ] = (xi − xj)mi,j

[H, pi,j ] = (xi + xj)pi,j

[H, qi,j ] = −(xi + xj)qj,i.

Let αi ∈ h∗ be such that
αi(H) = xi.

By the above, we have roots

αi − αj
αi + αj

−(αi + αj)

2αi

−2αi.

We claim that
{α1 − α2, α2 − α3, . . . , αn−1 − αn, 2αn}

is a basis for Φ.

Proof. This is in fact the case since

αi − αj = (αi − αi+1) + (αi+1 − αi+2) + · · ·+ (αj−1 − αj)
αi + αj = (αi − αi+1) + (αi+1 − αi+2) + · · ·+ (αj−1 − αj) + 2((αj − αj−1) + · · ·+ (αn−1 − αn)) + 2αn

2αi = 2((αj − αj−1) + · · ·+ (αn−1 − αn)) + 2αn.

■

We show that g is semi-simple by showing that the Killing form is non-degenerate.
For H,H ′ ∈ h, we have

K(H,H ′) =
∑
α∈Φ

α(H)α(H ′)

= 2
∑
i<j

(xi − xj)(x′i − x′j) + 2
∑
i<j

(xi + xj)(x
′
i + x′j) + 2

n∑
i=1

4xix
′
i

= (4n+ 1)

n∑
i=1

xix
′
i

= (2n+ 2)Trace(HH ′).
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This is non-degenerate since K(H,H) = 0 if and only if H = 0.

The Cartan matrix is given by

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−2 2


.

The Dynkin diagram is given by

Cn

which is connected, so that g is simple.

The Weyl group of type Cn is isomorphic to Sn ⋉ (Z/2Z)n, where the factors of
Z/2Z switch the signs of the basis vectors.

Type Bn:

Let g = glS2n+1(C) for n ≥ 1, where

S =

1 0 0
0 0 In
0 In 0

 .
Recall once again that this means that

glS2n+1 = {X ∈ gl2n+1 : XTS = −SX}.

Lie algebras of this sort are called odd-dimensional orthogonal Lie algebras,
often denoted so2n+1. They are the Lie algebras of odd-dimensional orthogonal
groups, and orthogonal groups are groups of isometries on Euclidean spaces.

We show that these Lie algebras so2n+1 are of type Bn.

We can also describe g the following way:

g =

{ 0 cT −bT
b m p
−c q −mT

 : p = −pT , q = −qT
}
.

As above, we take h the subalgebra of diagonal matrices to be our Cartan subalgebra,
for the same reasons as in the case of Cn above. We take H ∈ h as above, with
diagonal entries 0, x1, . . . , xn,−x1, . . . , xn.
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Here, instead, the root spaces are spanned by the matrices where non-zero entries
occur only on the blocks labelled b and c.

As above, we define mi,j , pi,j , and qi,j in the same way, with the same bracket with
H, except that we define

bi = ei,0 − e0,n+1

ci = e0,i − en+i,0,

where we calculate that

[H, bi] = xibi

[H, ci] = −xici.

Let αi(H) = xi as above.

We have roots

αi corresponding to bi

−αi corresponding to ci

αi − αj corresponding to mi,j(i ̸= j)

αi + αj corresponding to pi,j(i < j)

−(αi + αj) corresponding to qj,i(i < j).

We have a basis for our root system given by

{αi − αi+1 : 1 ≤ i ≤ n} ∪ {αn}.

We show that g is semi-simple by since the Killing form, using the same kind
of calculations as above, is given by K(H,H ′) = (2n − 1)Trace(HH ′) where
H,H ′ ∈ h.

This is non-degenerate since K(H,H) = 0 if and only if H = 0, as desired. The
Cartan matrix is given by

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−1 2


.

The Dynkin diagram is given by

Bn

which is connected, so that g is simple.

The Weyl group of type Bn is, just like Cn, isomorphic to Sn ⋉ (Z/2Z)n, where
the factors of Z/2Z switch the signs of the basis vectors.
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24.3 Root systems of Type Dn

Presenter: Ranjan Pradeep

In this presentation, we give an explicit construction to prove existence of the
complex simple Lie algebras of Dn. The idea is to take a Lie algebra existing ”in
nature” (ie. as vector spaces of linear transformations, [Hum73]) and show it has a
given type.

What is Dn:

Dn := so(2n,C)

is the Lie algebra of the special orthogonal group in 2n variables, SO(2n). It
consists of complex orthogonal n× n matrices, those that satisfy x+ x

′
= 0, where

x
′
is the transposition of x with respect to the anti-diagonal.

g = {gl(2n,C)|x+ x
′
= 0}

An alternate description is given by

g = glS(2n,C) = {x ∈ gl(2n,C)|Sx+ xtS = 0}

where

S =

(
0 In
In 0

)
This is isomorphic to the presentation of Dn as skew-symmetric matrices, by
x 7→ xS, but this presentation is more convenient for finding a Cartan subalgebra,
as we will see.

Proof. Viewing S as a permutation matrix, we find that Sx sends row i to row
n− i. Transposing and reapplying S, we get S(Sx)t = x′ and SSx = x. So,

xtS + Sx = 0

(Sx)t + Sx = 0

S(Sx)t + x = 0

And,
x+ x′ = 0

. ■

Writing the elements of g as block matrices (ie. say M =

(
A B
C D

)
is a 2n× 2n

matrix in g where each block is an n× n matrix) , we calculate to find that

g =

{(
A B
C −At

)
: Bt = −B,Ct = −C

}
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24.3.1 Low dimensional special cases:

The low dimensional cases are special. so(2) is one-dimensional, abelian, and

not simple. It consists of matrices

(
0 −z
z 0

)
. so(4) ∼= so(3) ⊕ so(3), and so is

semi-simple but not simple (D2
∼= A1 ⊕A1). so(6) ∼= sl(4), so D3 occurs as A3. So

while it’s possible to define Dn for n ≥ 1, the discussion proceeds with the typical
restriction that n ≥ 4.

Cartan Subalgebra:

We show that the Cartan subalgebra is diagonal matrices in g.

h =


a1

. . .
an

−a1
. . .

−an


This is the set of all diagonal matrices in g.

Proof. It’s immediately clear every matrix in h as described lies in g, but we must

show that any diagonal matrix in g is contained in h. Say x =

(
A 0
0 B

)
∈ g, Then,

(
A 0
0 B

)t(
0 In
In 0

)
+

(
0 In
In 0

)(
A 0
0 B

)t
= 0

So, (
A 0
0 B

)
+

(
B 0
0 A

)
=

(
A+B 0

0 A+B

)
= 0

And, x =

(
A 0
0 −A

)
is an element of h as desired. ■

It is the maximal toral subalgebra of g

Proof. It’s clear that h is a toral subalgebra, since every element is a diagonal
matrix, and so semi-simple. Let m be a toral subalgebra that contains h and let
a ∈ h, b ∈ m. Since m is a toral algebra, it is abelian, and so ab = ba. Considering
an element bij we have ajbij = bijai. Since the choice of a was arbitrary, this forces
bij = 0 when i ̸= j, and we find that b ∈ m. So, h is maximal. ■

With the description g = so(2n,C), the Cartan subalgebra consists of block-diagonal
matrices

h =



A1

A2

. . .
An


 , Ai =

[
0 hi
−hi 0

]
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Root Spaces:

Next we find the root spaces for h. Since dim(g) = n(2n− 1) and dim(h) = n there
are 2n2 − 2n roots.

