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1 Lecture 1 (March 27): Basic definitions and
Examples
Scribe: Haoming Ning

We use the following setup. Let R be a (commutative ring) and consider the abelian
category of (left) R-modules.

1.1 Definition. A chain complex (of R-modules) is a exact sequence

· · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → . . .

such that dn ◦ dn+1 = 0. A cochain complex is a exact sequence

· · · ← Cn+1 dn+1

←−−− Cn dn

←− Cn−1 ← . . .

such that dn=1 ◦ dn = 0.

Remark. We can turn a chain complex into a cochain complex and vice versa by
defining C̃n := C−n.

1.2 Definition. A morphism f• : B• → C• consists of the data fn : Bn → Cn

such that each square commutes

. . . Cn+1 Cn Cn−1 . . .

. . . Bn+1 Bn Bn−1 . . .

fn+1 fn fn−1

We denote CH•,R the category of chain complexes of R-modules.

As homework, show that CH•,R (and CH•R) is an abelian category. Reference:
MacLane “Categories for the working mathematician”.

1.3 Definition. Let C• ∈ CH•,R. Define Zn = ker dn ⊆ Cn, Bn = im dn+1 ⊆ Cn.
Note that d2 = 0 implies that Bn ⊆ Zn. We define Hn(C•) = Zn/Bn, called
the n-th homology group of C•. The n-th cohomology group of a cochain complex
Hn(C•) is define similarly.

1.4 Definition. A chain complex C• is exact (acyclic) if ker dn = im dn+1, or
equivalently Hn(C•) = 0, for every n.

Remark. As an exercise, show that Hn is a function from CH•,R →ModR

Notation. We use CH•,b to denote the category of bounded complexes, and
CH•,≤0,CH•,≥0 to denote the category of complexes bounded above and below,
respectively.

1.5 Definition. A morphism f• : B• → C• is a quasi-isomorphism if Hn(f•) :
Hn(B•)→ Hn(C•) is an isomorphism for every n.

Remark. A chain complex C• is acyclic if and only if the map 0• → C• is a
quasi-isomorphism.
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Example (Motivational). LetX be a topological space. Denote ∆n = {(x0, . . . , xn) ∈
Rn+1 : x0+· · ·+xn = 1} the standard n-simplex. Put Sn(X) = Z[Homcont(∆

n, X)].
Define first ∂i : ∆

n−1 → ∆n by

(x0, . . . , xn−1) 7→ (x0, x1, . . . , xi−1, 0, xi, . . . , xn−1),

which by functoriality of Hom induces ∂in : Hom(∆n, X)→ Hom(∆n−1, X). Now
define the boundary map dn : Sn(X)→ Sn−1(X) by

dn =
n∑

i=0

(−1)i∂in.

It turns out that dn−1 ◦ dn = 0, so we have constructed a chain complex S•(X).
We define the singular homology of X to be Hn(S•(X)).

Lemma (Snake Lemma). Suppose we have a commutative diagram in an abelian
category with exact rows

A′ B′ C ′ 0

0 A B C,

f g h

then there exists a long exact sequence

ker f → ker g → kerh
δ−→ coker f → coker g → cokerh.

Additionally, if we start with two short exact sequences in each row, namely

0 A′ B′ C ′ 0

0 A B C 0,

f g h

then we have the following long exact sequence

0→ ker f → ker g → kerh
δ−→ coker f → coker g → cokerh→ 0.

Proof idea. Perform a diagram chase to build the connecting homomorphism δ, for
proof see this Canvas page. ■

https://canvas.uw.edu/courses/1634684/pages/proof-of-snake-lemma
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2 Lecture 2 (March 29): Long Exact Sequences
in H∗ and Chain Homotopies
Scribe: Bashir Abdel-Fattah

2.1 Proposition. Suppose that

0 A• B• C• 0

is a short exact sequences of chain complexes. Then there is a long exact sequence

· · · Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−2(C•) · · ·

δ

Proof. For each n, we have a commutative diagram

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

dA
n dB

n dC
n

which induces maps on the kernels and cokernels such that the following diagram
commutes:

0 ker(dAn ) ker(dBn ) ker(dCn )

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

coker(dAn ) coker(dBn ) coker(dCn ) 0.

dA
n dB

n dC
n

In particular, noting that ker(dAn−1) = Zn−1(A•) and coker(dAn ) = An−1/ im(dAn ) =
An−1/Bn−1(A•) (and similarly for B• and C•), we have the commutative diagrams

0 Zn−1(A•) Zn−1(B•) Zn−1(C•)

0 An−1 Bn−1 Cn−1 0

0 An−2 Bn−2 Cn−2 0

dA
n−1 dB

n−1 dC
n−1
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and

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

An−1/Bn−1(A•) Bn−1/Bn−1(B•) Cn−1/Bn−1(C•) 0.

dA
n dB

n dC
n

Then, because the map dAn : An → An−1 has kernel containing im(dAn+1) = Bn(A•)
and image contained in ker(dAn−1) = Zn−1(A•) and hence factors as

An
An/Bn(A•) Zn−1(A•) An−1

(where we denote the middle map also by dAn by an abuse of notation), and similarly
for B• and C•, by combining with the induced maps on the kernels and cokernels
above we have a commutative diagram

0 An Bn Cn 0

An/Bn(A•) Bn/Bn(B•) Cn/Bn(C•) 0

0 Zn−1(A•) Zn−1(B•) Zn−1(C•)

0 An−1 Bn−1 Cn−1 0

dA
n dB

n dC
n

Also notice that the map dAn : An/Bn(A•)→ Zn−1(A•) has kernel Zn(A•)/Bn(A•) =
Hn(A•), and because it’s image isBn−1(A•) it also has cokernel Zn−1(A•)/Bn−1(A•) =
Hn−1(A•). Then by applying the (most general statement of) the snake lemma to
the middle two rows above, we have that there is a homomorphism δ : Hn(C•)→
Hn−1(A•) such that the following diagram commutes

Hn(A•) Hn(B•) Hn(C•)

An/Bn(A•) Bn/Bn(B•) Cn/Bn(C•) 0

0 Zn−1(A•) Zn−1(B•) Zn−1(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

δ

as desired. ■
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Chain Homotopies and Other Constructions

2.1 Definition.

1. Suppose we have two maps of chain complexes f, g : C• → D•. Then f
and g are homotopic (denoted f ∼ g) if there exists a collection of maps
{Sn : Cn → Dn+1} such that

f − g = dS + Sd.

2. If f ∼ 0, then we say that f is null homotopic.

3. C• is contractible (null-homotopic) if idC• ∼ 0.

4. C• and D• are homotopy equivalent (written C• ∼ D•) if there exist chain
maps f• : C• → D• and g• : D• → C• such that

f ◦ g ∼ idD• and g ◦ f ∼ idC•
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3 Lecture 3 (March 31): Chain homotopy and
homotopy category
Scribe: Eric Zhang

3.1 Definition.

1. Suppose we have two maps of chain complexes f, g : C• → D•. Then f
and g are homotopic (denoted f ∼ g) if there exists a collection of maps
{sn : Cn → Dn+1} such that

f − g = ds+ sd.

2. If f ∼ 0, then we say that f is null homotopic.

3. C• is contractible (null-homotopic) if idC• ∼ 0.

4. C• and D• are homotopy equivalent (written C• ∼ D•) if there exist chain
maps f• : C• → D• and g• : D• → C• such that

f ◦ g ∼ idD• and g ◦ f ∼ idC•

Example. Let f, g : X → Y be morphisms of topological spaces and a homotopy
H : X × [0, 1] → Y such that Hx×0 = f and Hx×1 = g. Then exists a chain
homotopy S = S∗(X) → S∗(Y )[1] such that f∗ ∼ g∗. This can be found in
Hatcher’s Algebraic Topology Theorem 2.10.

3.1 Proposition. Let f, g : C• → D• be chain maps. Then f ∼ g implies
f∗ = g∗ : H∗(C)→ H∗(D).

Proof. Recall Hn is an additive functor. So it suffices to show f ∼ 0 implies f∗ = 0
on H∗(C). Consider the complexes

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

f f f

where f = sd+ ds. Let z ∈ Zn(C) (so d(z) = 0). Then f(z) = (sd+ ds)(z) = ds(z)
which is a boundary and hence is zero in Hn(D). ■

3.2 Definition. The homotopy category K(R-mod) has the following data:

1. Objects are chain complexes of R-modules.

2. Morphisms are chain maps up to homotopy equivalence.

3.2 Proposition. The homotopy categoryK(R-mod) has the following properties.

1. It is an additive category.

2. It is not abelian.

3. It is triangulated, which implies in general it is not abelian.
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4. The homology functor Hn : CH•,R → R-mod factors through K(R-mod).

CH•,R R-mod

K(R-mod)

Hn

3.3 Definition. A chain complex C· is split exact if it is an exact complex that
splits. That is, for complexes

· · · Cn+1 Cn Cn−1 · · ·

Bn+1(C) Bn(C) Bn−1(C)

dn+2 dn+1 dn dn−1

each sequence 0→ Bn(C) ↪→ Cn ↠ Bn−1(C)→ 0 is exact split.

3.4 Remark. Split exact complex is null homotopic.

Proof. Consider the complexes

· · · Bn+1 ⊕Bn Bn ⊕Bn−1 Bn−1 ⊕Bn−2 · · ·

· · · Bn+1 ⊕Bn Bn ⊕Bn−1 Bn−1 ⊕Bn−2 · · ·

d d

id sn

d

id sn−1

d

id

d d d d

where sn : Bn ⊕Bn−1 → Bn+1 ⊕Bn is the projection to Bn and the differentials
dn : Bn ⊕Bn−1 → Bn−1 ⊕Bn−2 kills Bn and preserves Bn−1. ■

3.5 Remark. A chain complex is split exact ⇐⇒ Null homotopic =⇒ Acyclic/ex-
act. But exactness does not imply split exact by the following counterexample.

Example. Consider the following chain complex of abelian groups.

· · · → Z/4 ·2−→ Z/4 ·2−→ Z/4→ · · ·

Suppose there is a homotopy s such that sd+ ds = id. Then a = (sd+ ds)(a) =
sn−1d(a) + dsn(a) = 2sn(a) + 2sn−1(a). But not every a ∈ Z/4 is divisible by 2.

3.6 Definition. We define some operations on complexes.

1. The shift of a complex C is a complex C[j]i = Ci+j with differentials
diC[j] = (−1)jdiC .
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2. A double complex is a collection {Cp,q} with maps

· · · Cp,q Cp−1,q · · ·

· · · Cp,q−1 Cp−1,q−1 · · ·

dv dv

dh

dv dv

dv

dh

dv

such that dhdh = 0, dvdv = 0, and dhdv + dvdh = 0.

3. Let {Cp,q} be a double complex. Then total complex is Tot(C•,•) =
⊕

p+q=n Cp,q

with differentials d :
⊕

p+q=n Cp,q →
⊕

i+j=n−1 Ci,j where d = dv +dh. Note

it is indeed a differential since d2 = (dv+dh)2 = dhdh+dvdh+dhdv+dvdv = 0.

4. The mapping cone for a chain map f : C• → D• is the total complex of the
following double complex

Cn+1 Dn+1

Cn Dn

Cn−1 Dn−1

−dC dD

−f

−dC dD

−f

−dC dD

−f

−dC dD

In particular, conen(f) = Cn−1 ⊕Dn and conen−1(f) = Cn−2 ⊕Dn−1 where

the differential is

(
−dC −f
0 dD

)
.

3.3 Proposition. The mapping cone cone(f) has the following properties.

1. D• ↪→ cone(f).

2. cone(f) ↠ C[−1].

3. C•
f−→ D• ↪→ cone(f) ↠ C[−1] which is called a triangle.
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4 Lecture 4 (April 3): Abstract nonsense
Scribe: Soham Ghosh

4.1 Proposition. A map f : C• → D• of chain complexes is a quasi-isomorphism
if and only if cone•(f) is exact.

Proof. Apply long exact sequence in homology to the short exact sequence

D• → cone•(f)→ C•[−1],

i.e., this is a short exact sequence of chain complexes, which implies that for all n,
we have Dn → Cn−1 ⊕Dn → Cn−1 [Warning: this is not split exact because the
differential of cone•(f) is not diagonal]. ■

4.1 Exercise. Finish the above proof.

Exactness

4.2 Definition. Consider a covariant functor F : A → B between Abelian
categories.

1. F is left exact if for all short exact sequences 0→ A→ B → C → 0 in A,
we have 0→ F(A)→ F(B)→ F(C) is exact in B.

2. F is right exact if for all short exact sequences 0→ A→ B → C → 0 in A,
we have F(A)→ F(B)→ F(C)→ 0 is exact in B.

3. F is exact if it takes short exact sequences to short exact sequences, i.e., it
is both left and right exact.

4.3 Remark. For left exactness of F , it suffices to start with left exact sequences
0→ A→ B → B → C in A and require them to go to left exact sequences in B.
Analogous statement holds for right-exactness.

4.4 Remark. Exactness of contravariant functor F : A → B is determined by
exactness of the covariant functor Fop : Aop → B by above.

4.5 Example (also Exercise to check). 1. HomA(M,−) : A → Ab is left exact
for all M ∈ A.

2. HomA(−,M) : A → Ab is contravariant and left exact for all M ∈ A.

3. Let R be a commutative ring andM ∈ R−Mod. ThenM⊗R− : R−Mod→
R−Mod and −⊗R M : R−Mod→ R−Mod are right exact.

4.6 Lemma. Let A,B,C ∈ A, then 0→ A→ B → C is exact if and only if for
all M ∈ A, the sequence 0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C) is exact.

4.7 Exercise. Prove the above lemma.

4.8 Lemma. f : A
∼−→ B is an isomorphism in abelian category A if and only if for

all M ∈ A, the induced map Hom(f) : Hom(M,A)→ Hom(M,B) is isomorphism
in Ab.
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Yoneda lemma and functor categories

Functor category Fun(Aop,Ab) := {F : A → Ab contravariant}, with morphisms

being natural transformations. This category is also denoted by AbA
op

or 2A.
Thus, we have a functor,

A h−−→ Fun(Aop,Ab),

mapping A ∈ A to the functor hA := HomA(−, A). The following can be checked:

1. h is an exact fully faithful embedding.

2. HomA(A,B)
∼−→ HomFun(hA, hB).

4.2 Proposition (Yoneda lemma). Let F : A → Ab be a contravariant functor.
Then we have

HomFun(hA,F) = F(A).

4.9 Exercise. Prove the Yoneda lemma.

Note that when F = hB in Yoneda lemma, we get the above version as hB(A) =
HomA(A,B).

4.10 Theorem (Freyd-Mitchell). For a small Abelian category, there exists ring R,
such that the functor F : A → R−Mod is fully-faithful (i.e., A is a full subcategory
of R-Mod).

Derived functors

Let A be an abelian category.

4.11 Definition. P ∈ A is a projective object if any of the following equivalent
conditions hold:

1. all surjections A↠ B and maps P → B lift to maps P → A.

P

A B

2. Hom(P,−) is exact.

3. In the category R−Mod, projectives are direct summands of free modules.

Fact: Projective objects in Ch•(R−Mod) are split exact sequences of projective
modules.
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5 Lecture 5 (April 5): Derived functors
Scribe: Ansel Goh

5.1 Definition. A projective resolution of M ∈ A is a complex

Pi → Pi−1 → · · · → P0

with Pi projective for each i such that the complex

· · · → P2 → P1 → P0
ϵ−→M → 0

is exact. Equivalently, we can replace the exactness condition with the condition
that for the diagram

· · · P2 P1 P0 0

0 M 0

ϵ ,

ϵ is a quasi-isomorphism of chain complexes.

5.2 Definition. A has “enough” projectives if for all M ∈ A, there exists P ∈ A
projective such that P ↠M .

5.3 Remark. if A has enough projectives, then any object in A has a projective
resolution. Indeed, we have the diagram

ker(ϵ) =M0 P0 M

ker(d0) =M1 P1 M0

ϵ

from which we can form the sequence

P2 P1 P0 M

M1 M0

Additionally, for each i, Mi = Ωi+1M which is called the syzygy.

5.4 Definition. Given M ∈ A, a chain complex Q• with a map ϵ : Q• →M where
ϵ : Q0 →M is a resolution of M if the chain complex

· · · → Q2 → Q1 → Q0
ϵ−→M → 0

is exact.

5.5 Theorem. Let M,N ∈ A and f : M → N . Also, let

P•
ϵ−→M → 0
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be a projective resolution of M and

Q• → N
ϵ′−→ 0

be any resolution of of N . Then, there exists a unique chain map F : P• → Q• such
that the diagram

P1 P0 M

Q1 Q2 N

ϵ

F0F1

ϵ′

f

commutes.

5.6 Corollary. Given M ∈ A, any two projective resolutions of M are homotopy
equivalent.

5.7 Definition. I is injective if either of the following equivalent definitions hold:

1. For any maps M ↪→ N and M → I, there exists a map N → I such that the
diagram

I

N M

commutes.

2. Hom(−, I) is an exact functor.

5.8 Definition. A has enough injectives if for all M ∈ A, there exists I ∈ A
injective such that M embeds into I.

5.9 Definition. An injective resolution of M ∈ A is a complex

I0 → I1 → I2 → · · ·

with Ii injective for each i such that the complex

0
ϵ−→M → I1 → I2 → I3 → · · ·

is exact.

5.10 Remark. Let A = R-mod. Then,

1. A has enough projectives (free modules).

2. A has enough injectives.

An example of a category with enough injectives but not enough projectives is
RepGLn. In fact, this category has no projective modules. It has enough injectives
because RepGLn is equivalent to k[GLn]-comod.

5.11 Definition. Let A have enough projectives and let F : A → B be a right
exact functor. For M ∈ A, let

· · · → P2 → P1 → P0 →M → 0

be a projective resolution of M . Then, we define

(LiF)(M) := Hi(F(P•)).
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5.12 Proposition. LiF has the following properties:

1. LiF is independent of choice of P• →M

2. LiF are additive functors

3. L0F = F

4. Let M = P be projective. Then, for i > 0,

(LiF)(P ) = 0

We say that projectives are “F acyclic”.

5. Given a short exact sequence

0→M1 →M2 →M3 → 0,

there exists a long exact sequence

· · · → (L1F)(M3)→ F(M1)→ F(M2)→ F(M3)→ 0.

5.13 Remark. Weibel calls {LiF}i≥0 a “δ”-functor

5.14 Definition. Let A have enough injectives and let F : A → B be a left exact
functor. For M ∈ A, let

0→M → I0 → I1 → I2 → · · ·

be an injective resolution of M . Then, we define

(RiF)(M) := Hi(F(I•)).

5.15 Proposition. RiF has the following properties:

1. RiF is independent of choice of I• →M

2. RiF are additive functors

3. R0F = F

4. Let M = I be injective. Then, for i > 0,

(RiF)(I) = 0

We say that injectives are “F acyclic”.

5. Given a short exact sequence

0→M1 →M2 →M3 → 0,

there exists a long exact sequence

0→ F(M1)→ F(M2)→ F(M3)→ R1F(M1)→ · · ·
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5.16 Example. Let R be a commutative ring and consider the functor − ⊗R

N : R-mod→ R-mod. Then, define

TorRi (M,N) := Li(−⊗R N)(M).

Note that M ⊗R N is symmetric so

TorRi (M,N) = Li(M ⊗R −)(N).

Weibel calls this “balanced tor.”

Proof. See Weibel section 2.7 ■
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6 Lecture 6 (April 7): Derived functors
Scribe: Ting Gong

6.1 Example. Let A be abelian category with enough projectives. Then we
consider Hom(−,M) : Aop → Ab which is a left exact functor. We define

ExtiR(−,M) = Ri(HomA(−,M)).

In practice, let P• → N be a projective resolution, then applying the Hom(−,M)
to → P3 → P2 → P1 → P0, we have

. . .← Hom(P1,M)← Hom(P0,M)

Then take the cohomology, we have

ExtiR(N,M) = Hi(Hom(P•,M)).

Alternatively, assume A has enough injectives, consider A → I• be an injective
resolution, then we have

Hom(N, I0)→ Hom(N, I1)→ . . .

and we can define
ExtiR(N,M) = Hi(Hom(N, I•)).

Adjoint Functors and Injective Modules

6.2 Definition. Let F : A → B and G : B → A be two functors between categories
A,B, then we call (F ,G) an adjoint pair, F left adjoint to G, G right adjoint to F
if

HomB(F(A), B)
∼−→ HomA(A,G(B))

for A ∈ A, B ∈ B.

6.3 Example. (1) Let A = Liek and B = Alg
k
, where we have Lie : Alg

k
→ Liek

by defining a Lie bracket, then we have the universal envelopping algebra functor
U : Liek → Alg

k
being the left adjoint.

(2) Let R be a commutative ring, the forgetful functor For : R-Mod→ Ab is an
exact functor, and it has right adjoint HomAb(R,−) : Ab→ R-Mod with

HomAb(M,B)
∼−→ HomR(M,HomR(R,B))

Moreover, it has left adjoint R⊗Z − : Ab→ R-Mod, with

HomAb(M,B)
∼−→ HomR(R⊗Z A,M)

(3) Let R,S be rings, A an R-module, B a (R,S)-bimodule, and C an S-module.
Then we have

HomS(A⊗B,C)
∼−→ HomR(A,HomS(B,C))
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6.4 Remark. Consider Z φ−→ R, then it induces a map R-Mod
φ∗

−−→ Z-Mod.

Generally, assume S
φ−→ R, it induces a map R-Mod

φ∗

−−→ S-Mod.

6.5 Proposition. (1) Let F : A → B, assume F has a left adjoint G which is
exact, then F takes injectives to injectives.

(2) If F has a right adjoint functor G which is exact, then F takes projectives to
projectives.

Proof. We prove (1), then (2) should follow similarly. Let I ∈ A be injective, we
want to show that F(I) is injective; that is, we want to show HomB(−,F(I)) is
exact.

Let 0→ B1 → B2 → B3 → 0 be a short exact sequence. Apply HomB(−,F(I)), we
have the below commutative diagram, there the vertical maps being isomorphisms
from the adjunction, and the exactness of the bottom row comes from the exactness
of G:

HomB(B1,F(I)) HomB(B2,F(I)) HomB(B1,F(I)) 0

0 HomA(G(B1), I) HomA(G(B2), I) HomA(G(B3), I) 0

∼= ∼= ∼=

Hence the top sequence is exact on the left when adding a term 0 as well. ■

6.6 Proposition. Let (F ,G) be an adjoint pair of functors. Then F is right exact,
and G is left exact.

6.7 Proposition (Baer’s Criterion). A R-module M is injective if and only if
for all a ⊂ R ideals, the module homomorphism from a→M can be extended to a
homomorphism R→M .
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7 Lecture 7 (April 12): Injectives in R-mod
Scribe: Raymond Guo

7.1 Theorem. (Baer’s Criterion)

Let R be a commutative ring. If an R-module I satisfies the property that for every
ideal J of R, any map J → I can be extended to a map R → I, then I is an
injective R-module.

7.2 Corollary. In Z-mod, the injective modules are the divisible groups. (exercise)

7.3 Corollary. Q and Q/Z are both injective Z-modules.

7.4 Definition. M ∈ Z-mod. M∨ := HomZ(M,Q/Z) is called the Pontryagin
dual.

7.5 Lemma. There exists an injective natural map from M into M∨∨. We call
M reflexive if it’s an isomorphism.

7.6 Lemma. If P is projective, P∨ is injective.

Proof. We need to show HomZ(−, P∨) is exact.

We note that

HomZ(M,HomZ(P,Q/Z)) ∼= HomZ(M ⊗Z P,Q/Z)

by the Hom-Tensor adjunction. Tensoring with a projective module and Hom into
an injective module are both exact, so the RHS is a composition of two exact
functors, which is exact. Thus the LHS is exact, which is the desired result. ■

7.7 Theorem. Z-mod has enough injectives.

Proof. Let M be a Z-module. There’s a free module F with a surjective map into
M∨. If we dualize, we have a map M ↪→ M∨∨ ↪→ F∨ where injectivity of the
second map, given surjectivity of the map before taken the dual, is an exercise.
The module F∨ is injective by the lemma. ■

7.8 Theorem. Let R be arbitrary, not necessarily commutative. R−mod has
enough injectives.

Proof. There’s a forgetful functor U : R-mod → Z-mod.

(U,HomZ(R,−)) is an adjoint pair. Since U is exact, HomZ(R,−) takes injectives
to injectives. This yields that if T is a divisible abelian group, HomZ(R, T ) is an
injective R-module.

Let M be an R-module.

There’s an embedding M ↪→ T of abelian groups where T is a divisible (injective)
abelian group (which isn’t necessarily a map of R-modules) by the previous theorem.
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We then write the adjunction

HomZ(M,T ) ∼= HomR(M,HomZ(R, T ))

Let f :M → T be the map of Z modules discussed above. It gets identified with
the map f ′ :M → HomZ(R, T ) in R-mod.

To show that f ′ is injective, we must write the adjunction explicitly. The isomor-
phism

HomZ(M,T ) ∼= HomR(M,HomZ(R, T ))

takes ϕ :M → T to ϕ′ :M → (HomZ(R, T )) defined by ϕ′(m)(r) = ϕ(rm).

If ϕ is injective and if ϕ′(m) = ϕ′(m′), then ϕ′(m)(1) = ϕ′(m′)(1), which is to say
that ϕ(m) = ϕ(m′). Since ϕ is injective, m = m′, so we have that ϕ′ is injective.
This completes the proof. ■

We compute the following for Tor and Ext:

7.1 Proposition. TorZi (M,N) = ExtZi (M,N) = 0 for i > 1.

Proof. We work first with Tor. Taking a projective resolution of M , we have
a projective resultion of the form F1 ↪→ F0 → M because submodules of free
Z-modules are free. Since this resolution only has two modules, after tensoring
with N and taking homology, TorZi (M,N) = 0 for i > 1. ■

The same can be said for Ext, taking a projective resolution of M and applying
contravariant Hom.

7.2 Proposition. We compute TorZ1 (M,N).

Proof. Let us first do this for M = Z/n. We resolve Z/n by 0→ Z→ Z→ Z/n,
where the maps are multiplication by n and the quotient. After tensoring with N
(and removing M from the front), the resulting chain complex takes the form

0 Z⊗Z N Z⊗Z N 0

0 N N 0

×n⊗id

×n

= =

Identifying the top row with the bottom, it’s clear that the homology of this chain
complex in the first degree is {x ∈ N : nx = 0}, so TorZ1(Z/n,N) is this group,
called the n-torsion of N .

Since Z is free, it has a projective resolution Z→ Z with one nonzero module, so
TorZ1 (Z, N) = 0. ■
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8 Lecture 8 (April 12): Ext and Tor
Scribe: Nathan Louie

8.1 Proposition. TorRi commutes with filtered colimits. That is,

TorRi (lim→
Mj , N) = lim

→
TorRi (Mj , N).

8.2 Remark. Tensor product functor
⊗

R commutes with
⊕

, lim
→

, and coker and

hom functor HomR commutes with
∏
, lim
←

, and ker.

8.3 Definition. A R-module M is flat if any of the following equivalent conditions
hold:

1. M ⊗R − is exact,

2. TorRi (M,N) = 0 for all i > 0 and for any R-module N ,

3. TorR1 (M,N) = 0 for any R-module N ,

8.4 Exercise. Prove the three equivalences for flatness.

8.5 Remark. Flat modules are “Tor-acyclic” (i.e. makes Tor vanish), so we can
calculate Tor using flat resolutions.

8.6 Proposition. In Z-Mod, a module is flat if and only if it is torsion-free.

Proof. AssumeM is a flat Z-module. Then 0 = TorZ1 (Z/n,M) = nM , the n-torsion
of M , for any n by calculation on 4/10. Hence, there is no n-torsion for any n, so
M is torsion-free.

Assume M is torsion free. Let N be an R-module. We can write N = lim
→
Ni,

where Ni is finitely generated. By structure theorem, Ni = Zni
⊕
⊕li

j=1Z/ni,j .
In particular, Tor commutes with direct sums, so TorZ1(Ni,M) = 0 because M is
torsion free. Since Tor is symmetric and commutes with limits, we can write

TorZ1 (N,M) = TorZ1 (lim→
Ni,M) = lim

→
TorZ1 (Ni,M) = 0.

■

8.7 Remark. For general R-Mod, free ⊂ projective ⊂ flat ⊂ torsion-free. For
Z-Mod, free = projective ⊊ flat = torsion-free. For example, Q is torsion-free, but
not free as a Z-module.

Local Properties

8.8 Proposition. Let R be commutative, and M be an R-module. Then the
following are equivalent:

1. M ∼= 0,

2. For all prime ideals p ⊂ R, Mp
∼= 0.
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3. For all maximal ideals m ⊂ R, Mm
∼= 0.

8.9 Proposition. Let F be a flat R-algebra. Then for an R-module M , define the
F -module MF := F⊗RM , the extension of scalars. There is a natural isomorphism

F ⊗R TorRi (M,N)
∼−→ TorFi (MF , NF ).

8.10 Proposition. (Localization for Tor) Let R be commutative and M,N be
R-modules. Then the following are equivalent:

1. TorRi (M,N) = 0,

2. For all prime ideals p ⊂ R, TorRp

i (Mp, Np) = 0,

3. For all maximal ideals m ⊂ R, TorRm
i (Mm, Nm) = 0,

8.11 Corollary. Vanishing for Tor and, in turn, being flat are local properties.

8.12 Remark. For local ring R, a R-module is free iff projective iff flat. By
Quillen-Suslin Theorem, a k[x1, ..., xn]-module is free iff projective. There are local
properties also related to Ext.