Eij is the matrix with a 1 at the i, j element and zeros elsewhere. Let h ∈ h be an
element with diagonal entries a1, . . . an,−a1 . . . an,

h =

n∑
i=1

ai(Eii − Ei+n,i+n)

Consider the subspace of g spanned by matrices whose only elements are at positions
labeled b and c. This has a subspace bi = Ei,0 −E0,i+n and ci = E0,i −Ei+n,0 for
1 ≤ i ≤ n. Calculation gives that [h, bi] = aibi and [h, ci] = −aici
This suggests the following choice of basis:

mij = Eij − Ej+n,i+n for i ̸= j

pij = Ei,j+n − Ej,i+n for i < j

qji = ptij = Ei+n,j − Ej+n,i for i < j

Then calculation works out such that the obvious basis elements are simultaneously
eigenvectors for the action of h. This is determined by calculating:

[h,mij ] = (ai−aj)Eij−(−aj+ai)Ej+n,i+n = (ai−aj)(Eij−Ej+n,i+n) = (ai−aj)mij

With similar calculations showing that

[h, pij ] = (ai + aj)pij

[h, qji] = −(ai + aj)qji

In summary we have the following root subspaces:

root: ei − ej , eigenvector: mij

root: ei + ej , eigenvector: pij

root: −(ei + ej), eigenvector: qji

The root system is

Φ = {−ei − ej ,−ei + ej , ei − ej , ei + ej : i < j}

There are 4
(
n
2

)
roots, as expected.
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Basis:

A base for our root system is given by

∆ = {e1 − e2, e2 − e3, . . . , en−1 − en} ∪ {en−1 + en}

For the sake of simpler notation, αi = ei − ei+1 and αn = en−1 + en, so our set
of simple roots is just {α1, . . . , αn} Going through the set of roots from the last
subsection, we can see that if γ ∈ Φ, then either γ or −γ appears as a non-negative
linear combination of elements of ∆ with integer coefficients. See that

ei − ej =
j−1∑
k=i

αk

ei + ej =

n−2∑
k=i

αk +

n−1∑
k=j

αk + αn

Since ∆ has n (dim h) elements, as expected, so ∆ is a base for our root system.

We have a root space decomposition,

g = h⊕
⊕
a∈Φ

ga

Killing Form:

If the killing form is non-degenerate, then g is semi-simple,

Let h ∈ h be an element with entries a1, . . . , an,−ai, . . . ,−an and h′ be another
matrix with elements a′1, . . . , a

′
n,−a′i, . . . ,−a′n

Then,

K(h, h′) =
∑
α∈Φ

α(h)α(h′)

= 2
∑
i<j

(ai − aj)(a′i − a′j) + 2
∑
i<j

(ai + aj)(a
′
i + a′j)

= 4
∑
i<j

(aia
′
i + aja

′
j)

= 4(n− 1)

n∑
i=1

aia
′
i

= 4(n− 1)Trace(hh′)

We have that K is nondegenerate because
∑n
i=1 aia

′
i is the usual inner product, so

K(h, h) = 0 only if h = 0
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Cartan Matrix:

For n > j = i+ 1 > 0 we have

⟨ai, aj⟩ = ⟨Ei − Ei+1, Ej − Ej+1⟩ = −1

If n > j > i+ 1 > 0,

⟨ai, aj⟩ = 0

The branching comes from

⟨αn−2, αn−1⟩ = −1

⟨αn−1, αn⟩ = 0

The Cartan matrix of type Dn is

2 −1 0
−1 2 −1

−1 2 −1
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

−1 2 −1
−1 2 −1 −1

−1 2 0
−1 0 2


Dynkin Diagram:c c c c c

c
· · · !!!!!

aaaaa
α1 α2 αn−3 αn−2

αn−1

αn

Since all roots have the same length, Dn is simply laced.

Weyl Group:

The Weyl group of typeDn is isomorphic to the semidirect product of the symmetric
group Sn and the group Z2.

24.4 Exceptional Lie Algebras and the Freudenthal Magic
Square
Presenter: Justin Bloom

Let F = C be the complex numbers.
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24.1 Definition. We take F -algebras K,Q,O to be F × F, the quaternion, and
the octonion algebras of dimension 2, 4, 8 respectively.

These, together with the trivial algebra F are called composition algebras, and
each composition algebra C is equipped with an involution πC , which we denote
πC(x) = x̄ when context is clear.

The involution πK is the matrix

(
1

1

)
with the basis defining the algebra F ×F .

With respect to the basis (1, 1), (1,−1), the involution is the matrix

(
1
−1

)
,

which is closer to how the other composition algebras are defined.

The involution πQ with respect to the familiar basis 1, i, j, k is
1
−1

−1
−1


(these are algebras over C, it’s more convenient here to call ω ∈ C instead of i, the
quaternion element. Notice ω − i ∈ Q is a zero divisor)

The involution πO is also diagonal, with a 1 followed by seven −1s.

24.2 Definition. For any composition algebra C, we define the Freudenthal algebra
associated to C by

H(C) = {X ∈M3(C) | X̄t = X}

where X̄ = (x̄ij) for X = (xij). We endow this space with the multiplication

M •N =
1

2
(MN +NM).

Ordinary matrix multiplication is not necessarily associative, because C = O is
not an associative composition algebra. It’s helpful to see

H(C) =


ξ1 x1 x2
x̄1 ξ2 x3
x̄2 x̄3 ξ3

 ∣∣∣∣∣∣ ξi ∈ F, xi ∈ C
 .

Now we define the algebras:

J1 = H(F ), J2 = H(K), J4 = H(Q), J8 = H(O)

so that dimJn = 3(n+ 1).

The Freudenthal algebras (Ji, •) are examples of Jordan algebras

24.3 Definition. A given composition or Jordan algebra B has an involution πB .
We may define the trace of an element x ∈ B by TrB(x) = x+ π(x). We denote by
B0 the trace free elements of B, i.e.

B0 = {x | x̄ = −x}.
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For a composition algebra C, we define a bilinear product ∗ on C0 by

a ∗ b = ab− 1

2
TrC(ab),

and similarly on J0 by

x ∗ y = xy − 1

3
TrJ(xy).

For any algebra B, denote left and right multiplication by b ∈ B with maps
ℓb, rb ∈ EndF (B).