Ext and Extension

8.13 Definition. An extension of length n is an exact sequence 0→M0 → ...→
Mn+1 → 0. In this case, we say that we extend Mn+1 by M0.

8.14 Remark. A short exact sequence is an extension of length 1.

For the rest of the section, we illustrate how to construct the Yoneda product. For
n ∈ N, let us define

ExtnR(M,N) :=
{0→ N → E1 → ...→ En →M → 0 | extension of length n}

∼

where two extensions of length n are equivalent if there is a commutative diagram

0 N E1 . . . En M 0

0 N E′1 . . . E′n M 0

.

We can (and later will) introduce an addition structure on short exact sequences,
which will give us an abelian group structure on Ext1R (and on ExtnR). Then, we
will also show that there exists a bijection ExtnR(M,N)

∼−→ ExtnR(M,N), which
respects the group structure. This will allow us to treat elements of ExtnR(M,N)
as extensions from M to N .

Given an extension of M by N , and of L by by M , we can produce an extension
of L by N by concatenation, thereby defining a pairing

ExtnR(M,N)× ExtmR (L,M)→ Extn+m
R (L,N)
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Explicitly, we have:

(N → E1 →· · · → En →M)× (M → F1 → · · · → Fm → L)

7→ N → E1 → · · · → En → F1 → · · · → Fm → L.

where the middle map En → F1 is the composition En →M → F1 of the tail of
the first extensions and the head of the second.

8.15 Definition. Given above, we define

Ext∗R(M,M) :=

∞⊕
n=0

ExtnR(M,M),

which has a structure of a graded ring via Yoneda product defined as above for
M = N = L.
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9 Lecture 9 (April 12): Ring structure on Ext∗R(M,N)
Scribe: Jackson Morris

9.1 Equality of the two Ext’s

Ext1R(M,N) = {0 → N → E → M → 0}/ ∼, where we identify two short exact
sequences if there exists a diagram of the following kind:

0 N E M 0

0 N E′ M 0

∼== = .

This set has a group structure: Given two short exact sequences

0→ N → E →M → 0

and
0→ N → E′ →M → 0

in Ext1R(M,N), we can get a new short exact sequence by taking direct sums:

0→ N ⊕N → E ⊕ E′ →M ⊕M → 0.

This is no longer an element of Ext1R(M,N). However, we can modify this slightly
to get what we want.

9.1 Remark. Given two maps f,G : A→ B say of abelian groups, we can do the
following procedure:

A A⊕A B ⊕B B∆ f⊕g µ

a 7→ (a,−a) 7→ (f(a), g(−a)) 7→ f(a) + g(−a)

We can apply functoriality of hom to get a natural sequence

Hom(A⊕2, B⊕2) Hom(A,B⊕2) Hom(A,B)∆∗ µ∗

Then, we can pass to Ext:

Ext1(A⊕2, B⊕2) Ext1(A,B⊕2) Ext1(A,B)∆∗ µ∗

This is the motivation for how we define the addition for the Yoneda Ext.

9.2 Definition. Take two short exact sequences ξ, ζ ∈ Ext1R(M,N), and form the
direct sum short exact sequence as above. We can form a module Ẽ by pulling
back the right square of the following diagram:

0 N ⊕N Ẽ M 0

0 N ⊕N E ⊕ E′ M ⊕M 0

∆

⌟
=
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This is a map of short exact sequences (Exercise: show that we get a mapN⊕N → Ẽ
that makes this true), and we can get a new map of short exact sequences

0 N ⊕N Ẽ M 0

0 N ˜̃E M 0

=µ

⌟

by pushing out to get the middle term on the bottom row (Exercise: show that we

get a map ˜̃E →M that makes this true). This bottom short exact sequence is the
sum ξ + ζ = µ∗∆

∗(ξ ⊕ ζ).

9.3 Theorem. There is a group isomorphism map Ext1R(M,N)→ Ext1R(M,N) .

9.4 Remark. This is actually true for all n and not just n = 1, but we will not
prove this.

Proof. Sketch. First, let’s produce a map Ext→ Ext. Take a projective resolution
P• → ϵ→ 0. Applying hom(−, N) gives us

. . . Hom(P2, N) Hom(P1, N) Hom(P0, N)
d∗
1 d∗

0

To calculate Ext1(M,N), we calculate cohomology at hom(P1, N), i.e. the elements
in the kernel of d∗1. Well, an element

ξ : 0 → N → E →M → 0

is a resolution of M . By the fundamental theorem of projective resolutions, there
is a commutative diagram

. . . P2 P1 P0 M 0

. . . 0 N E M 0

=f

d1 d0 ϵ

We define our map by sending ξ to this f . Notice that by construction d∗1(f) =
f ◦ d1 = 0, so indeed f ∈ Ext1(M,N). There are still the issues of this being
well-defined, but we will skip them for the moment.

For an inverse Ext→ Ext, take some f ∈ Ext1(M,N) and a projective resolution
P• →M → 0. Since f represents a map P1 → N in the kernel of d1, we can sort
of work in reverse from above: by arranging the projective resolution in to the top
row and placing the map f : P1 → N in the same location, we can form a module
E by pushing out:

. . . P2 P1 P0 M 0

N E M

=f

d1 d0 ϵ

⌟
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More precisely, E = N ⊕ P0/(f(x), d0(x)). The map we get from N ↪→ E is
injective. Suppose that (n, 0) = 0; then n = f(x) 0 = d0(x), hence x ∈ P1 such
that x = d1(y). Then f(d1(y)) = d∗1f(y) = 0 = n. It is an exercise to show that
the cokernel of this map is always M . This then gives us a short exact sequence
0→ N → E →M → 0, hence an element of Ext(M,N). We again omit a proof of
the bijection being well-defined and a group homomorphism. ■

9.2 Yoneda Product

Assuming the previous theorem, we can now define a product on Ext:

ExtnR(M,N)× ExtmR (L,M)→ Extn+m
R (L,N),

where, given (N → E1 → . . .→ En →M) ∈ ExtnR(M,N) and (M → F1 → . . .→
Fm → L) ∈ ExtmR (L,M), we form a new exact sequence by concatenating:

(N → E1 → . . .→ En →M =M → F1 → . . .→ Fm → L) ∈ Extn+m
R (L,N)

Notice that if we fix a module M in both components, this defines a ring structure
on Ext∗R(M,M) =

⊕
ExtnR(M,M).

9.3 Augmentation

An algebra R over a field k is called augmented if there is a k-linear map R
ε−→ k,

called the augmentation, such that

k ↪→ R
ε−→ k = idk

9.5 Example. If G is any group, then the group algebra kG is augmented, where
ε(g) = 1 for any g ∈ G. If g is any Lie algebra, then the Universal enveloping
algebra U(g) is augmented, where ε(x) = 0 for any x ∈ g.

9.6 Remark. In particular, there are Hopf algebras, which are always augmented.

If R is augmented, then we can view k as a module over R. Returning to the
algebra Ext∗R(M,M), and letting M = k, the Yoneda product tells us that we have
a map

Ext∗R(k, k)× Ext∗R(M,k)→ Ext∗R(M,k),

which allows us to view Ext∗R(M,k) as a module over Ext∗R(k, k)!

9.7 Theorem. Ext∗kG(k, k) = H∗(G; k) is a graded commutative algebra

9.8 Theorem. If G is a finite group, then the group cohomology algebra is a
finitely generated k-algebra (or, equivalently, Noetherian).
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10 Lecture 10 (April 17): Ext examples, Künneth
formula and universal coefficient theorem
Scribe: Nelson Niu

10.1 Ext examples

By definition Ext0R(A,B) = HomR(A,B); and every Z-module has a projective
resolution of length 1, so ExtiZ(A,B) = 0 for i > 1. Hence the only interesting Ext
groups over Z are when i = 1. Here are some sample computations of Ext1Z(A,B).

10.1 Example. We compute Ext1Z(Z/p,Z/p). The standard projective resolution
of Z/p is

0→ Z p−→ Z ↠ Z/p→ 0;

applying HomZ(−,Z/p) to the resolution yields

HomZ(Z,Z/p) ≃ Z/p p=0−−→ HomZ(Z,Z/p) ≃ Z/p→ 0,

so Ext1Z(Z/p,Z/p) ≃ Z/p. It follows that there are p isomorphism classes of length-1
extensions of the form

0→ Z/p ↪→ E ↠ Z/p→ 0

for some abelian group E, corresponding to the p elements of Z/p; Homework Prob-
lem 10 asks you to find them.

10.2 Example. While Tor commutes with colimits in either factor, meaning that
computing Tor on abelian groups reduces to computing them for finitely generated
abelian groups, Ext does not commute with colimits in the first factor. The obstacle
is that the hom functor turns colimits in the first factor a limit, and the limit
functor is not exact; indeed it has a nontrivial right derived functor lim1. So we
must take care when computing Ext1Z(A,B) for an arbitrary, possibly not finitely
generated abelian group A. (On the other hand, computing Ext1Z(Z/n,A) is much
the same as computing a Tor group, but with the arrows reversed; indeed there is
a duality with Tor. See Homework Problem 11.)

Consider Ext1Z(A,Z). Note that Z is not injective, as it is not divisible, so this Ext
group is not necessarily trivial. We take an injective resolution for Z by embedding
it in Q, which is injective; the quotient of any divisible group is also divisible, so
indeed every Z-module has an injective resolution of length at most 1; for Z, it is

0→ Z ↪→ Q ↠ Q/Z→ 0.

Applying HomZ(A,−) to the resolution yields

HomZ(A,Q)→ HomZ(A,Q/Z) = A∨ → 0;

recall that A∨ = HomZ(A,Q/Z) is the Pontryagin dual.

In the special case where A is torsion, HomZ(A,Q) = 0, so Ext1Z(A,Z) ≃ A∨. For
instance, let A = Z/p∞ = lim−→Z/pn, the colimit (i.e. direct limit) of the sequence

Z/p→ · · · → Z/pn p−→ Z/pn+1 p−→ Z/pn+2 → · · ·
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We have that A is torsion (every element has order pn for some finite n), so

Ext1Z(A,Z) ≃ A∨ = HomZ(lim−→Z/pn,Q/Z).

If we pull out the colimit from the first factor, it becomes a limit, yielding

Ext1Z(A,Z) ≃ lim←−HomZ(Z/pn,Q/Z).

To compute HomZ(Z/pn,Q/Z), we note that each map is uniquely determined by
where 1 is sent in Q/Z, and since pn annihilates 1 in Z/pn it must also annihilate
the image of 1 in Q/Z. The pn-torsion elements of Q/Z are precisely the residues
of 0, 1/pn, . . . , (pn − 1)/pn, so the pn-torsion subgroup of Q/Z is isomorphic to
Z/pn. Hence HomZ(Z/pn,Q/Z) ≃ Z/pn, making

Ext1Z(A,Z) ≃ lim←−Z/pn,

i.e. the limit of the sequence

· · · → Z/pn+1 mod pn

−−−−−−→ Z/pn → · · · → Z/p,

which is the group of p-adic integers Z∧p .

10.2 Künneth formula and universal coefficient theorem

The motivating questions come from topology; let X and Y be topological spaces.

1. Given H•(X) and H•(Y ), how can we compute H•(X × Y )? The answer to
this question will lead to the Künneth formula.

2. Given H•(X), how can we compute H∗(X;M) for some other abelian group
M of coefficients, where we tensor the singular complex of X with M before
computing homology? The answer to this question will lead to the universal
coefficient theorem.

We can answer the second question in the special case where M is a flat Z-module:
Hn(X;M) = Hn(X)⊗Z M . But what about in general?

The Eilenberg-Zilber theorem gives singular chain complex of X × Y in terms of
those of X and Y ; from there, the questions become purely algebraic ones. We
begin by giving the construction of this chain complex, called the tensor product
of chain complexes. We will work in the category of R-modules for a commutative
ring R (commutativity can be dropped, but that would require us to be careful
about left versus right modules and such).

10.3 Definition. Let P•, Q• be chain complexes in the category of R-modules.
Define P•⊗RQ• to be the double complex (P•⊗RQ•)i,j = Pi⊗RQj with differentials

Pi−1 ⊗Qj Pi ⊗Qj

Pi−1 ⊗Qj−1 Pi ⊗Qj−1.

(−1)i−1(1⊗dQ)

dP⊗1

(−1)i(1⊗dQ)

dP⊗1
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Then the tensor product of P• and Q• is the total complex of this double complex:
Tot•(P• ⊗R Q•), so that

Totn(P• ⊗R Q•) =
⊕

i+j=n

Pi ⊗Qj

with differentials as above. (We will often write this complex as simply P• ⊗R Q•,
leaving it to context to determine whether we are referring to the double complex
or its total complex.)

Below, we let P• andQ• be chain complexes of R-modules, where P• has differentials
dPn : Pn+1 → Pn as well as Bn = dPn (P•) and Zn = ker(dPn−1).

10.4 Theorem (Künneth formula). Assume Pn, Bn are flat R-modules for all n.
Then there exists a natural short exact sequence

0→
⊕

i+j=n

Hi(P•)⊗Hj(Q•) ↪→ Hn(P•⊗Q•) ↠
⊕

i+j+1=n

TorRi (Hi(P•), Hj(Q•))→ 0.

Note that the universal coefficient theorem will simply be a special case of the
Künneth formula when Q• is concentrated in degree 0 (Weibel proves only this
special case). We sketch the start of the proof here; this can also be proven using
spectral sequences.

Start of Proof. First we show that if Pn and Bn−1 are flat, then so is Zn. Consider
the short exact sequence

0→ Zn ↪→ Pn ↠ Bn−1 → 0.

Applying the long exact sequence for Tor yields

· · · → Tor2(Bn−1, A)→ Tor1(Zn, A)→ Tor1(Pn, A)→ Tor1(Bn−1, A)→ Zn⊗A→ · · · ,

where flatness implies Tori(Pn, A) ≃ Tori(Bn−1, A) ≃ 0 for all i and thus Tori(Zn, A) ≃
0 for all i as well, implying that Zn is also flat.

(As an aside, note that it would not be enough to assume that Pn and Zn are flat;
together these do not necessarily imply that Bn−1 is flat, as the above argument
fails. Indeed, an easy counterexample is Z ↪→ Z ↠ Z/n, where Z is flat but Z/n is
not.)

Then
0→ Z• → P• → B•[−1]→ 0

is a short exact sequence of complexes of flat modules, so we can tensor it with Q•
to obtain another short exact sequence of complexes:

0→ Z• ⊗Q• → P• ⊗Q• → B• ⊗Q•[−1]→ 0.

Taking homology yields the long exact sequence

· · · → Hn+1(B•⊗Q•[−1]) ≃ Hn(B•⊗Q•)
∂n−→ Hn(Z•⊗Q•)→ Hn(P•⊗Q•)→ · · ·
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Since every module in B• and Z• is flat and every differential is trivial, we can pull
each of them out: Hn(B•⊗Q•) ≃ (B•⊗H•(Q))n andHn(Z•⊗Q•) ≃ (Z•⊗H•(Q))n.
So our long exact sequence in homology becomes

· · · → (B• ⊗H•(Q))n
∂n−→ (Z• ⊗H•(Q))n → Hn(P• ⊗Q•)→ · · ·

We leave the rest of the proof for next time. ■
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11 Lecture 11 (April 19): Künneth formula and
group cohomology
Scribe: Gavin Pettigrew

11.1 Künneth Formula Continued

Proof of Künneth formula cont’d. We left off with a long exact sequence

· · · → (B• ⊗H•(Q•))n
∂n−→ (Z• ⊗H•(Q•))n →Hn(P• ⊗Q•)

→ Hn−1(B• ⊗Q•)
∂n−1−−−→ · · · .

By the definition of the total complex, this sequence can be rewritten as

· · · →
⊕

i+j=n

Bi ⊗Hj(Q•)
∂n−→

⊕
i+j=n

Zi ⊗Hj(Q•)→ Hn(P• ⊗Q•)

→
⊕

i+j=n−1
Bi ⊗Hj(Q•)

∂n−1−−−→ · · · ,

and one can check that ∂n =
⊕

i+j=n ∂ij , where ∂ij is the tensor product of the
inclusion ei : Bi ↪−→ Zi with the identity map 1 : Hj(Q•)→ Hj(Q•). Focusing on
the nth degree, we see that there is a short exact sequence

0→ coker ∂n → Hn(P• ⊗Q•)→ ker ∂n−1 → 0, (1)

which turns out to be exactly what we want. To see this, note that

0→ Bi
ei−→ Zi → Hi(P•)→ 0

is a flat resolution, so tensoring with Hj(P•) results in a complex

0→ Bi ⊗Hj(Q•)
∂ij−−→ Zi ⊗Hj(Q•)→ Hi(P•)⊗Hj(Q•)→ 0,

from which we derive ker ∂ij ∼= Tor1(Hi(P•), Hj(Q•)). Since (−)⊗Hj(Q•) is right
exact, we also have coker ∂ij ∼= Hi(P•)⊗Hj(Q•). It follows that

ker ∂n−1 =
⊕

i+j=n−1
ker ∂ij ∼=

⊕
i+j=n−1

Tor1(Hi(P•), Hj(Q•)) and

coker ∂n ∼=
⊕

i+j=n

coker ∂ij =
⊕

i+j=n

Hi(P•)⊗Hj(Q•),

so (1) becomes

0→
⊕

i+j=n

Hi(P•)⊗Hj(Q•)→ Hn(P•⊗Q•)→
⊕

i+j=n−1
Tor1(Hi(P•), Hj(Q•))→ 0.

■

11.1 Corollary (Universal Coefficient Theorem). Let M be an R-module, P• a
chain complex, and assume Bn and Pn are flat for each n. There is a short exact
sequence

0→ Hn(P•)⊗M → Hn(P• ⊗M)→ TorR1 (Hn−1(P•),M)→ 0.
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11.2 Corollary. If R = Z, P• ∈ Z, and M ∈ Z−mod, the short exact sequence
from the universal coefficient theorem splits noncanonically. In other words, there
is an unnatural isomorphism Hn(P•,M) ∼= Hn(P•)⊗M ⊕ Tor1(Hn−1(P•),M).

11.3 Example. Let X and Y be topological spaces. The Eilenberg-Zilber theorem
says that Hn(X × Y ) ∼= Hn(S•(X)⊗ S•(Y )), where S•(X) and S•(Y )) denote the
singular chain complexes of X and Y respectively. By the Künneth formula, there
is a short exact sequence

0→
⊕

i+j=n

Hi(X)⊗Hj(Y )→ Hn(X × Y )→
⊕

i+j=n−1
TorZ1 (Hi(X), Hj(Y ))→ 0.

11.4 Definition. Given a chain complex P• and a cochain complex Q•, we can
construct a double complex whose squares look like

Hom(Pi, Q
j+1) Hom(Pi+1, Q

j+1)

Hom(Pi, Q
j) Hom(Pi+1, Q

j).

dP∗

(−1)id∗
Q

dP∗

(−1)i+1d∗
Q

.

For the next theorem, let Hom(P•, Q
•) denote the total complex of this double

complex.

11.5 Theorem (Künneth formula for cohomology). Suppose P• is a chain complex
and Q• is a cochain complex of R-modules. If Pn and d(Pn) are projective for each
n, then there is a short exact sequence

0→
∏

i+j=n−1
Ext1R(Hi(P•), H

j(Q•))→Hn(Hom(P•, Q
•))

→
∏

i+j=n

Hom(Hi(P•), H
j(Q•))→ 0.

11.2 Group Cohomology

Assume G is a group and R is a commutative ring. We will be working in the
abelian category RepRG

∼= RG−mod, which has enough injectives and projectives.

11.6 Definition. LetM be a representation of G over R. We define the invariance
of M to be the R-module

MG := {m ∈M | gm = m}

and the coinvariance of M to be

MG =M/⟨m− gm | m ∈M, g ∈ G⟩.

The operations {−}G and {−}G define left and right exact functors from RepRG
to R−mod, respectively (ex*).

11.7 Definition. We define the nth cohomology of G with coefficients in M by

Hn(G,M) := Rn{M}G.

Similarly, the nth homology of G with coefficients in M is defined by

Hn(G,M) = Ln{M}G.
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12 Lecture 12 (April 22): Group Cohomology
Scribe: Joseph Rogge

Recall: the category RepRG is equivalent to the category RG-mod. Both are
tensor categories: given M,N ∈ RepRG, the product M ⊗R N ∈ RepRG via
g(m ⊗ n) := (gm) ⊗ n. Similarly, HomR(M,N) ∈ RepRG via g · φ := gφ(g−1−)
for φ : M → N . This is referred to as “internal Hom” since it lands back inside
RepRG.

Claim: HomG(M,N) = HomR(M,N)G.

Proof. Fix f :M → N in HomG(M,N), i.e. f(gm) = gf(m) for all g ∈ G,m ∈M .
Then g · f(m) = g−1f(gm) = f(m), so f is G-invariant. □ ■

Similarly, M ⊗RG N = (M ⊗R N)G. This yields

R⊗RG M = (R⊗R M)G ∼=MG.

The left derived functor Li(R⊗RG −) = Li{−}G, namely group homology is equal
to TorRG

i (R,−).

Similarly, HomG(R,−) = Hom(R,−)G from which we obtainRi{−}G = ExtiG(R,−),
from which we see that group cohomology is equal to ExtiG(R,−). Note, we supress
R from the group ring notation, but Ext is computed over the ring RG, not the
group G.

How does one actually compute group (co)homology? For cohomology, we can
produce an injective resolution of M : M → I0 → I1 → . . ., apply {−}G, then
take cohomology of this chain complex. This is the same data as ExtiG(R,M),
so we could just as well resolve R instead. Let . . . → P1 → P0 → R be a
projective resolution of RG-modules. To compute ExtiG(R,M), we apply Hom
to this resolution: . . . ← Hom(P1,M) ← Hom(P0,M) ← 0. With this approach,
we don’t need to produce a new resolution, which makes computation easier in
practice.

12.1 Examples

12.1 Example. R = Z, G = Cn = ⟨σ|σn = 1⟩. RCn = Z⟨σ⟩ = Z[σ]/⟨σn − 1⟩.
We can resolve ZCn as follows: define N :=

∑n−1
j=0 σ

j . Then we have the infinite
repeating resolution

. . .
(σ−1)−−−−→ Z⟨σ⟩ N−→ Z⟨σ⟩ (σ−1)−−−−→ Z⟨σ⟩ N−→ Z⟨σ⟩ (σ−1)−−−−→ Z⟨σ⟩ ε−→ Z.

This is a periodic resolution.

HomCn
(−,M) = HomZCn

(−,M), and HomZCn
(ZCn,M) ∼=M . Thus we have the

complex

. . .
(σ−1)←−−−−M N←−M (σ−1)←−−−−M N←−M (σ−1)←−−−−M ← 0.



Hom Alg 35

Upshot:

H0(G,M) = ker{σ − 1} = {m : σm = m} =MG.

H1(G,M) = ker{N}/ im{σ − 1} = Hodd.

H2(G,M) = ker{σ − 1}/ im{N} =MG/(σn−1 + σn−2 + . . .+ 1)M = Heven.

Exercise: compute Hi.
Solution: Hodd and Heven swap in homology.

12.2 Example. Computing cohomology with n = p,M = Z. Our cochain complex
ends up being

. . .
σ−1←−−− Z σp−1+...+1←−−−−−−− Z σ−1←−−− Z.

Because Z is a trivial ZCp-module, σ−1 = 0 and σp−1+ . . .+1 = p, so the cochain
complex is

. . .
p←− Z 0←− Z p←− Z 0←− Z.

Taking cohomology yields

H0(Cp,Z) = Z.
H1(Cp,Z) = 0.

H2(Cp,Z) = Z/pZ.

As in the first example, the even and odd positive homology is swapped with
cohomology.

12.3 Example. R = k, n = p, and k is a field of characteristic p. The field k
is a trivial Cp-module, and having characteristic p means σp = 1, so σ − 1 =
0, σp−1 + . . .+ 1 = p = 0, so the cochain complex has all zero maps:

. . .
0←− k 0←− k 0←− k.

Thus cohomology (and homology) is identically k.

12.4 Example. R = C, n arbitrary. Then ExtiCCn
(C,M) = { extensions 0 →

M → E → C→ 0}. The ring CCn is semi-simple so any extension splits, namely
the only extension is 0 → M → M ⊕ C → C → 0, so ExtiCCn

(C,M) = 0∀i > 0.
Therefore H0(CCn,M) =MCn and all higher cohomology vanishes.

Construction: The Ext groups Ext∗Cp
(k, k) can be decomposed as

⊕∞
i=0 Ext

i
Cp

(k, k) ∼=⊕∞
i=0 k, which can be given a graded ring structure isomorphic to k[x].

Similarly, if p = 2, we can decompose H∗(Cp, k) as
⊕∞

i=0H
i(Cp, k) ∼=

⊕∞
i=0 k,

which again has a graded ring structure isomorphic to k[x].

Now let p be an odd prime. The exterior algebra over k of some y is
∧∗

(y) = k[x]/y2.
Then H∗(Cp, k) can be given a ring structure isomorphic to k[x] ⊗

∧∗
(y) with

grading defined by x having degree 2 and y having degree 1. This ring is graded
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commutative, i.e. st = (−1)|s|·|t|ts, with |s|, |t| denoting the degree of s and t
respectively. In particular xy = (−1)2yx = yx.
Each graded piece is a one dimensional k vector space, where the degree 2i part is
spanned by xi and the degree 2i+ 1 graded piece is spanned by xiy.
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13 Lecture 13 (April 24): Group Cohomology,
Hopf Algebras
Scribe: William Dudarov

13.1 More Group Cohomology

13.1 Example. Let C∞ = ⟨σ⟩, and consider the group ring Z⟨σ⟩ ∼= Z[x, x−1].

We compute the cohomology of C∞ with Z coefficients.

Hn(C∞,Z) = ExtnC∞
(Z,Z).

Take a projective resolution

0→ Z⟨σ⟩ (σ−1)−−−−→ Z⟨σ⟩ σ→1−−−→ Z,

which is finite.

Note

H0(C∞,M) =Mσ

H1(C∞,M) =Mσ,

and if we had wanted homology, we’d have

H0(C∞,M) =Mσ

H1(C∞,M) =Mσ,

switched around.

We also have

Hi(C∞,M) = 0, for i > 1.

13.2 Observation. For k a field, the same calculation yields

H1(G, kG) = Ext1(k, kG) = k ̸= 0.

G = C∞, kG is not injective

When G is finite, kG is always injective (and projective since it is a free module).

13.2 Hopf Algebras

A lyric sidenote about finite-dimensional Hopf algebras...
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13.3 Definition. Let k be a field. A is called a Hopf algebra if we have the
following three operations

∆ : A→ A⊗A, comultiplication/coproduct,

ε : A→ k, counit,

S : A→ A, coinverse,

such that we have the following compatibility conditions.

Coassociativity:

A A⊗A

A⊗A A⊗A⊗A

∆

∆⊗1∆

1⊗∆
.

The following diagram commutes:

A A⊗A

A.

∆

Id⊗ε

The following diagram commutes:

A A⊗A

k A

∆

ε Id⊗S

The coinverse is sometimes called an antipode, because it is not dual to anything,
but rather attempts to turn this structure into a group.

One can also define cocommutative Hopf algebras, given by

A⊗A τ−→ A⊗A
a⊗ b 7→ b⊗ a.

A Hopf algebra is cocommutative if ∆ ◦ τ = ∆.

13.4 Example. The group algebra

kG

is a Hopf algebra.

We have

∆ : kG→ kG⊗ k
g 7→ g ⊗ g.
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For all a ∈ A, if ∆(a) = a⊗ a, then a is called “group-like.”

The augmentation map/counit is given by

ε : kG→ k

g 7→ 1

I = ker(ε) = ⟨(g − 1)⟩

is called the augmentation ideal.

Finally, the antipode is given by

S : kG→ kG

g 7→ g−1.

Claim: kG is a cocommutative Hopf algebra.

13.5 Example. Take g a Lie algebra, and we define its universal enveloping algebra
U(g), given by k + g+ g⊗2 + . . .

We describe the Hopf structure on U(g).

The coproduct is given by

∆ : g→ U(g)⊗ U(g)

x 7→ x⊗ 1 + 1⊗ x

(such x is called primitive).

The counit is given by

ε : U(g)→ k

x 7→ 0.

The coinverse is given by

S : U(g)→ U(g)

g→ U(g)

x 7→ −x.

Claim: U(g) is a cocommutative Hopf algebra, primitively generated.

There was a feeling in the air for a long time that all Hopf algebras were like this,
but in the 1960s, Earl Taft came up with the Taft algebra,

g → g ⊗ g
x→ x⊗ 1 + g ⊗ x.
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This is how you get quantum groups, Hopf algebras given by generators and
relations, quantized Serre relations.

There are a lot of non-cocommutative Hopf algebras, even in characteristic 0, a
complete classificiation is still wide open.

13.6 Definition. Let R be a finite-dimensional k-algebra. We say that R is
Frobenius if there exists a bilinear associative nondegenerate form

η : R⊗R→ k

η(ab⊗ c) = η(a⊗ bc).

13.7 Observation. If we have R a Frobenius algebr,a then η induces an isomor-
phism

R∗ ∼= R

an isomorphism of R-modules.