It can be checked that for our composition algebras C, for any a, b ∈ C the map

∂a,b = [ℓa, ℓb] + [ℓa, rb] + [ra, rb]

is a derivation of Der(C,C), where [ , ] is taken in EndF (C) = gl(C)

24.4 Definition. Given a composition algebra C, and a Jordan algebra J , we
may define a Lie algebra structure L(C, J) on the vector space

L(C, J) = Der(C,C)⊕ (C0 ⊗F J0)⊕Der(J, J).

To define [ , ], we quantify

∀ D ∈ Der(C,C), D′ ∈ Der(J, J), a, b,∈ C0, x, y ∈ J0 :

(1) [ , ] is the usual bracket on Der(C,C) and Der(J, J), and [D,D′] = 0,

(2) [a⊗ x,D +D′] = D(a)⊗ x+ a⊗D′(x),

(3) [a⊗ x, b⊗ y] = 1
12 Tr(xy)∂a,b + (a ∗ b)⊗ (x ∗ y) + 1

2 Tr(ab)[rx, ry], where it can
be checked [rx, ry] ∈ Der(J, J) for each Jordan algebra.

24.5 Remark. Denote J0 = F × F × F . Denote the algebra F × · · · × F by F×n,
so J0 = F×3. Denote |V | = dimV for vector spaces.

(1) L(F, J) = Der(J, J) for each Jordan algebra J , as Der(F, F ) = 0 and F 0 = 0.
Similarly L(C,F ) = Der(C,C).

(2) Der(F×n, F×n) = 0 by directly computing de for e2 = e.

(3) Assume tables 1 and 2 are accurate. Then we may deduce

(a) L(O, J0) = D4, and has dimension 28.

(b) Der(O,O) = G2, and Der(J8, J8) = F4.

(c) The trace of J0 is the sum of entries, so its trace-free subspace is of
codimension 1. In fact codimB0 = 1 for each algebra B = C, J in the
arguments for L.

(d) |D4| = 28 = |G2|+ (8− 1)(3− 1) + 0 = |G2|+ 14 so |G2| = 14.

(e) Der(J1, J1) = A1 and F4 = L(O, J1), so

|F4| = |G2|+ (8− 1)(6− 1) + |A1| = 14 + 35 + 3 = 52.
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Table 1: L(A, J) as A ranges through composition algebra, and J ranges through
Jordan algebras.
The rightmost 4 columns are known as Freudenthal’s magic square.

F J0 J1 J2 J4 J8

F 0 0 A1 A2 C3 F4

K 0 F ⊕ F A2 A2 ⊕A2 A5 E6

Q A1 A1 ⊕A1 ⊕A1 C3 A5 D6 E7

O G2 D4 F4 E6 E7 E8

(f) |E6| = 0 + (2− 1)(27− 1) + 52 = 78.

(g) |E7| = 3 + (4− 1)(27− 1) + 52 = 133.

(h) |E8| = 14 + (8− 1)(27− 1) + 52 = 248.

24.5 Root systems of Type F4

Presenter: Leo Mayer

Let O denote the Octionian algebra. Recall that this is an 8-dimensional algebra
over R which is unital, but neither commutative nor associative. There is also a
linear involution O→ O, written as a 7→ a, which satisfies the following properties:

1. ab = ba.

2. a = a if and only if a ∈ R.

3. The bilinear form n(a, b) := 1
2 (ab+ ba) is nondegenerate and symmetric.

4. The quadratic form n(a) := n(a, a) = aa is multiplicative, i.e. n(ab) =
n(a)n(b).

24.6 Definition. Let H3(O) be the set of 3× 3 matrices in O satisfying M =M
t
.

Give H3(O) the structure of a commutative, non-associative algebra over k with
the operation M ∗N := 1

2 (MN +NM).

24.7 Notation. We can see that

H3(O) =


λ1 a b
a λ2 c

b c λ3

 | λi ∈ R, a, b, c ∈ O

 .
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Table 2: The same table, with all dimensions known a priori:

1 3 6 9 15 27

1 0 0 3 8 21 F4

2 0 2 8 16 24 E6

4 3 9 21 24 66 E7

8 G2 28 F4 E6 E7 E8

For i = 1, 2, 3 let ei denote the matrix with a 1 in the ith diagonal and 0s elsewhere.
We also define

O12 =

a12 :=

0 a 0
a 0 0
0 0 0

 | a ∈ O

 ,

O13 =

b13 :=

0 0 b
0 0 0

b 0 0

 | b ∈ O

 ,

O23 =

c23 :=

0 0 0
0 0 c
0 c 0

 | c ∈ O

 ,

so that H3(O) = R e1 ⊕ R e2 ⊕ R e3 ⊕O12 ⊕O13 ⊕O23.

This decomposition is very well-behaved with respect to the operation ∗. In
particular,

24.8 Lemma. For M ∈ H3(O), we have

1. M ∈ O12 ⊕O13 if and only if M = 2e1 ∗M ,

2. M ∈ O12 ⊕O23 if and only if M = 2e2 ∗M ,

3. M ∈ O13 ⊕O23 if and only if M = 2e3 ∗M .

Proof. This follows from an immediate computation. For example,λ1 a b
a λ2 c

b c λ3

 = 2e1 ∗

λ1 a b
a λ2 c

b c λ3

 =

2λ1 a b
a 0 0

b 0 0


holds if and only if each λi and c are all 0. ■

We are finally ready to define our main object of study.
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24.9 Definition. F4 is the Lie algebra of derivations of H3(O).

24.10 Notation. We write D0 := {D ∈ F4 | Dei = 0, i = 1, 2, 3}.

Then D0 is a Lie subalgebra of F4, and H3(O) is a representation of D0.

24.11 Lemma. For 1 ≤ i < j ≤ 3, we have D0Oij ⊆ Oij.

Proof. By the first lemma,M ∈ Oij if and only if 2ei∗M =M = 2ej ∗M . Applying
D ∈ D0 to this equation gives 2ei ∗ (DM) = DM = 2ej ∗ (DM), and we conclude
DM ∈ Oij as well. ■

Since Oij ∼= O as a vector space, we obtain three induced representations ρij : D0 →
gl(O) by restricting the action of D0 to the invariant subspace Oij . Concretely, we
associate to D ∈ D0 the map Dij : O→ O defined by (Dija)ij = Daij .

24.12 Lemma. Each Dij is skew-symmetric with respect to the norm on O. The
three representations ρij are irreducible, inequivalent, and induce isomorphisms
D0
∼= D4, where D4 is the Lie algebra of all skew endomorphisms of O.

Proof. For the first claim we need to show that for a, b ∈ O we have n(Dija, b) =
−n(a,Dijb). A computation shows that aij ∗ bij = n(a, b)(ei + ej), and so

0 = D(n(a, b)(ei + ej)) = Daij ∗ bij + aij ∗Dbij = n(Dija, b) + n(a,Dijb).

The remaining claims require more machinery than we have time to develop here,
and so we instead direct the curious reader to [Jac71]. ■

We now turn to define three more related subspaces of F4.