Let a ∈ R, then a ⇐⇒ η(a,−) : R→ k.

13.8 Definition. R is moreover symmetric if the form is symmetric.

13.9 Theorem. 1. Let A be a finite-dimensional Hopf algebra over k. Then it
is Frobenius.

2. If G is a finite group. Then kG is not only Frobenius by the above, it is also
symmetric.

EXERCISE: define the form on kG.

What does this all have to do with homological algebra?

13.10 Proposition. If R is a Frobenius algebra, then in the category of R-modules,
projectives and injectives and the same.

13.11 Definition. A category is called Frobenius if projective and injective
modules are the same.

What does this mean? In part,

Hi(G, kG) = 0, i > 0.

Here, R = kG.

13.12 Corollary. Suppose R is Frobenius. Suppose M is an R-module. Assume
M is not projective. Then

1. Any projective resolution of M is infinite.

2. If Exti(N,M) = 0 for any i > n, for all N , thenM is projective (a restatement
of the claim above).

All of this happens for finite groups.
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14 Lecture 14 (May 8): More on Frobenius Alge-
bras, Group Cohomology, and Products
Scribe: Haoming Ning

From last time: Frobenius algebras (categories).

14.1 Definition. A finite-dimensional k-algebra R is Frobenius if there exists a
bilinear associative nondegenerate form ν : R⊗R→ k.

A category C is Frobenius if projective objects are the same as injective objects.

14.2 Remark. If R is a Frobenius algebra, then the category of R-modules is
Frobenius. (R is “self-injective”).

14.3 Example. Let k be a field, G be a group such that chark | |G|, then kG is
Frobenius. In fact, we have a bilinear, associative, nondegenerate, and symmetric
form ν : kG⊗k kG→ k, defined by

ν(a⊗ b) =
∑
g∈G

agb
−1
g · g

where a =
∑

g ag · g and b =
∑

g bg · g.

14.4 Example. Consider the Lie algebra g = gln over a field of characteristic p.
We have an internal p-th power map, called the restriction map, [p] : g→ g, defined
by A[p] 7→ Ap. (This structure exists on more general Lie algebras.) We construct

U [p](g) = U(g)/⟨xp − x[p]|x ∈ g⟩,

called the restricted enveloping algebra. This is a finite dimensional (primitively
generated) Hopf algebra.

14.5 Exercise. Check that the restricted enveloping algebra U [p](gln) for gln is
Frobenius, by constructing the form using Poincaré-Birkhoff-Witt.

14.6 Exercise. As a further exercise, do this computation for U [p](sl2).

14.1 Restriction and Corestriction

14.7 Construction. Given f : G → G′, we wish to define natural maps on
homology H∗(G,M)→ H∗(G

′,M). First, given a G′-module M , we can equip M
with a G-action g ·m = f(g)m to view it as a G-module (this is sometimes referred
to as the pullback of M). Now, recall that

H∗(G,M) = TorG∗ (Z,M) = H∗((PG ⊗Z M)G),

and similarly
H∗(G

′,M) = H∗((P
′
G ⊗Z M)G′).

Suppose we have a projective resolution PG′ → Z of G′-modules. Pull-back is by
definition an exact functor, so we obtain a (not necessarily projective) resolution
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PG → Z. By the fundamental theorem of homological algebra, we can lift the
identity map Z→ Z to obtain

PG Z

PG′ Z

F

Tensoring with M and taking coinvariance, we have

(PG ⊗Z M)G (PG′ ⊗Z M)G

(PG′ ⊗Z M)G′

F⊗id

This composition induces our desired map on H∗.

H∗(G,M) = H∗((PG ⊗Z M)G)→ H∗((P
′
G ⊗Z M)G′) = H∗(G

′,M).

14.8 Construction. As before, given f : G → G′, we will construct a similar
natural map on cohomology. Recall that

H∗(G,M) = H∗(HomZ(PG,M)G)

and
H∗(G′,M) = H∗(HomZ(PG′ ,M)G

′
).

The same construction gives F : PG → PG′ , which induces

HomZ(PG′ ,M)→ HomZ(PG,M).

Taking G-invariance and pre-composing, we have

(HomZ(PG′ ,M))G
′

(HomZ(PG′ ,M))G (HomZ(PG,M))G

which in turn induces our desired map on cohomology.

14.2 Cup Products in Cohomology

We wish to equip H∗(G, k) =
⊕∞

i=0H
i(G, k) with a product map, and the key is

to utilize the diagonal map ∆ : G→ G×G and the cohomology of cross product.

Given groups G,H, we can express H∗(G × H,Z) in terms of H∗(G,Z) and
H∗(H,Z). Take projective resolutions PG → Z, PH → Z, then we have a projective
resolution (in Rep(G×H))

PG ⊗Z PH → Z⊗Z Z = Z,

noting also that ZG⊗Z ZH = Z(G×H). This computation to be continues next
time.



Hom Alg 43

15 Lecture 15(May 10): Cross product and Cup
product on cohomology Scribe: Eric Zhang

15.1 cross product continued

We want to compute H∗(G × H,Z) using H∗(G,Z) and H∗(H,Z). To do this,
we take P•,G → Z and Q•,H → Z be projective resolutions in RepG and RepH .
Consider Tot(P•,G ⊗ P•,H).

15.1 Lemma. Tot(P•,G ⊗ P•,H)→ Z is a projective resolution in RepG×H .

15.2 Lemma. In the above setting,

1. There is a well-defined map

HomG(Pi,Z)⊗HomH(Qj ,Z)
f−→ HomG×H(Pi,G ⊗Qj,H ,Z)

via f(u⊗ v)(x⊗ y) = u(x)v(y) for u : Pi → Z and v : Qj → Z.

2. If G,H are finite groups and P•, Q• are finitely generated, then f induces an
isomorphism of complexes

Tot(HomG(Pi,Z)⊗HomH(Qj ,Z)) ∼= HomG×H(P•,G ⊗Q•,H ,Z).

Note the RHS can be computed by Kunneth formula. We consider the following⊕
i+j=n

Hi(G,Z)⊗Hj(H,Z) ×−→ Hn(G×H,Z)→
⊕

p+q=n

TorZ(Hp(G,Z), Hq(H,Z))

where the first map is the cross product in cohomology. In particular Tor vanishes
over k, and we have an isomorphism⊕

i+j=n

Hi(G, k)⊗Hj(H, k) ∼= Hn(G×H, k).

15.3 Remark. We note a few properties of cross product.

1. Construction does not depend on choice of projective resolution.

2. Cross product is associative.

3. Let M ∈ RepRG,N ∈ RepRH for a commutative ring R, we retain a map⊕
i+j=n

Hi(G,M)⊗Hj(H,N)→ Hn(G×H,M ⊗R N).

So cohomology has algebra structure for R-algebras.

15.2 cup product

15.4 Definition. Recall the diagonal map ∆ : ZG → ZG × ZG. We define the
cup product ⌣: H∗(G,Z)⊗H∗(G,Z)→ H∗(G,Z) to be the composition

H∗(G,Z)⊗H∗(G,Z) ×−→ H∗(G×G,Z) ∆∗

−−→ H∗(G,Z)

via u ⌣ v = ∆∗(u× v) for u ∈ Hi(G,Z) and v ∈ Hj(G,Z).
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15.5 Remark. We note a few properties of cup product.

1. Cup product is natural in G. That is, for f : G → G′, there is f∗ :
Hom(G′,Z)→ Hom(G,Z) such that f∗(u⊗ v) = f∗(u)⌣ g∗(v)

2. Cup product is associative.

3. There is a unit 1 ∈ H0(G,Z) = HomG(Z,Z) such that 1⌣ u = u ⌣ 1 = u.

4. H∗(G,Z) is a graded commutative algebra.

15.6 Theorem. Let A be finite dimensional, flat, hopf algebra over a commutative,
noetherian ring R. Then

1. H∗(A,R) =
⊕∞

i=0H
i(A,R) is a unital graded commutative algebra over R.

2. If A is cocommutative, then H(A,R) is finitely generated (and Noetherian).

15.7 Remark. Part 1 is due to Hochschild. For finite group, part 2 is due to
Vantov and Evans around 1961. For cocommutative hopf algebra over field k, part
2 is due to Friedlander and Suslin in 1995. For cocommutative hopf algebra flat
over commutative, noetherian ring, part 2 is due to Van der Kaller in 2022. Etingof
and Ostrik conjectured in 2004 the statement is true for any finite tensor category.

15.8 Remark. The associativity of cup product is by diagonal approximation
due to Alexander and Whitney. Let ∆ : G → G × G and the induced map
∆̃ : PG → PG ⊗ PG given by the fundamental lemma. Then the diagram

PG PG ⊗ PG

PG ⊗ PG PG ⊗ PG ⊗ PG

∆̃

∆̃ ∆̃⊗1
1⊗∆̃

can’t commute but does commute up to homotopy. The explicit construction uses
bar resolution.

15.9 Remark. The graded commutativity of H∗(A,R) can be shown by Eckmann-
Hilton argument. That is, for X a set with two binary operations ◦ and ∗ such
that

1. (a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d),

2. ◦ and ∗ have the same identity e.

Then ◦ = ∗ and is commutative and associative. One may show the cup product is
the Yoneda product on Hochschild cohomology, which is graded commutative.

15.10 Remark. The Yoneda product does not depend on the hopf strucutre.
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16 Lecture 16 (May 12): The Bar Resolution
Scribe: Bashir Abdel-Fattah

Let G be a group, and consider the free abelian group

ZGn := ZG⊗Z · · · ⊗Z ZG︸ ︷︷ ︸
n times

∼= Z(G× · · · ×G︸ ︷︷ ︸
n times

),

which is also a free ZG-module of rank |G|n−1. Then G acts on each factor ZG
and hence on ZGn by left multiplication:

g · (x1 ⊗ · · · ⊗ xn) = (gx1)⊗ · · · ⊗ (gxn).

Let (g1, . . . , gn) denote the element g1 ⊗ · · · ⊗ gn ∈ ZGn. Consider the resolution

· · · −→ ZGn+1

(degree n)
−→ · · · −→ ZG2

(degree 1)
−→ ZG

(degree 0)

ε−→ Z −→ 0,

where ε : ZG→ Z is the augmentation map
∑
nigi 7→

∑
ni, and the differentials

dn : ZGn+1 → ZGn are given by

d
(
(g0, . . . , gn)

)
=

n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn) =
n∑

i=0

(−1)i(g0, . . . , gi−1, gi+1, . . . , gn)

and extending by linearity. Then this gives a free resolution of Z in ZG-mod, where
exactness follows from the fact that the resolution is null-homotopic. In particular,
we can define a chain homotopy

· · · ZG3 ZG2 ZG Z

· · · ZG4 ZG3 ZG2 ZG Z

S2 S1 S0

such that Sd+ dS = id by

Sn

(
(g0, . . . , gn)

)
= (e, g0, . . . , gn)

and extending by linearity. Indeed, we can calculate that

(Sd+ dS)(g0, . . . , gn) = S
( n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn)
)
+ d(e, g0, . . . , gn)

=

n∑
i=0

(−1)i(e, g0, . . . , ĝi, . . . , gn)

+ (g0, . . . , gn)−
n∑

i=0

(−1)i(e, g0, . . . , ĝi, . . . , gn)

= (g0, . . . , gn) = id(g0, . . . , gn).

We can give a basis of the module Bn = ZGn+1 over ZG as follows; first, we define

[g1|g2| · · · |gn] := (e, g1, g1g2, . . . , g1g2 · · · gn) ∈ Bn.
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Then the set
{[g1| · · · |gn] : g1, . . . , gn ∈ G}

gives a basis for Bn. The complex (Bn, dn) is called the Bar resolution (of Z as
a ZG-module). Note that

d
(
[g1| · · · |gn]

)
= d

(
(e, g1, g1g2, . . . , g1 · · · gn)

)
= (g1, g1g2, . . . , g1 · · · gn)− (e, g1g2, g1g2g3, . . .)

+ (e, g1, g1g2g3, . . .)− · · ·+ (−1)n(e, g1, . . . , g1 · · · gn−1)
= g1 · (e, g2, g2g3, . . . , g2 · · · gn)− [g1g2|g3| · · · |gn]

+ [g1|g2g3|g4| · · · |gn]− · · ·+ (−1)n[g1| · · · |gn−1]

= g1 · [g2| · · · |gn] +
n−1∑
i=1

(−1)i[g1| · · · |gigi+1| · · · |gn] + (−1)n[g1| · · · |gn−1].

Define a subcomplex D• ⊂ B• by taking Dn ⊂ Bn to be submodule generated
by the elements [g1| · · · |gn] such that gi = e for at least one index i. Then the
differential dn : Bn → Bn−1 restricts to a map dn : Dn → Dn−1.

Next, define the normalized Bar complex by B• = B•/D•, which still gives
a free resolution of Z because S maps Dn into Dn+1 and hence descends to a
homotopy idB•

∼ 0.

17 The Hochschild Complex

Let · · · → B2 → B1 → B0 → Z be the Bar resolution of a group G, and take
M ∈ RepZG = ZG-mod. We want to calculate Hi(G,M), so we compute

HomG(Bn,M) = HomZG(ZGn+1,M) = HomZ(ZGn,M)

= {functions f : Gn →M (extended linearly)}.

Together with the differentials induced by the differentials in B•, this defines the
Hochschild complex ofM , denoted C•(G,M). The differentials dn : Cn(G,M)→
Cn+1(G,M) are given explictly by taking any f ∈ HomSet(G

n,M) and defining
dnf ∈ HomSet(G

n+1,M) by

(dnf)(g1, . . . , gn+1) = g1 f(g2, . . . , gn+1)

+

n−1∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+ (−1)nf(g1, . . . , gn)
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18 Presentation 2 (May 15): Hochschild (co)homology
Scribe: Soham Ghosh

18.1 Simplicial objects

Let ∆ be the category whose objects are the finite ordered sets [n] = {0 < 1 <
· · · < n} for integers n ≥ 0, and whose morphisms are nondecreasing monotone
functions. If A is any category, a simplicial object A in A is a contravariant
functor from ∆ to A, that is, A : ∆op → A. For simplicity, we write An for A([n]).
Similarly, a cosimplicial object C in A is a covariant functor C : ∆→ A, and we
write An for A([n]). A morphism of simplicial objects is a natural transformation,
and the category SA of all simplicial objects in A is just the functor category
A∆op

.