24.13 Definition. For N ∈ H3(O), let RN be the linear endomorphism M 7→
M ∗N .

24.14 Definition. For 1 ≤ i < j ≤ 3, let Jij be the collection of endomorphisms
of the form [ReiRaij ], where a ∈ O.

Quick computations show that each D ∈ Jij is a derivation, and so each Jij is a
subspace (although not a subalgebra) of F4. We can do some example computations:

[Re1 , Ra12 ]e1 = (e1 ∗ e1) ∗ a12 − (e1 ∗ a12) ∗ e1 =
1

2
a12 −

1

4
a12 =

1

4
a12

[Re1 , Ra12 ]e2 = (e2 ∗ e1) ∗ a12 − (e2 ∗ a12) ∗ e1 = 0− 1

4
a12 = −1

4
a12

[Re1 , Ra12 ]e3 = (e3 ∗ e1) ∗ a12 − (e3 ∗ a12) ∗ e1 = 0

Similarly, we see that

[Re1 , Rb13 ] : e1 7→
1

4
b13, e2 7→ 0, e3 7→ −

1

4
b12,

[Re2 , Rc23 ] : e1 7→ 0, e2 7→
1

4
c23, e3 7→ −

1

4
c23.

24.15 Proposition. F4 = D0 ⊕ J12 ⊕ J13 ⊕ J23 as vector spaces.
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Proof. The above calculations show that any two of the listed subspaces have
trivial intersection, so we need only show that all four span F4.

Let D ∈ F4 be arbitrary. Applying D to the relation ei ∗ ei = ei gives 2ei ∗ (Dei) =
Dei. Then Lemma 24.8 implies we can write

De1 = a12 − b13, De2 = c23 − d12 De3 = e13 − f23

for some a, b, c, d, e, f ∈ O. For i ̸= j, applying D to the relation ei ∗ ej = 0 gives
Dei ∗ ej = −ei ∗Dej , and so

a = d, b = e, c = f.

Now let D′ = 4[Re1Ra12 ]− 4[Re1Rb13 ] + 4[Re2Rc23 ]. The above calculations show
that D′ei = Dei for each i, and so D −D′ ∈ D0. Since D

′ ∈ J12 ⊕ J13 ⊕ J23, this
completes the proof. ■

24.16 Proposition. Let H ⊂ D0 be a Cartan subalgebra of D0. Then H is also a
Cartan subalgebra of F4.

Proof. A similar computation as in Lemma 24.11 shows that Dij is an invariant
subspace for the adjoint representation of D0 in F4, and moreover the induced
representation of D0 on Dij

∼= O is equal to ρij . Since Dij is an irreducible
representation of D0, the induced representation of H decomposes as a direct sum
of 1 dimensional weight spaces. Thus, F4, viewed as the adjoint representation
of H in F4, decomposes as a direct sum of 1-dimensional weight spaces, and we
conclude that H is a Cartan subalgebra. ■

We next turn to describing the root system of F4. Since D0
∼= D4 is a subalgebra

containing H, there is a basis {ϵ1, ϵ2, ϵ3, ϵ4} of H for which the roots in D0 are
{±ϵi ± ϵj}. Using facts from the representation theory of D4 which we will not
develop here, the 24 additional roots from D12, D13, D23 are {±ϵi} and { 12 (±ϵ1 ±
ϵ2 ± ϵ3 ± ϵ4)}.

One choice of simple roots is α1 = ϵ2 − ϵ3, α2 = ϵ3 − ϵ4, α3 = ϵ4, and α4 =
1
2 (ϵ1 − ϵ2 − ϵ3 − ϵ4). With respect to this basis, the Cartan matrix is

2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 .

24.6 Classification of Coxeter Graphs
Presenter: Raymond Guo

Method 1:

24.17 Remark. Let (Φ,∆) be a root system and base. For α ∈ ∆, let α′ = α
|α| ,

and let ∆′ = {α′ : α ∈ ∆}. We see that for α′ ̸= β′ ∈ ∆′,

⟨α, β⟩⟨β, α⟩ = ⟨α′, β′⟩⟨β′, α′⟩ = 2(α, β) · 2(β, α) = 4(α, β)2
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Note also (α, β) ≤ 0 =⇒ (α′, β′) ≤ 0, and that ∆′ consists of linearly independent
unit vectors.

24.18 Definition. Admissible set, associated Coxeter graphs.

Let E be a Euclidean space. Define U ⊂ E to be an admissible set if U =
{e1, e2, .., en} consists of linearly independent unit vectors, (ei, ej) ≤ 0 for i ̸= j,
and 4(ei, ej)

2 ∈ {0, 1, 2, 3}. Let the Coxeter graph induced by an admissible set
have vertices {e1, e2, ..., en} and have 4(ei, ej)

2 edges between ei and ej . When
(Φ,∆) is a root system and base, the above remark shows that ∆′ is admissible
and the Coxeter graph on (Φ,∆) is the same as the Coxeter graph induced by ∆′.
We classify the connected Coxeter graphs of admissible sets.

For the remainder of this argument, let U be an admissible set, Γ be its coxeter
graph. Assume Γ is connected.

24.19 Proposition. 1) Let U ′ ⊂ U , with U admissible. U ′ is admissible, and its
Coxeter graph is the full subgraph of Γ induced by U ′.

Proof. Entirely obvious from the definitions. ■

24.20 Proposition. 2) The number of pairs of vertices in U ′ connected by any
edges is less than n.

Proof. Let ϵ =
∑n
i=1 ϵi. Then

0 < (ϵ, ϵ) =

n∑
i=1

(ϵi, ϵi) + 2
∑
i<j

(ϵi, ϵj) = n+ 2
∑
i<j

(ϵi, ϵj)

That is, −n <
∑
i<j 2(ϵi, ϵj). If ϵi and ϵj are connected, 2(ϵi, ϵj) ∈ {−1,−

√
2,−
√
3},

so 2(ϵi, ϵj) ≤ −1. The above inequality shows that at most n such pairs exist.

■

24.21 Proposition. 3) Γ is acyclic.

Proof. Consider replacing every set of multiple edges in Γ with a single edge. 2)
yields that the resulting graph is a connected graph with less than n vertices, so
it’s a tree. Thus this ”reduced” graph is acyclic, so Γ is acyclic. ■

24.22 Proposition. 4) Each vertex has degree at most 3.

Proof. Let ϵ ∈ Γ be arbitrary, and let η1, η2, ..., ηk be all of the adjacent vertices.
Since ϵ and the ηi’s are linearly independent, there’s a unit vector η0 in the span
of {ϵ, η1, η2, ..., ηk} orthogonal to all ηi (Gram-Schmidt). (ϵ, η0) ̸= 0 because ϵ isn’t
in the span of the η′is. Then ϵ =

∑n
i=0(ϵ, ηi)ηi (standard identity for orthonormal

bases) so

1 = (ϵ, ϵ) =

k∑
i=0

(ϵ, ηi)
2
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Since (ϵ, η0)
2 > 0, we must have

∑k
i=1(ϵ, ηi)

2 < 1, so
∑k
i=1 4(ϵ, ηi)

2 < 4. This is
exactly the statement that the degree of ϵ is less than 4.

■

24.23 Proposition. 5) If Γ has a triple edge, it must be G2.

Proof. Noting that we’re assuming that Γ is connected, this is obvious from 4. ■

24.24 Proposition. 6) Let {ϵ1, ϵ2, ..., ϵk} induce a full subgraph of Γ that is a
simple path (a path where adjacent nodes are connected by a single edge), where

specifically ϵi and ϵi+1 are adjacent for each i. Let ϵ =
∑k
i=1 ϵi. Then Γ′ =

U\{ϵ1, ϵ2, ..., ϵk} ∪ {ϵ} is admissible, with Coxeter graph formed by contracting the
path to the one vertex ϵ.

Proof. Linear independence is obvious. By hypothesis, for i < j, 2(ϵi, ϵi+1) =
−δi+1

j , so

(ϵ, ϵ) =

k∑
i=1

(ϵi, ϵi) +
∑
i<j

2(ϵi, ϵj) = k − (k − 1) = 1

and thus ϵ is a unit vector. Let η ∈ U\{ϵi}ki=1. η is connected to at most one ϵi
because the graph must be acyclic, so 4(η, ϵ)2 = 4(η, ϵi)

2 ∈ {0, 1, 2, 3}. This also
shows that the new graph is formed by contracting the path to the single vertex,
noting that the number of edges from η to ϵ is the same as the number of edges
from η to ϵi (and η has no other edges to other ϵj ’s) ■

24.25 Proposition. 7) Let a vertex that connects to three other distinct vertices
be called a node. Γ has at most one instance of either a double edge or a node.

Proof. Assume for contradiction that Γ has say, both a node and a double edge.
They’re connected by some path, so Γ has a subgraph of the form:

1) yields that this subgraph is itself a Coxeter Graph of an admissible set. 6) yields
that we can contract the path in the middle of this graph, yielding another Coxeter
Graph of an admissible set:

This contradicts 4), so Γ cannot have both a node and a double edge. Assuming
that Γ has two nodes or two double edges yields similar contradictions. ■
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24.26 Proposition. 8) Γ takes one of the following forms:

In future arguments, we will refer to these as graphs of Type 1,2,3, and 4. In our
arguments regarding Types 2 and 4, we will use the names ϵi, ηi, ζi, and ψ to refer
to the vectors associated with the vertices labeled in these diagrams.

Proof. 7) yields that Γ either has one node, one double edge, or neither. The
graphs of Type 2 are the only graphs with one double edge and no nodes. The
graphs of Type 4 are the only graphs with one node and no double edges. We’ve
noted above that the graph of Type 3 is the only graph with a triple edge. The
only remaining case is a graph with no nodes and no multiple edges, which must
be a simple path (Type 1). ■

24.27 Proposition. 9) If Γ is Type 2, it’s either F4 or Bn = Cn.

Proof. Let ϵ =
∑p
i=1 iϵi and let η =

∑q
i=1 iηi. Again for i < j, 2(ϵi, ϵj) = −δji+1,

so

(ϵ, ϵ) =

p∑
i=1

i2 −
∑
i<j

2ij(ϵi, ϵj) =

p∑
i=1

i2 −
p−1∑
i=1

i(i+ 1) =
p(p+ 1)

2

Similarly (η, η) = q(q+1)
2 . (ϵ, η)2 = (qϵq, pϵp)

2 = 2p2q2

4 = p2q2

2 . Cauchy-Schwarz
(noting that they’re not colinear) yields

(ϵ, η)2 < (ϵ, ϵ)(η, η)

By above computation, p
2q2

2 < p(p+1)q(q+1)
4 , which yields (p− 1)(q − 1) < 2 after

algebraic manipluation. Then either p = q = 2 (Γ is of the form F2) or p = 1 and
q takes any value (Γ is of the form Bn = Cn) or q = 1 and p takes any value (also
Bn = Cn).

■

24.28 Proposition. 10) If Γ is type 4, it’s either Dn or En with n = 6, 7, 8.
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Proof. Let ϵ =
∑p−1
i=1 iϵi, η =

∑q−1
i=1 iηi, and ζ =

∑r−1
i=1 iζi. By the same argument

as in 9, (ϵ, ϵ) = p(p−1)
2 , (η, η) = q(q−1)

2 , and (ζ, ζ) = r(r−1)
2 . Let θ1, θ2, θ3 be the

angles between ψ and each of ϵ, η, and ζ and respectively. An argument similar to
the proof of 4) yields

∑3
i=1 cos

2(θi) < 1.

We note (ϵ, ψ)2 = ((p − 1)ϵp−1, ψ)
2 = (p−1)2

4 . Having shown that (ϵ, ϵ) = p(p−1)
2

and noting that (ψ,ψ) = 1, we now compute cos2(θ1) = (ϵ,ψ)2

(ϵ,ϵ)(ψ,ψ) = 1
2 (1 −

1
p ).

Same for η and ζ. The above equality yields

1

2
(1− 1

p
) +

1

2
(1− 1

q
) +

1

2
(1− 1

r
) < 1

which gives, after simple manipluation,

1

p
+

1

q
+

1

r
> 1

Note that we assume p, q, r ≥ 2 (otherwise ψ isn’t actually a node, so Γ isn’t
actually type 4). WLOG let 1

p ≤
1
q ≤

1
r . Then

3
2 ≥

3
r ≥

1
p +

1
q +

1
r > 1 (since r ≥ 2)

so r = 2. This leaves 1
p +

1
q >

1
2 . If q = 2, p can be anything. If q = 3, 1

p >
1
6 so

p ∈ {3, 4, 5} (p cannot be 2 because p ≥ q).

Thus we can have the triples (p, q, r) = (p, 2, 2) (Γ is of the form Dn), or (p, q, r) =
(3, 3, 2), (4, 3, 2), (5, 3, 2) (Γ is of the form E6, E7, E8). ■

The results of 8,9,10 complete our classification. If Γ is of Type 1, it’s of the form
An. If it’s Type 2, it’s of the form Bn = Cn or F4 by 9). If it’s Type 3, it’s of the
form G2. If it’s Type 4, it’s of the form Dn or E6, E7, E8 by 10).

Setup For Method 2:

In the argument given in Reflection Groups and Coxeter Groups, we no longer
require root systems to satisfy ⟨α, β⟩ ∈ Z. Bases still exist. We define the Weyl
group in the same way.

Additionally, letting sα be the reflection across α, we define m(α, β) to be the
order of sαsβ in the Weyl group. An appeal to the dihedral group yields that
for α, β in a base, 4(α, β)2 = − cos(π/m(α, β)). Explicit computation shows that
4(α, β)2 = 0, 1, 2, 3 corresponds to m(α, β) = 2, 3, 4, 6.

We redefine Coxeter graphs as well. A Coxeter graph for a root system will still
have vertices as elements in the base ∆. Now, for α ̸= β ∈ ∆, there is no edge
from α to β if m(α, β) = 2 ((α, β) = 0), there is an unlabeled edge if m(α, β) = 3
((α, β) = 1), and there is an edge labeled by m(α, β) otherwise.