We want to give a more combinational description of simplicial (and cosimplicial)
objects, and for this we need to study the simplicial category ∆ directly. It is
useful to introduce the face maps εi and degeneracy maps ηi. For each n and i =
0, · · · , n the map εi : [n− 1]→ [n] is the unique injective map in ∆ whose image
misses i and the map ηi : [n+ 1]→ [n] is the unique surjective map in ∆ with two
elements mapping to i. Combinationally, this means that

εi(j) =

{
j if j < i
j + 1 if j ≥ i

}
, ηi(j) =

{
j if j ≤ i
j − 1 if j > i

}
These maps satisfy the following identities:

εjεi = εiεj−1 if i < j

ηjηi = ηiηj+1 if i ≤ j

ηjεi =


εiηj−1 if i < j

identity if i = j or i = j + 1

εi−1ηj if i > j + 1

18.1 Proposition. To give a simplicial object A in A, it is necessary and sufficient
to give a sequence of objects A0, A1, · · · together with face operators ∂i : An → An−1
and degeneracy operators σi : An → An+1(i = 0, 1, · · · , n), which satisfy the
following ”simplicial” identities

∂i∂j = ∂j−1∂i if i < j

σiσj = σj+1σi if i ≤ j

∂iσj =


σj−1∂i if i < j

identity if i = j or i = j + 1

σj∂i−1 if i > j + 1.

Under this correspondence ∂i = A (εi) and σi = A (ηi).
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18.2 Remark. The dual of the above proposition holds, i.e., to give a cosimplicial
object, with ∂i and σi replaced by ∂i and σi respectively.

Let A be a simplicial (or semi-simplicial) object in an abelian category A. The
associated, or unnormalized, chain complex C(A) has Cn = An, and its boundary
morphism d : Cn → Cn−1 is the alternating sum of the face operators ∂i : Cn →
Cn−1 :

d = ∂0 − ∂1 + · · ·+ (−1)n∂n
The (semi-) simplicial identities for ∂i∂j imply that d2 = 0.

18.2 Hochschild Homology and Cohomology of Algebras

We fix a field k. For legibility, we write ⊗ for ⊗k and R⊗n for the n-fold tensor
product R⊗ · · · ⊗R. Let R be a k-algebra and M an R-R bimodule. We obtain a
simplicial k-module M ⊗R⊗∗ with [n] 7→M ⊗R⊗n

(
M ⊗R⊗0 =M

)
by declaring

∂i (m⊗ r1 ⊗ · · · ⊗ rn) =


mr1 ⊗ r2 ⊗ · · · ⊗ rn if i = 0

m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn if 0 < i < n

rnm⊗ r1 ⊗ · · · ⊗ rn−1 if i = n

σi (m⊗ r1 ⊗ · · · ⊗ rn) = m⊗ · · · ⊗ ri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn,

where m ∈M and the ri are elements of R. These formulas are k-multilinear, so
the ∂i and σi are well-defined homomorphisms, and the simplicial identities are
readily verified. (Check this!) The Hochschild homology HH∗(R,M) of R with
coefficients in M is defined to be the k-modules

HHn(R,M) = HnC
(
M ⊗R⊗∗

)
.

Here C (M ⊗R⊗∗) is the associated chain complex with d =
∑

(−1)i∂i :

0←−M ∂0−∂1←− M ⊗R d←−M ⊗R⊗R d←− · · · .

For example, the image of ∂0−∂1 is the k-submodule [M,R] ofM that is generated
by all terms mr − rm(m ∈M, r ∈ R). Hence HH0(R,M) ∼=M/[M,R].

Similarly, we obtain a cosimplicial k-module with [n] 7→ Homk (R
⊗n,M) = {k -

multilinear maps f : Rn →M} (Hom
(
R⊗0,M

)
=M

)
by declaring

(
∂if

)
(r0, · · · , rn) =


r0f (r1, . . . , rn) if i = 0

f (r0, . . . , ri−1ri, . . .) if 0 < i < n

f (r0, . . . , rn−1) rn if i = n(
σif

)
(r1, · · · , rn−1) =f (r1, . . . , ri, 1, ri+1, . . . , rn) .

The Hochschild cohomology HH∗(R,M) of R with coefficients in M is defined to
be the k-modules

HHn(R,M) = HnC
(
Homk

(
R⊗∗,M

))
.

Here C Homk (R
∗,M) is the associated cochain complex

0 −→M
∂0−∂′

−→ Homk(R,M)
d−→ Homk(R⊗R,M)

d−→ · · ·
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For example, it follows immediately that

HH0(R,M) = {m ∈M : rm = mr for all r ∈ R}

The above definitions, originally given by Hochschild in 1945, have the advantage
of being completely natural in R and M . To put them in a homological framework,
it is necessary to consider the enveloping algebra Re = R⊗k R

op of R, where Rop

is the ”opposite ring”- with the same underlying abelian group structure as R, but
multiplication in Rop is the opposite of that in R (the product r · s in Rop is the
same as the product sr in R). The main feature of Rop is this: A right R-module
M is the same thing as a left Rop -module via the product r ·m = mr because
associativity requires that

(r · s) ·m = (sr) ·m = m(sr) = (ms)r = r · (ms) = r · (s ·m).

Similarly a left R-module N is the same thing as a right Rop-module via n · r = rn.
Consequently, the main feature of Re is that an R−R bimodule M is the same
thing as a left Re-module via the product (r⊗s) ·m = rms, or as a right Re-module
via the product m · (r ⊗ s) = smr. (Check this!) This gives a slick way to consider
the category R− mod −R of R−R bimodules as the category of left Re-modules
or as the category of right Re-modules. In particular, the canonical R−R bimodule
structure on R makes R into both a left and right Re-module.

18.3 Proposition. HH∗(R,M) ∼= TorR
e

∗ (M,R) and HH∗(R,M) ∼= Ext∗Re(R,M)
(R is a k-algebra).

Proof. The bar resolution of R (which is itself an R-bimodule) as an R-bimodule
is:

β(R,R) = · · · b′→ R⊗R⊗R⊗R b′→ R⊗R⊗R b′→ R⊗R

here we write ⊗ for ⊗k, β(R,R)n = R⊗n+2 and β(R,R)0 = R⊗R,

b′n (ao ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1,

We can write the isormorphism β(R,R)n := R⊗R⊗n ⊗R ≃ (R⊗Rop)⊗R⊗n =
Re⊗R⊗n of R−R-bimodules for each n ≥ 0; by Re-flatness of such resolution and
by definition of Tor we arrive at (Flat resolution lemma: If F is a flat resolution of
R, then Tor(M,R) = H(M ⊗ F ))

TorR
e

(M,R) = H (M ⊗Re β(R,R))

The isomorphism ρ :M⊗Re βn(R,R)→M⊗Rn, with ρ (m, r0, r1, . . . , rn, rn+1) :=
(rn+1mr0, r1, . . . , rn) for all n ≥ 0 (note that we used the fact that M is an R−R-
bimodule) gives the identification M ⊗Re β(R,R) = C(M ⊗R⋆) (the chain complex
of Hochschild homology).

■

The following theorem tells how Hochschild (co)homology is affected on changing
the algebra R.
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18.4 Theorem. (Change of rings) Let R be a k-algebra and M an R−R bimodule.

1. (Product) If R′ is another k-algebra and M ′ an R′ −R′ bimodule, then

HH∗ (R×R′,M ×M ′) ∼= HH∗(R,M)⊕HH∗ (R′,M ′)
HH∗ (R×R′,M ×M ′) ∼= HH∗(R,M)⊕HH∗ (R′,M ′) .

2. (Flat base change) If R is a commutative k-algebra and R→ T is a ring map
such that T is flat as a (left and right) R-module, then

HH∗ (T, T ⊗R M ⊗R T ) ∼= T ⊗R HH∗(R,M)

3. (Localization) If S is a central multiplicative set in R, then

HH∗
(
S−1R,S−1R

) ∼= HH∗
(
R,S−1R

) ∼= S−1HH∗(R,R)

We can form the graded k-modulesHH⋆(R,M) =
⊕

n≥0HHn(R,M) andHH⋆(R,M) =⊕
n≥0HH

n(R,M).In the case of cohomology, the graded k-module has an algebra
structure, which we will see now.

18.3 Products in Hochschild cohomology

The associated graded k-module of the simplicial k-module Homk(R
⊗⋆,M) given

by C∗(R,M) =
⊕

n≥0 Homk (R
⊗n,M) is the k-module of Hochschild cochains

on R with coefficients in M . In what follows, we will take M = R. In the
special case of M = R with the standard R − R bimodule structure, we will
denote HH⋆(R) := HH⋆(R,R). This can be made into an associative (graded
commutative) k-algebra with the cup product.

18.5 Definition. Let f ∈ Homk (R
⊗m, R) and g ∈ Homk (R

⊗n, R). The cup
product f ⌣ g is the element of Homk

(
R⊗(m+n), R

)
defined by

(f ⌣ g) (a1 ⊗ · · · ⊗ am+n) = (−1)mnf (a1 ⊗ · · · ⊗ am) g (am+1 ⊗ · · · ⊗ am+n)

for all a1, . . . , am+n ∈ R. If m = 0, we interpret this formula to be

(f ⌣ g) (a1 ⊗ · · · ⊗ an) = f(1)g (a1 ⊗ · · · ⊗ an) ,

and similarly if n = 0.

This product induces an associative graded commutative product on the Hochschild
cohomology, which is the cup product: ⌣: HHm(R) × HHn(R) → HHm+n(R).
Consequently Proposition‘18.3 can be upgraded to the k-algebra isomorphism

HH⋆(R) ∼= Ext⋆Re(R,R)

18.3.1 Finite dimensional Hopf algebras

Let A be a finite dimensional k-Hopf algebra, and let M , M ′, N , N ′ be A-modules.
There is a cup product for each i, j ≥ 0,

⌣: ExtiA (M,M ′)× ExtjA (N,N ′) −→ Exti+j
A (M ⊗N,M ′ ⊗N ′) .
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If M = N = M ′ = N = k, the trivial A-module via the counit ϵ : A → k,
and identify k ⊗ k with k, then the cup product makes the graded k-module
H⋆(A, k) = Ext⋆A(k, k) :=

⊕
n≥0 Ext

n
A(k, k) into an associative commutative k-

algebra. This is the Hopf algebra cohomology ring of A over k.

Let Aad be A with the left A-module structure given by the action a.b =
∑
a1bS(a2)

where S is the antipode of A and ∆(a) =
∑
a1 ⊗ a2 in sweedler notation. The

graded k-module H⋆(A,Aad) = Ext⋆A(k,A
ad) has a commutative associated graded

k-algebra structure given by cup product defined above with M = N = k and
M ′ = N ′ = Aad along with the induced map Aad ⊗Aad → Aad from product of A.
The following theorem due to Ginzburg and Kumar , relates this with Hochschild
cohomology.

18.6 Theorem. Let A be a Hopf algebra over k with bijective antipode S. There
is an isomorphism of k-algebras

HH∗(A) ∼= H∗
(
A,Aad

)
18.4 Morita Invariance

18.7 Definition. Two rings R and S are said to be Morita equivalent if there
is an R − S bimodule P and an S − R bimodule Q such that P ⊗S Q ∼= R as
R − R bimodules and Q ⊗R P ∼= S as S − S bimodules. It follows that the
functors ⊗RP : mod − R → mod − S and ⊗SQ : mod − S → mod − R are
inverse equivalences, because for every right R-module M we have (M ⊗R P )⊗ S
Q ∼=M ⊗R (P ⊗S Q) ∼=M and similarly for right S-modules.

18.8 Remark (Facts). A few facts about Morita equivalence

1. Morita equivalence is an equivalence relation.

2. If R and S are Morita equivalent, so are Rop and Sop.

3. If R and S are Morita equivalent, then the bimodule categories R− mod −R
and S − mod − S are equivalent (via Q⊗R −⊗R P ).

18.9 Proposition. The matrix rings Mm(R) are Morita equivalent to R.

18.10 Corollary. The isomorphism R − mod − R → Mm(R) − mod −Mm(R)
associates to an R−R bimodule M the Mm(R)−Mm(R) bimodule Mm(M) of all
m×m matrices with entries in M .

18.11 Lemma. If P and Q define a Morita equivalence between R and S, then
P is a finitely generated projective left R-module. P is also a finitely generated
projective right S-module.

18.12 Lemma. If L is a left R-module and Q is a projective right R-module then
Hi(R,L⊗Q) = 0 for i ̸= 0 and H0(R,L⊗Q) ∼= Q⊗R L.

18.13 Theorem. (R. K. Dennis) Hochschild homology is Morita invariant. That
is, if R and S are Morita equivalent rings and M is an R−R bimodule, then

H∗(R,M) ∼= H∗ (S,Q⊗R M ⊗R P )
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19 Spectral Sequences Presenter: Jackson Morris

Link

https://drive.google.com/drive/folders/1uA1WzAlQjM62smozsqO-387DInHZ_ymb
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20 Homework Problems

1 Homework problem. Show that CH•,R (and CH•R) is an abelian category.
Reference: MacLane “Categories for the working mathematician”.

Proof. (Raymond Guo)

Claim 1) CH•,R is preadditive

Proof. Let A•, B• ∈ CH•,R be a pair of objects. Give CH•,R(A•, B•) by defining
the sum of f, g ∈ CH•,R(A•, B•) pointwise at each module. Under this definition
of the sum, the fact that f +g is a chain map follows by linearity of the differentials
in both chains: For a ∈ Ai, letting d be the differential,

d(f + g)(a) = d(f(a) + g(a)) = df(a) + dg(a) = f(d(a)) + g(d(a)) = (f + g)(d)(a)

where the third equality holds because f and g are both chain maps. Thus
(f + g)d = d(f + g), so f + g is a chain map.

Associativity and commutativity can be checked at each individual module, and
follow easily from the associativity and commutativity of the addition at each
module. Similarly, it can easily be checked at each module that z : A• → B• which
is the zero map at each module is an identity under this addition, and that −f
can be defined at each module by −f(a) = −(f(a)) (which again is easily seen to
be a chain map by linearity of the differentials). Thus this defines a valid abelian
group structure on CH•,R(A•, B•). We also see that for f, f ′ : A• → B• and
g, g′ : B• → C• that

(g+g′)◦(f+f ′)(a) = (g+g′)(f(a)+f ′(a)) = g(f(a))+g(f ′(a))+g′(f(a))+g′(f ′(a))

so composition is bilinear.

■

We then show the requirements for an abelian category in sequence.

Claim 2) CH•,R has a null object

Proof. Let N be the chain complex that is 0 in every degree. Clearly it has a
unique map to each chain complex (the zero map in each degree) and admits a
unique map from each chain complex (the zero map in each degree). This makes it
a null object by definition. ■

Claim 3) CH•,R has binary biproducts

Proof. Let A•, B• be chain complexes with differentials dA and dB respectively.
Define a new chain complex C• by defining the modules by Ci = Ai ⊕Bi and the
differentials by dA ⊕ dB : Ai ⊕Bi → Ai−1 ⊕Bi−1. Since (dA ⊕ dB) ◦ (dA ⊕ dB) =
(dA ◦ dA)⊕ (dB ◦ dB) = 0⊕ 0 = 0, this defines a valid chain complex.