24.7 Classification of Coxeter Graphs
Presenter: Bashir Abdel-Fattah

We call a Coxeter graph positive definite if its corresponding matrix is positive
definite, and by convention we will say that it is positive semi-definite if its
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corresponding matrix is positive semi-definite but not positive definite. We also say
that a Coxeter graph is of positive type if it is either positive definite or positive
semi-definite. Some examples of positive definite Coxeter graphs include

.

In order to check that the above graphs have positive definite matrices, it suffices
to check that the principal minors (the determinants of the square submatrices
formed by taking the first k rows and first k columns of the original n× n matrix
for some 1 ≤ k ≤ n) are all strictly positive, which can be checked inductively
for An, Bn, and Dn, and directly otherwise. In addition to the positive definite
Coxeter graphs above, we also have the following positive semidefinite Coxeter
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graphs:

(where the number of nodes is the subscript plus one). In order to see that these
are all positive semidefinite, we can note that these are all given by adding a single
vertex to one of the corresponding positive definite graphs, so all of the proper
principal minors of the corresponding matrix have positive determinant, and we
just need to check that the matrix itself has zero determinant. This can be done
by direct computation. It’s also useful to note that the following graphs aren’t of
positive type, again by direct computation:

Next, we want to show that the list of examples of positive definite Coxeter graphs
that Raymond talked about in fact enumerates all of the positive definite Coxeter
graphs, which we accomplish by showing that any such graph cannot include any of
the above non-positive definite graphs as a subgraph. By a subgraph of a Coxeter
graph Γ, we mean a graph Γ′ that can be obtained from Γ by eliminating some of
its vertices and their adjacent edges and/or decreasing the weight labels of some of
its edges. However, in order to do this we first need a technical lemma.

24.29 Lemma. We say that an n× n matrix A = (aij) is indecomposable if there
is no partition of the index set {1, . . . , n} in nonempty subsets I, J such that aij = 0
for all i ∈ I and j ∈ J .

Suppose A is an indecomposable symmetric positive semidefinite matrix such that
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aij ≤ 0 for all i ≠ j, and that x = [x1, . . . , xn]
T is a nontrivial vector such that

xTAx = 0. Then xi ̸= 0 for all i = 1, . . . , n.

Proof. Let z = [z1, . . . , zn]
T be defined by zi = |xi|. Then, using that

A is positive semidefinite and aij ≤ 0 for all i ̸= j, we have that

0 ≤ ztAz =
n∑

i,j=1

aijzizj =

n∑
i,j=1

aij |xi||xj |

=

n∑
i=1

aij |xi|2 +
∑
i ̸=j

aij |xixj | ≤
n∑
i=1

aijx
2
i +

∑
i ̸=j

aijxixj

=

n∑
i,j=1

aijxixj = xtAx = 0,

forcing equality throughout. Then note that the fact that zTAz = 0
in fact implies that Az = 0; recalling from linear algebra that every
symmetric positive semidefinite matrix is orthogonally diagonalizable,
take P to be an orthogonal matrix such that

PTAP = D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


(where λi ≥ 0 for all i by the fact thay A is positive semidefinite).
Letting y = [y1, . . . , yn]

T such that z = Py, then we have that

0 = ztAz = (Py)TA(Py) = yT (PTAP )y = yTDy =

n∑
i=1

diy
2
i .

Because each of the terms above is nonnegative and they collectively
sum to zero, then each term must itself be zero, which implies that
diyi = 0 for all i and hence Dy = 0. Then

Az = A(Py) = P (PTAP )y = P (Dy) = 0

as claimed. Now let J ⊂ {1, . . . , n} denote the (nonempty) set of indices
j such that zj ̸= 0, and let I be its complement. The fact that Az = 0
means that

n∑
j=1

aijzj =
∑
j∈J

aijzj = 0

for all i ∈ I in particular. Because aij ≤ 0 for all i ∈ I and j ∈ J
(noting that we must have that i ̸= j) and that zj = |xi| > 0 for all
j ∈ J , then every term of the above sum is nonpositive and we must
have that they are all equal to zero, and thus aij must be equal to zero
for all i ∈ I and j ∈ J . However, if

I =
{
i ∈ {1, . . . , n} : zi = 0

}
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is also nonempty, this contradicts the assumption that A is indecom-
posable, thus we must have that zi = |xi| ≠ 0 for all i and hence xi ≠ 0
for all i as desired. ■

Using this lemma, we can prove the following result about Coxeter graphs:

24.30 Theorem. Suppose Γ is a connected Coxeter graph of positive type. Then
every (proper) subgraph of Γ is positive definite.

Proof. Let n be the number of vertices of Γ, and let Γ′ be a proper
subgraph of Γ with k ≤ n vertices. By relabelling the vertices of Γ,
we can suppose without loss of generality that the vertices of Γ′ are
exactly the first k vertices of Γ. Let A′ and A be the matrices associated
with Γ′ and Γ, respectively, where A′ is a k × k matrix and A is an
n× n matrix. Note that the fact that Γ is connected means that A is
an indecomposable matrix (since aij = − cos(π/mij) = 0 if and only
if mij = 2 if and only if there is no edge between the vertices i and
j, so the existence of a partition I, J of the index set {1, . . . , n} such
that aij = 0 for all i ∈ I and j ∈ J is equivalent to the existence of a
partition I, J of the set of vertices of Γ such that there are no edges
connecting a vertex in I to a vertex in J). Also, the fact that m′

ij ≤ mij

for all i, j ∈ {1, . . . , k} means that

a′ij = − cos(π/m′
ij) ≥ − cos(π/mij) = aij

for all i, j ∈ {1, . . . , k}. Then suppose for the sake of contradiction that
A′ is not a positive definite matrix, meaning that there exists some
nonzero vector x = [x1, . . . , xk]

T such that xTA′x ≤ 0. Consider the
vector

y = [|x1|, . . . , |xk|, 0, . . . , 0] ∈ Rn;

Using that A is positive semidefinite, we can calculate

0 ≤ yTAy =

n∑
i,j=1

aijyiyj =

k∑
i,j=1

aij |xi||xj | ≤
k∑

i,j=1

a′ij |xi||xj |

=

k∑
i=1

a′ij |xi|2 +
∑
i ̸=j

a′ij |xixj | ≤
k∑
i=1

a′ijx
2
i +

∑
i ̸=j

a′ijxixj

=

k∑
i,j=1

a′ijxixj = xTA′x ≤ 0

(where we have used above that a′ij ≤ 0 for all i ̸= j). Therefore

we must have that yTAy = 0, and because A is an indecomposable
positive semidefinite matrix, the previous lemma tells us that we must
have that all of the components of y are nonzero, meaning that k = n.
Furthemore, the fact that

0 =

k∑
i,j=1

a′ij |xi||xj | −
k∑

i,j=1

aij |xi||xj | =
k∑

i,j=1

(a′ij − aij)|xi||xj |
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and all of the terms above are non-negative, we must have (a′ij −
aij)|xi||xj | = 0 for all i, j ∈ {1, . . . , k} = {1, . . . , n}, which in turn
implies that a′ij = aij for all i and j by the fact that |xi|, |xj | > 0.
However, we have contradicted the fact that Γ′ is a proper subgraph
of Γ, thus it must instead be the case that Γ′ is a positive definite
subgraph as desired. ■

Finally, we can proceed to the main result:

24.31 Theorem. Every connected Coxeter graph of positive type must be one of
the positive definite or positive semidefinite graphs listed previously.

Proof. Suppose for the sake of contradiction that Γ is a connected
Coxeter graph of positive type that is not among those enumerated,
and that Γ has n vertices and maximum edge weight m ∈ N ∪{∞}.
The previous theorem tells us that Γ cannot have any subgraphs that
aren’t positive definite, so we can rule out certain structures for Γ as
follows:

1. Because all of the Coxeter graphs with fewer than two vertices
were previously enumerated (A1, I2(m), and Ã1), we must have
that n ≥ 3.

2. We must have that m <∞, because otherwise Γ would have Ã1

as a proper subgraph, contradicting the fact that Ã1 isn’t positive
definite.

3. Γ cannot contain any cycles, or else it would contain Ãn (n ≥ 2)
as a subgraph. That is, Γ must be a tree.

Now suppose for a moment that m = 3. Then

4. Γ must have at least one branch node, by the assumption that it
is distinct from An.

5. If Γ contained two or more branch points, then by connecting
them via a path of edges (using connectedness) we would have

that Γ contains a copy of D̃n for n > 4, which is a contradiction.

6. Furthermore, Γ cannot contain D̃4, so its branch node has exactly
three incident edges. Suppose the three branches of the tree have
a ≤ b ≤ c vertices, respectively (not counting the vertex at the
center).

7. Because Ẽ6 is not a subgraph of Γ, we must have a = 1.

8. Because Ẽ7 is not a subgraph, we must have b ≤ 2.

9. Because Γ ̸= Dn, we cannot have b = 1, so we must have b = 2.

10. Because Ẽ8 is not a subgraph, we must have c ≤ 4.

11. Recalling that c ≥ b = 2, the only options are c = 2, 3, 4. In these
cases, we would have Γ = E6, E7, E8, respectively, contradicting
the fact that Γ is not one of the previously listed graphs. Thus
the case where m = 3 cannot occur.
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Now we must have that m ≥ 4.

12. If Γ has more than one edge with weight ≥ 4, then by connecting
them via any path we would have C̃n as a subgraph, a contradic-
tion.

13. If Γ had a branch point, then by taking any path connecting it
to the edge of weight ≥ 4 we would have a copy of B̃n, again a
contradiction.

Now suppose that we have m = 4.

14. By the fact that Γ ̸= Bn, the unique edge of weight 4 must be
on the interior of the chain (rather than one of the two extremal
edges).

15. Because Γ cannot contain F̃4, we must have that n = 4.

16. Then Γ = F4, which is a contradiction. Thus we must have that
m ≥ 5.

Now we are in the case of m ≥ 5.

17. Since Γ cannot contain G̃2, we must have that m = 5.

18. Γ also cannot contain Z4, the unique edge of weight 5 must be
one of the two extremal edges of the chain.

19. Because Γ doesn’t contain Z5, we must have n ≤ 4.

20. Now we must have that Γ is either H3 or H4, contradicting the
assumption that Γ was not one of the listed graphs.

Since every possibility has resulted in a contradiction, we conclude that
the list of Coxeter graphs of positive type that we gave previously was
in fact exhaustive. ■

24.8 Root system of Type G2

Presenter: Nelson Niu

We construct the Lie algebra g corresponding to the G2 root system Φ as follows.

The Dynkin diagram for G2 consists of two edges, corresponding to the two simple
roots α and β, with a triple edge between them, corresponding to the fact that
⟨α, β⟩⟨β, α⟩ = 3. If we let α be the long simple root and β be the short simple root,
then ⟨α, β⟩ = −3 and ⟨β, α⟩ = −1, making its Cartan matrix(

2 −1
−3 2

)
.

From this we deduce that α, α + β, α + 2β, α + 3β, and β are all positive roots,
that α and β have a length ratio of

√
3, and that the angle between α and β

is cos−1(−
√
3/2) = 5π/6. Drawing out the roots, we deduce by inspection that

2α+ 3β is the only other positive root (and the highest weight root), so we have
12 roots total: six short roots (the positive ones are β, α+ β, and α+ 2β) and six
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long roots (the positive ones are α, α+ 3β, and 2α+ 3β). Each is a (scaled) copy
of the A2 root system.

Identifying the underlying Euclidean space of the root system with

E =
R ε1 ⊕ R ε2 ⊕ R ε3
R(ε1 + ε2 + ε3)

,

we can identify β with (1, 0,−1) and α+β = (−1, 1, 0), making α+2β = (0, 1,−1),
as with the A2 root system. Then α = (−2, 1, 1), so α + 3β = (1, 1,−2) and
2α+3β = (−1, 2,−1). Overall, the short roots are permutations of (−1, 0, 1), while
the long roots are permutations of (−2, 1, 1) and (−1,−1, 2).

To construct g, it suffices to construct a Lie algebra g = h⊕
⊕

γ∈Φ gγ with Cartan
subalgebra h and each gγ = R eγ satisfying [h, eγ ] = γ(h)eγ for all h ∈ h, under
some identification of E with h∗. Here dim h = 2 and dim g = 2 + |Φ| = 14.

We will take g to be a Lie subalgebra of so7. Recall that so7 consists of 7 × 7
matrices of the form  0 cT −bT

b M Q
−c P −MT

 ,

where b, c ∈ C3 and M,P, and Q are 3× 3 matrices. The subalgebra g will consist
of matrices of this form where Trace(M) = 0 (so M ∈ sl3),

P =

 0 w −v
−w 0 u
v −u 0

 , Q =

 0 −z y
z 0 −x
−y x 0

 ,

b =
√
2(u, v, w), and c =

√
2(x, y, z) for u, v, w, x, y, z ∈ C. This is indeed a

subspace of so7 of dimension 14; to verify that it is a Lie subalgebra, we will
eventually need to check that it is closed under the bracket. We can do this via
casework on the basis elements we define below.

Let h ⊆ g be the diagonal matrices in g (so M , and thus −MT , are diagonal); it is
certainly an abelian Lie algebra, and we have dim h = 2. Note that h is spanned
by the matrices

h1 = E22 − E33 − E55 + E66,

h2 = E33 − E44 − E66 + E77, and

h3 = −h1 − h2 = −E22 + E44 + E55 − E77.

Then h is dual to E with each hℓ dual to εℓ.