Let iA : A• → C• be inclusion in the A coordinate at each module and pA :
C• → A• be projection to the A coordinate at each module. Define iB and pB
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analogously. Then iA is a chain map because for a ∈ Ai, dCiA(a) = dA⊕dB(a, 0) =
(dAa, 0) = iAdA(a). Also pA is a chain map because for (a, b) ∈ Ci = Ai ⊕ Bi.,
pAdC(a, b) = pA(dAa, dBb) = dAa = dA(pA(a, b)). Entirely symmetric arguments
show that iB and pB are chain maps.

We see that pA◦iA = idA at each module since for a ∈ Ai, pA(iA(a)) = pA(a, 0) = a,
and identically that pB ◦ iB = idB . We also note that for a ∈ Ai, b ∈ Bi,

(iA◦pA+iB◦pB)(a, b) = iA(pA(a, b))+iB(pB(a, b)) = iA(a)+iB(b) = (a, 0)+(0, b) = (a, b)

Thus iA ◦ pA + iB ◦ pB = idC . This completes all the checks that C is a binary
biproduct of A and B.

■

Claim 4) Let f : A• → B• be a chain map. Let K• be the subcomplex of A•
which is the kernel of f : Ai → Bi at each homological degree. Let i : K• → A• be
the inclusion. Then i is a kernel for f . In particular, every arrow in CH•,R has a
kernel.

Proof. For a ∈ Ai, if a ∈ ker f , then f(dA(a)) = dB(f(a)) = dB(0) = 0 because
f is a chain map. This shows that if a ∈ ker f , dA(a) ∈ ker f , so restricting the
differentials on A• gives valid maps into the desired codomains on K•, and K• is a
valid subcomplex.

Since i maps modules in K• to the kernels of f in A•, it’s clear that f ◦ i = 0. Let
s : C• → A• be a map such that s ◦ f = 0. This is to say that f ◦ s : Ci → Bi is
the zero map at each module, which is to say that ims ⊂ ker f at each module.
Then we may restrict the codomain of s to K•, and note that clearly i ◦ s = s.

Also if h : C• → K• is any map such that i ◦ h = s, then certainly h is s (with
restricted codomain) since i is an inclusion at each module. We have thus proven
that i is a kernel for f by definition.

■

Claim 5) Let f : A• → B• be a chain map. Then the quotient map q : B• → C• =
B•/f(A•) is a cokernel for f . In particular, all arrows have cokernels in CH•,R.

Proof. Since Ci = Bi/f(Ai), and q : Bi → Bi/f(Ai) is the canonical quotient,
certainly q ◦ f = 0.

Let D• be another chain complex and q′ : B• → D• be a chain map such that
q′ ◦ f = 0. At each i, q′i ◦ fi(Ai) = 0, so fi(Ai) ⊂ ker q′i. Then q′i : Bi → Di

descends to a unique map hi : Bi/fi(Ai)→ Di satisfying hi ◦ qi = q′i. Thus if there
exists a map h : C• → D• satisfying h ◦ q = q′, it must be defined by hi at each
module, and thus must be unique. It solely remains to show that the hi’s assemble
to form a chain map.

Let b ∈ Bi be arbitrary and let [b] be its class in Ci = Bi/fi(Ai). Then since
hi ◦ qi = q′i,

hi+1(dC [b]) = hi+1([dB(b)]) = hi+1(qi+1(dB(b))) = q′i+1(dB(b)) = dD(q′i(b)) = dD(hi(qi(b))) = dD(hi([b]))
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where the first equality holds by the definition of the differential on C•, and the
fourth holds because q′ is a chain map. The equality chain shows that h is a chain
map, finishing the proof of the claim.

■

Claim 6) Let f : A• → B• be a chain map. If it is injective (at each module), it
is a kernel. If it is surjective (at each module), it is a cokernel.

Proof. Assume first that f is injective. Let q : B• → B•/f(A•) be the canonical
quotient. At each i, q is the quotient Bi → Bi/f(Ai), so the kernel of qi is f(Ai).
Since f is injective, we may identify Ai with f(Ai) ⊂ Bi at each i. Under this
identification, the differential dA must be the restriction of the differential dB since
f is a chain map and is identified with the inclusion. Then under this identification,
the map f : A• → B• is exactly the map of Claim 4 with respect to q, so f is a
kernel for q.

Assume instead that f is surjective. Let j : K• → A• be the construction of
Claim 4 with respect to f . Then at each i, the kernel of fi : Ai → Bi is Ki by
construction. Thus we may identify Bi with Ai/Ki because fi is surjective. Under
this identification, fi is the canonical quotient and the differential dB must be the
descent of dA to the quotient since f is a chain map. Thus under this identification,
f : A• → B• is the construction of Claim 5 with respect to j, so it is a cokernel for
j.

■

Claim 7) Let f : A• → B• be a chain map. If f is monic, it’s injective (at each
module) and thus a kernel, and if it’s epic, it’s surjective (at each module) and
thus a cokernel.

Proof. We prove both claims by contrapositive. Assume that f is not injective.
Let i : K• → A• be the kernel construction from Claim 4. Then f ◦ i = 0. Also
f ◦ 0K = 0 by obvious direct computation, where 0K is the zero map from K• to
A•. Since f is not injective, K•, which is the kernel of f at each module, is not
the chain consisting of all zeroes. Then since i is the inclusion and 0K is the zero
map at each module, i ≠ 0K because there are nonzero modules in K•. Thus we
have f ◦ i = f ◦ 0K but i ̸= 0K , so f is not monic.

Assume instead that f is not surjective. Let q : B• → B•/f(A•) be the quotient
map and let 0B : B• → B/f(A•) be the zero map. Then q ◦f = 0B ◦f = 0. Since q
is not surjective, B•/f(A•) is nonzero at some module. Letting it be the ith module,
qi : Bi → Bi/f(Ai) and 0 : Bi → Bi/f(Ai) differ, so q ̸= 0B but q ◦ f = 0N ◦ f .
Thus f is not epic. This finishes proving both claims by contrapositive.

The claims about being a kernel and cokernel follow immediately from Claim 6. ■

Claim 8) CH•,R is an abelian category.

Proof. Claim 1 shows that CH•,R is preadditive and Claims 2,3,4,5, and 7 show
the added necessary conditions for CH•,R to be abelian. ■
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■

2 Homework problem. Prove that the Hom-functor is left exact, and even more:

1. Show that A→ B → C → 0 is an exact sequence of R-modules if and only if
for any R-module N ,

Hom(C,N)→ Hom(B,N)→ Hom(A,N)→ 0

is exact;

2. Show that 0→ A→ B → C is an exact sequence of R-modules if and only if
for any R-module M

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)

is exact.

For both cases give examples showing that Hom is not exact.

Proof. (JOSEPH ROGGE)

1. (⇒) : Let A
f−→ B

g−→ C → 0 be an exact sequence of R-modules, and let N
be any R-module. Then we have the sequence

0→ Hom(C,N)
g∗

−→ Hom(B,N)
f∗

−→ Hom(A,N).

Fix φ,ψ ∈ Hom(C,N), and suppose g∗(φ) = g∗(ψ). Then for all c ∈
C,φ(g(c)) = ψ(g(c)). Because g is surjective, φ and ψ must agree at every
point of B, hence φ = ψ, so g∗ is injective.

Notice for a ∈ A, we have f∗ ◦ g∗(φ)(a) = φ(g(f(a))) = φ(0) = 0, so
f∗ ◦ g∗ ≡ 0. Namely, im g∗ ⊆ ker f∗. Let σ ∈ Hom(B,N) and suppose
f∗(σ) = 0. Then im f ⊆ kerσ, hence σ factors through B/ im f = B/ ker g
as σ̃. Similarly, g factors through B/ ker g as g̃, an isomorphism with image
C since g is surjective. Define a map τ : C → N by τ := σ̃ ◦ g̃−1. Let π
denote the projection of B onto B/ ker g. By construction,

g∗τ = σ̃ ◦ g̃−1 ◦ g = σ̃ ◦ π = σ.

Thus

0→ Hom(C,N)
g∗

−→ Hom(B,N)
f∗

−→ Hom(A,N)

is exact, as desired.

(⇐) : Now fix a (not necessarily exact) sequence of R-modules A
f−→ B

g−→
C → 0, and suppose

0→ Hom(C,N)
g∗

−→ Hom(B,N)
f∗

−→ Hom(A,N)

is exact for all R-modules N . To show surjectivity of g, take N = coker g, and
let π : C → coker g be projection. Then π ◦ g = 0 = 0 ◦ g, so g∗(π) = g∗(0).
But g∗ is injective by exactness of

0→ Hom(C, coker g)
g∗

−→ Hom(B, coker g)
f∗

−→ Hom(A, coker g)
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so π = 0. Thus g is surjective.

To show exactness at B, first take N = C. Then idC ∈ Hom(C,C) satisfies
0 = f∗ ◦ g∗(idC) = g ◦ f , so im f ⊆ ker g. Now take N = coker f , and
let π : B → coker f be the projection map. By definition f∗π = 0, so by
exactness of

0→ Hom(C, coker f)
g∗

−→ Hom(B, coker f)
f∗

−→ Hom(A, coker f),

there exists h ∈ Hom(C, coker f) such that g∗(h) = π. This map factors
through B/ ker g, so in particular π factors through B/ ker g as well. Since
the projection π factors through B/ ker g, we have ker g = kerπ ⊆ im f .
Hence the sequence

A→ B → C → 0

is exact, as desired.

To see that contravariant Hom is not exact, consider the sequence

0→ Z/3Z ·3−→ Z/9Z π−→ Z/3Z→ 0

where π is projection onto the cokernel of ·3. Applying Hom(−,Z/3Z), we
obtain

0→ Hom(Z/3Z,Z/3Z) (·3)∗−−−→ Hom(Z/9Z,Z/3Z) π∗−→ Hom(Z/3Z,Z/3Z)→ 0.

Because Z/3Z and Z/9Z are cyclic, any homomorphism out of each space
is determined by the image of 1. Therefore, Hom(Z/3Z,Z/3Z) ∼= Z/3Z as 1
can map to 0, 1, or 2. Similarly, Hom(Z/9Z,Z/3Z) ∼= Z/3Z as 1 can map to
0, 1, or 2 (all have order 3, which divides 9). We know (·3)∗ is surjective since
Hom(−,Z/3Z) is left exact, so in fact it is an isomorphism. Hence π∗ = 0,
but Hom(Z/3Z,Z/3Z) ̸= 0, so the sequence

0→ Hom(Z/3Z,Z/3Z) (·3)∗−−−→ Hom(Z/9Z,Z/3Z) π∗−→ Hom(Z/3Z,Z/3Z)→ 0.

is not exact.

2. (⇒) : Let 0→ A
f−→ B

g−→ C be a left exact sequence of R-modules and let N
be any R-module. We want to show

0→ Hom(N,A)
f∗−→ Hom(N,B)

g∗−→ Hom(N,C)

is exact. Fix φ,ψ ∈ Hom(N,A), and suppose f∗(φ) = f∗(ψ). Then for all
n ∈ N ,

f(φ(n)) = f∗(φ)(n) = f∗(ψ)(n) = f(ψ(n)).

By injectivity of f , we have φ(n) = ψ(n), so φ = ψ. Thus f∗ is injective.

Because g ◦ f ∼= 0, for all φ ∈ Hom(N,A), n ∈ N , we have g∗ ◦ f∗(φ)(n) =
g(f(φ(n))) = 0, so im f∗ ⊆ ker g∗. To show the reverse containment, suppose
σ ∈ Hom(N,B) and g∗(σ) = 0. Then imσ ⊆ ker g = im f , hence for all
n ∈ N , there exists a ∈ A such that f(a) = σ(n). By injectivity of f , this
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a is unique. Define a map φ : N → A by τ(n) := f−1(σ(n)). Observe
f−1(σ(0)) = f−1(0) = 0. Moreover,

f(f−1(σ(m))f−1(σ(n))) = σ(m)σ(n) = σ(mn) = f(f−1(σ(mn)),

so by injectivity of f , we have τ(mn) = τ(m)τ(n). Thus τ is indeed a
homomorphism, and by definition f∗(τ) = σ. Thus the sequence

0→ Hom(N,A)
f∗−→ Hom(N,B)

g∗−→ Hom(N,C)

is exact.

(⇐) : Now suppose 0→ A
f−→ B

g−→ C is a (not necessarily exact) sequence of
R-modules, and for all R-modules N , the sequence

0→ Hom(N,A)
f∗−→ Hom(N,B)

g∗−→ Hom(N,C)

is exact. Recall Hom(R,M) is naturally isomorphic to M , and under this
isomorphism, pushforwards φ∗ becomes the original map φ. Taking N = R,

we have an exact sequence naturally isomorphic to 0→ A
f−→ B

g−→ C, so in
particular the original sequence is exact.

To see that covariant Hom is not exact, consider the sequence

0→ Z/3Z ·3−→ Z/9Z π−→ Z/3Z→ 0

where π is projection onto the cokernel of ·3. Applying Hom(Z/3Z,−), we
obtain

0→ Hom(Z/3Z,Z/3Z) (·3)∗−−−→ Hom(Z/3Z,Z/9Z) π∗−→ Hom(Z/3Z,Z/3Z)→ 0.

Because Z/3Z is cyclic, any homomorphism is determined by the image
of 1, so Hom(Z/3Z,Z/3Z) ∼= Z/3Z as 1 can map to 0, 1, or 2. Similarly,
Hom(Z/3Z,Z/9Z) ∼= Z/3Z as 1 can map to 0, 3, or 6. We know (·3)∗ is
injective since Hom(Z/3Z,−) is left exact, so in fact it is an isomorphism.
Hence π∗ = 0, but Hom(Z/3Z,Z/3Z) ̸= 0, so the sequence

0→ Hom(Z/3Z,Z/3Z) (·3)∗−−−→ Hom(Z/3Z,Z/9Z) π∗−→ Hom(Z/3Z,Z/3Z)→ 0.

is not exact.

■

3 Homework problem. Show that an R-module P is projective (satisfies the
lifting property) if and only if the functor HomR(P,−) is exact.