For the following computations, we use the fact that given a diagonal matrix H
and indices i ̸= j, we have [H,Eij ] = HEij − EijH = (Hii − Hjj)Eij . Then
for i, j ∈ {2, 3, 4}, note that the six possible Eij − Ej+3,i+3 matrices are linearly
independent elements of g with no diagonal entries, and for diagonal h ∈ h we have

[h,Eij − Ej+3,i+3] = (hii − hjj)Eij + (hi+3,i+3 − hj+3,j+3)Ej+3,i+3

= (hii − hjj)(Eij − Ej+3,i+3),
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as we always have hii = hi+3,i+3 and hjj = hj+3,j+3 for h ∈ h. It follows, for
instance, that

[h1, E32 − E56] = ((h1)33 − (h1)22)(E32 − E56) = −2(E32 − E56),

[h2, E32 − E56] = ((h2)33 − (h2)22)(E32 − E56) = E32 − E56, and

[h3, E32 − E56] = −[h1, E32 − E56]− [h2, E32 − E56] = E32 − E56,

so since α = (−2, 1, 1), we have [h,E32 − E56] = α(h)(E32 − E56). So we can set
eα = E32 − E56. Analogously, we have for the long roots that

eα = E32 − E56, e−α = E23 − E65,

eα+3β = E24 − E75, e−α−3β = E42 − E57,

e2α+3β = E34 − E76, e−2α−3β = E43 − E67.

Note that together, the hi’s and the eγ ’s when γ is long span the subalgebra of g
consisting of matrices where b, c, P, and Q are all zero, a subalgebra isomorphic to
sl3 (and thus closed under the bracket).

We also have that setting eβ =
√
2(E15−E21)+(E73−E64) ∈ g (i.e. setting u = −1

and all the other variables to 0) implies for all h ∈ h that

[h, eβ ] =
√
2((h11 − h55)E15 − (h22 − h11)E21) + (h77 − h33)E73 − (h66 − h44)E64 = h22eβ ,

since h11 = 0, h55 = −h22, h66 = −h33, h77 = −h44, and h22 + h33 + h44 = 0. So
[h1, eβ ] = 1, [h2, eβ ] = 0, and [h3, eβ ] = −1, correctly yielding [h, eβ ] = β(h)eβ for
all h ∈ h, as β = (1, 0,−1). Analogously, we have for the short roots that

eβ =
√
2(E15 − E21) + (E73 − E64) = −eT−β ,

eα+β =
√
2(E13 − E61) + (E27 − E45) = −eT−α−β ,

eα+2β =
√
2(E14 − E71) + (E35 − E26) = −eT−α−2β .

We can verify that these are linearly independent elements of g that, together with
the hi’s and the eγ ’s for long γ’s, span g. This completes our verification that Φ is
the root system induced by g.
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25 Homework Problems

1 Homework problem. Find all nilpotent, nonabelian, 3-dim lie algebra, up to
isomorphism.

Proof. Let g be a nonabelian, nilpotent, 3-dim lie algebra and consider [g, g].
Then dim[g, g] ̸= 0 since otherwise g ∼= g /[g, g] is abelian. Note the number of
nonvanishing pairs [x, y] must be no less than dim[g, g]. Elements in Z(g) induce

vanishing pairs. So we have
(
dim g− dimZ(g)

2

)
≥ dim[g, g]. Since g is nilpotent,

dimZ(g) ≥ 1. It follows that dim[g, g] = dimZ(g) = 1. But [g, g] ∩ Z(g) ̸= 0 for
nilpotent g, so we may write [g, g] = Z(g) = span (z) for some z ∈ Z(g). Extend
{z} to a k-linear basis {x, y, z} of g . Note that [x, y] is the only nonvanishing
bracket and hence [x, y] spans [g, g] = Z(g). We may assume [x, y] = z.

So, if exists, then g must be a lie algebra generated by {x, y, z} such that [x, y] = z
and z ∈ Z(g). And there is at most one of such lie algebra up to isomorphism
because the above relations indeed define a lie bracket Note the Jacobi identity
holds for the generators as [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0 + 0 + 0 = 0.

Note that x =

0 1 0
0 0 0
0 0 0

, y =

0 0 0
0 0 1
0 0 0

, and z =

0 0 1
0 0 0
0 0 0

 with commuta-

tor bracket generate a lie subalgebra of gln which is nonabelian, nilpotent and of
dimension 3. This example shows the existence. ■

2 Homework problem. Let char k = 0 and k = k. Then g solvable implies [g, g]
nilpotent.

Proof. Consider the adjoint action restricted to [g, g] and the induced short exact
sequence 0→ Z([g, g])→ [g, g]→ ad([g, g])→ 0. It suffices to show that ad([g, g])
is nilpotent. Note ad([g, g]) = [ad g, ad g] as ad preserves lie bracket. Since g is
solvable, it follows from Lie’s theorem (here we use the assumption on k) that
ad g ⊆ bn. Thus [ad g, ad g] ⊆ [bn, bn] = un and is nilpotent. ■

3 Homework problem. Let V be a representation of a Lie algebra g, let V1 ⊂ V
be a g-invariant subspace, and consider the corresponding short exact sequence

0 V1 V V2 0

Let BV : g× g → k be the bilinear form defined by the formula BV (x, y) =
tr(ρV (x)ρV (y)) where ρV : g→ gl(V ) is the representation of g on V ; similarly for
BV1

, BV2
. Show that

BV = BV1
+BV2

4 Homework problem. Let I ⊂ g be an ideal in a Lie algebra g. Show that the
restriction of the Killing form for g to I coincides with the Killing form on I:

(Kg)↓I = KI .
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Proof. I ⊂ g is an ideal of g. Let x ∈ I ⊂ g. Then [x, z] ∈ I for all z ∈ g. Choose
a basis BI of I as a vector space, and extend it to a basis Bg of g. Let the matrix
of adI(x) with respect to BI be [adI(x)]. Then with respect to basis Bg of g, the
matrix of adg(x) is given by the block matrix:

[adg(x)] =

(
[adI(x)] ⋆

0 0

)
Note here the bottom right block is 0 precisely due to the fact that I is an ideal,
and thus adg(x)(g) ⊆ I. Thus, for x, y ∈ I, the matrix of adg(x) adg(y) with
respect to the basis Bg is the block matrix:

[adg(x) adg(y)] =

(
[adI(x) adI(y)] ⋆

0 0

)
,

where [adI(x) adI(y)] = [adI(x)][adI(y)] is the matrix of adI(x) adI(y) with respect
to the basis BI . Thus, clearly from the form of the matrix it follows that

(Kg) ↓I (x, y) = Trace(adg(x) adg(y)) = Trace(adI(x) adI(y)) = KI(x, y), ∀x, y ∈ I

. ■

5 Homework problem. Let x, y be two semisimple elements in gln.

1. Suppose [x, y] = 0. Show that x+ y is semisimple.

2. Give a counterexample to the semisimplicity of x+y when they don’t commute

6 Homework problem. Let g be a simple Lie algebra. Show that an invariant
bilinear symmetric form on g is unique up to a scalar.
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