Proof. Take a projective R-module P . This module satisfies the following lifting
property: for every surjection of R-modules B ↠ C and R-module map P → C,
there is a map P → B such that the appropriate diagram commutes:

P

B C.
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This precisely encodes the condition that HomR(P,−) is exact. The functor
HomR(P,−) is always left exact, and the lifting property tells us that for every
map P → C, we can pull back to a map P → B; i.e., this tells us that the induced
map

HomR(P,B)→ HomR(P,C)

is surjective, hence HomR(P,−) is exact. This argument holdsin the opposite
direction. (JACKSON MORRIS) ■

4 Homework problem. Show a null homotopic chain complex is split exact.

Proof. (Ansel Goh) Assume that a chain complex C• is null homotopic. Then,
there exists {sn : Cn → Cn+1} such that sd+ ds = idC . We want to show that for
each n, the short exact sequence

0→ Bn(C) ↪→ Cn ↠ Bn−1 → 0

splits. We will do this by showing that ds gives a split injection, meaning that
if f is the inclusion map from Bn to Cn, then dsf = idBn . Note that s maps
from Cn into Cn+1 and by definition, Bn = im(dn+1) so ds does in fact map from
Cn to Bn. Then, we know that sd+ ds = idC so dsf = idC f − sdf = idBn

−sdf .
Therefore, we simply need to show that sdf = 0. Note that for all x ∈ Bn(C),
x ∈ im(dn+1) ⊂ ker(dn). So, sdf(x) = sd(x) = s(0) = 0. Thus, dsf = idBn

and ds
gives us a split injection. As a result, the short exact sequence

0→ Bn(C) ↪→ Cn ↠ Bn−1 → 0

splits for each n and C• is split exact. ■

5 Homework problem. Complete the proof of Proposition 4.1.

6 Homework problem. Prove Lemma 4.6

Proof. ( =⇒ ) Assume 0 −→ A
α−→ B

β−→ C is exact. Consider

0 −→ Hom(M,A)
α∗−−→ Hom(M,B)

β∗−→ Hom(M,C).

Note α∗(f) = 0 iff α ◦ f = 0 iff f factors through kerα which is 0 by assumption.
It follows f = 0 and kerα∗ = 0. This proves exactness of hom sequence at
Hom(M,A). Also note g ∈ kerβ∗ iff β ◦ g = 0 iff g factors through kerβ = imα.
But α is a monomorphism in some abelian category and hence imα = α. So
g ∈ kerβ∗ iff g factors through α iff g ∈ imα∗. That is imα∗ = kerβ∗. (Recall for
a monomorphism α in some abelian category, by axiom α = ker cokerα and by
definition imα = ker cokerα Weibel p.6.) This proves exactness of hom sequence
at Hom(M,B).

( ⇐= ) Assume 0 −→ Hom(M,A)
α∗−−→ Hom(M,B)

β∗−→ Hom(M,C) for all M.
Consider

0 −→ A
α−→ B

β−→ C.
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Note α ◦ f = 0 iff α∗(f) = 0 iff f = 0 since α∗ is injection. So kerα = 0 (so α
is monomorphism) and the sequence is exact at A. Also imα∗ = kerβ∗ implies

for all M
g−→ B such that β ◦ g = 0, there is a M

f−→ A such that g = α ◦ f. In
commutative diagram, we get

M

0 A B C

f g

0

α β

.

This is exactly that α = kerβ. Since α is monomorphism, α = imα. It follows
imα = kerβ and the sequence is exact at B. (ERIC ZHANG). ■

7 Homework problem. Prove the Yoneda lemma (Proposition 4.2).

Proof. First, note that there are some subtleties regarding the exact statement of
the lemma. We can either proceed by assuming that A is an arbitrary category (in
which case its hom sets need not have the structure of an abelian group) and F is
a functor A → Set, and show that the collection of natural transformations from
hA : A → Set to F : A → Set is isomorphic to F (A) as sets, or we can assume
that A is at least preadditive (so that the hom functors A → Set are actually
functors A → Ab) and that the functor F : A → Ab is additive (so that all
of the maps HomA (X,Y )→ HomAb(F (X),F (Y )) are group homomorphisms),
and show that the collection of natural transformations from hA : A → Ab to
F : A → Ab is isomorphic to F (A) as abelian groups. We will refer to the latter
case as “case 2” below, so that we can make the necessary modifications to the
proof as appropriate.

Then, fixing any object A ∈ A and any contravariant functor F : A op → Set
(or A op → Ab in case 2), we recall that by definition a natural transformation
Φ ∈ Nat(hA,F ) is a collection of functions (homomorphisms of abelian groups in
case 2) Φ(X) : hA(X) = HomA (X,A)→ F (X) for each object X ∈ A such that
the diagram

HomA (Y,A) HomA (X,A)

F (Y ) F (X)

g∗

Φ(Y ) Φ(X)

F(g)

for any objects X,Y ∈ A and any morphism g ∈ HomA (X,Y ). In particular,
using the map Φ(A) : HomA (A,A) → F (A), we can define the element aΦ :=(
Φ(A)

)
(idA) ∈ F (A), in which case for any object X ∈ A any element f ∈

HomA (X,A) the commutativity of the diagram

HomA (A,A) HomA (X,A)

F (A) F (X)

f∗

Φ(Y ) Φ(X)

F(f)
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gives us that (
Φ(X)

)
(f) =

(
Φ(X)

)
(idA ◦f) =

(
Φ(X)

)(
f∗(idA)

)
=

(
F (f)

)(
(Φ(Y ))(idA)

)
=

(
F (f)

)
(aΦ).

That is, this tells us that the map Nat(hA,F )→ F (A) sending Φ 7→ aΦ is injective,
since if we have any natural transformations Φ,Ψ ∈ Nat(hA,F ) such that aΦ = aΨ,
then for every object X ∈ A we have that the maps Φ(X),Ψ(X) : HomA (X,A)→
F (X) are equal because

∀f ∈ HomA (X,A) :
(
Φ(X)

)
(f) =

(
F (f)

)
(aΦ) =

(
F (f)

)
(aΨ) =

(
Ψ(X)

)
(f),

in which case Φ = Ψ. To see that the given map Nat(hA,F ) → F (A) is also
surjective, take any arbitrary element a ∈ F (A), and define a collection of maps
Φ(X) : HomA (X,A)→ F (X) for each object X ∈ A by(

Φ(X)
)
(f) =

(
F (f)

)
(a) for f ∈ HomA (X,A).

Note that in case 2, this is in fact a group homomorphism HomA (X,A)→ F (X),
because for any elements f1, f2 ∈ HomA (X,A) we have that(

Φ(X)
)
(f1 + f2) =

(
F (f1 + f2)

)
(a) =

(
F (f1) + F (f2)

)
(a)

=
(
F (f1)

)
(a) +

(
F (f2)

)
(a) =

(
Φ(X)

)
(f1) +

(
Φ(X)

)
(f2).

Then this prescription in fact defines a natural transformation Φ ∈ Nat(hA,F ),
since for any objects X,Y ∈ A and any morphism g ∈ HomA (X,Y ), we can verify
that the diagram

HomA (Y,A) HomA (X,A)

F (Y ) F (X)

g∗

Φ(Y ) Φ(X)

F(g)

commutes. Indeed, given any arbitrary element f ∈ HomA (Y,A), we know on one
hand that (

Φ(X)
)(
g∗(f)

)
=

(
Φ(X)

)
(f ◦ g) =

(
F (f ◦ g)

)
(a),

and on the other hand we have that(
F (g)

)(
(Φ(Y ))(f)

)
=

(
F (g)

)(
(F (f))(a)

)
=

(
F (g) ◦F (f)

)
(a) =

(
F (f ◦ g)

)
(a)

as desired. Since the given natural transformation Φ satisfies

aΦ =
(
Φ(A)

)
(idA) =

(
F (idA)

)
(a) = idF(A)(a) = a,

we have produced the desired element Φ ∈ Nat(hA,F ) such that aΦ = a for the
arbitrary element a ∈ F (A). Therefore the map Nat(hA,F )→ F (A),Φ 7→ aΦ is
bijective and gives an isomorphism

Nat(hA,F ) ∼= F (A)

as sets. In case 2, we note that Nat(hA,F ) actually has the structure of an abelian
group with respect to object-wise addition. That is, given Φ,Ψ ∈ Nat(hA,F ) we
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define Φ + Ψ by taking the map (Φ + Ψ)(X) : HomA (X,A) → F (X) to be the
pointwise sum of Φ(X),Ψ(X) : HomA (X,A) → F (X) for any object X ∈ A ,
which is indeed a natural transformation because we have that

F (g) ◦ (Φ + Ψ)(Y ) = F (g) ◦
(
Φ(Y ) + Ψ(Y )

)
= F (g) ◦ Φ(Y ) + F (g) ◦Ψ(Y )

= Φ(X) ◦ g∗ +Ψ(X) ◦ g∗ =
(
Φ(X) + Ψ(X)

)
◦ g∗

= (Φ +Ψ)(X) ◦ g∗

for all X,Y ∈ A and g ∈ HomA (X,Y ). We can similarly verify that the identity
element in Nat(hA,F ) is the zero natural transformation given by taking all of
the maps HomA (X,A)→ F (X) to be identically zero, and additive inverses are
defined by setting (−Φ)(X) = −

(
Φ(X)

)
. In this case, we see that the bijection

Nat(hA,F ) → F (A),Φ 7→ aΦ is in fact a group homomorphism, because for all
Φ,Ψ ∈ Nat(hA,F )

a(Φ+Ψ) =
(
(Φ + Ψ)(X)

)
(idA) =

(
Φ(X) + Ψ(X)

)
(idA)

=
(
Φ(X)

)
(idA) +

(
Ψ(X)

)
(idA) = aΦ + aΨ.

(BASHIR ABDEL-FATTAH) ■

8 Homework problem. Prove Proposition 6.6. Let (F ,G) be an adjoint pair of
functors. Then F is right exact, and G is left exact.

Proof. Let (F ,G) be an adjoint pair of functors with F : A → B and G : B → A.
We first show G is left exact. Indeed, let 0 → B1 → B2 → B3 → 0 be a short
exact sequence in B. For every A ∈ A, the functor HomB(F(A),−) is left exact
(Example 4.5), so

0→ HomB(F(A), B1)→ HomB(F(A), B2)→ HomB(F(A), B3)

is an exact sequence. Since (F ,G) is an adjoint pair, we have natural isomorphism
HomB(F(A), Bi)

∼−→ HomA(A,G(Bi) for i = 1, 2, 3, so

0→ HomA(A,G(B1)→ HomA(A,G(B2)→ HomA(A,G(B3))

is also an exact sequence. By Lemma 4.6, since A ∈ A was arbitrary, we obtain
that 0→ G(B1)→ G(B2)→ G(B3) is exact as desired. Therefore, G is a left exact
functor.

To see that F is right exact, we simply observe that (Gop,Fop) is an adjoint pair.
Thus, Fop is a left exact functor by above. Therefore, F is a right exact functor.
(NATHAN LOUIE)

■

9 Homework problem. Compute TorZ1 (Q/Z, N)

Notes/Hints: Tor commutes with direct limits. Q/Z ∼= lim−→Z/nZ
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Proof. As the hint says, Tor commutes with direct limits, and Q/Z ∼= lim−→Z/nZ,
we see that

TorZ1 (Q/Z, N) = lim−→TorZ1 (Z/nZ, N) = lim−→ nN = Tor(N)

where Tor(N) denotes the torsion subgroup of N . ■

10 Homework problem. By Example 10.1, Ext1Z(Z/p,Z/p) ≃ Z/p, so there
should be p isomorphism classes of length-1 extensions (i.e. short exact sequences)
of the form

0→ Z/p ↪→ E ↠ Z/p→ 0

for some abelian group E. Find them all. (Hint: there is one split exact sequence
that corresponds to 0 ∈ Z/p, while another choice of E will give you the p− 1 short
exact sequences that do not split.)

Proof. Note that we must have that |E| = p2, and we know that any group of
order p2 for p a prime is isomorphic to either Z/p⊕ Z/p or to Z/p2.

We claim that the desired p isomorphism classes of length-1 extensions are repre-
sented by the short exact sequences

0→ Z/p ι
↪−→ Z/p⊕ Z/p π−→→ Z/p→ 0

and

0→ Z/p
p
↪−→ Z/p2 i−→→ Z/p→ 0

for 1 ≤ i ≤ p− 1.

The split extension above is an extension of Z/p by Z/p, and it is the only possible
extension with E = Z/p⊕ Z/p, so we fix 1 ≤ i ≤ p− 1 and show that

0→ Z/p
p
↪−→ Z/p2 i−→→ Z/p→ 0

is really an extension of Z/p by Z/p.

Note that this is in fact the case since the map Z/p
p
↪−→ Z/p2 is injective, and the

map Z/p2 i−→→ Z/p is surjective since i is non-zero and thus has a non-zero element
of Z/p in its image, which generates all of Z/p.

For E = Z/p2, the left homomorphism must be injective, so it must send 1 ∈ Z/p
to an element of order p (otherwise, we get either the trivial homomorphism or
all of Z/p2 and hence not an injective map). We choose this map to be p without
loss of generality, since the image of p is the same, the unique subgroup in Z/p2 of
order p, as that of 2p, 3p, . . . , (p− 1)p.

The right map we take to be one of i = 1, . . . , p− 1 without loss of generality, since
these yield a surjection onto Z/p with the subgroup of Z/p2 of order p as kernel,
and 1 yields the same map as p+ 1, 2 the same as p+ 2, etc.

For 1 ≤ i ̸= j ≤ p− 1, note that

0→ Z/p
p
↪−→ Z/p2 i−→→ Z/p→ 0
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and

0→ Z/p
p
↪−→ Z/p2 j−→→ Z/p→ 0

give inequivalent extensions of Z/p by Z/p, since the right square in

0 Z/p Z/p2 Z/p 0

0 Z/p Z/p2 Z/p 0

p

p

i

j

= =f

cannot commute, since f(1) :≡ n mod p2 ≡ ij−1 mod p, and the left square
commutes, and we have that pm ≡ npm mod p for all m ∈ Z/p. So n ≡ 1 mod p,
and thus n ≡ ij−1 mod p ≡ 1 mod p, and so i ≡ j mod p, a contradiction to
our choice of 1 ≤ i ̸= j ≤ p− 1.

(WILLIAM DUDAROV) ■

11 Homework problem. Given an abelian group A, compute Ext1Z(Z/n,A).
(This should be similar to computing Tor, except the arrows are reversed.)

Proof. (Gavin Pettigrew). Recall that Ext1Z(Z/n,A) may be computed using either
an injective resolution of A or a projective resolution of Z/n. We will use the latter
method. Letting φ : Z→ Z be the map φ(x) = nx, observe that

0→ Z φ−→ Z ↠ Z/n→ 0

is a projective resolution of Z/n. Applying the contravariant functor HomZ(−, A),
we obtain a cochain complex

0← HomZ(Z, A)
φ∗

←−− HomZ(Z, A),

where φ∗ is the map φ∗(f) = f ◦ φ = n · f . But since HomZ(Z, A) is naturally
isomorphic to A, this complex is isomorphic to

0← A← A,

where the map A→ A is still multiplication by n. Therefore, the first cohomology
group is

Ext1Z(Z/n,A) = A/nA.

■

12 Homework problem. Check that the restricted enveloping algebra U [p](gln)
for gln is Frobenius, by constructing the form using Poincaré-Birkhoff-Witt.

13 Homework problem. Write the normalized Bar resolution B• for G = Z/p,
even Z/2, and compare to the periodic resolution.
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