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Atiyah-Swan conjecture

D. Quillen, “The spectrum of an equivariant cohomology ring I,
II, ” Ann. Math. 94 (1971)

G - finite group, k = Falg
p .

What is the Krull dimension of H∗(G , k)?

Conjecture (Atiyah, Swan): Krull dim H∗(G , k) = p - rank of G

Definition

p − rank = maxE⊂G rkE

where E ' Z/p × Z/p × · · · × Z/p runs over all elementary
abelian p-subgroups of G .
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Finite generation

Back up...

Theorem

The cohomology ring H∗(G , k) is a graded commutative
k-algebra.

H•(G , k) =

{
H∗(G , k), if p = 2,

Hev(G , k) if p > 2.

Theorem (Venkov (1959), Evans (1961))

The cohomology ring H•(G , k) of a finite group G is a finitely
generated k-algebra.
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Extensions

Theorem (Maschke)

Let M be a representation of a finite group G over C. Let
N ⊂ M be a G-invariant subspace. Then N splits off as a
direct summand: M = N ⊕ N ′, N ′ is G-invarient subspace.

Corollary. Every representation over C is completely reducible
- a direct sum of simple modules.

Modular representation theory: char k | #G .
Representations are not completely reducible. Lots of non-split
extensions (exact sequences of G -modules).

N
� � // M // // M/N



Cohomology
and Support

Varieties

Julia Pevtsova

Quillen
Stratification
theorem

Extensions

Support variety

D8-example

Varieties for
modules

“Related
topics”

Rank varieties:
a different
point of view

Cyclic group

Cyclic shifted
subgroups

π-points

Modules of
Constant
Jordan type

Extensions

Theorem (Maschke)

Let M be a representation of a finite group G over C. Let
N ⊂ M be a G-invariant subspace. Then N splits off as a
direct summand: M = N ⊕ N ′, N ′ is G-invarient subspace.

Corollary. Every representation over C is completely reducible
- a direct sum of simple modules.

Modular representation theory: char k | #G .
Representations are not completely reducible. Lots of non-split
extensions (exact sequences of G -modules).

N
� � // M // // M/N



Cohomology
and Support

Varieties

Julia Pevtsova

Quillen
Stratification
theorem

Extensions

Support variety

D8-example

Varieties for
modules

“Related
topics”

Rank varieties:
a different
point of view

Cyclic group

Cyclic shifted
subgroups

π-points

Modules of
Constant
Jordan type

Extensions

Theorem (Maschke)

Let M be a representation of a finite group G over C. Let
N ⊂ M be a G-invariant subspace. Then N splits off as a
direct summand: M = N ⊕ N ′, N ′ is G-invarient subspace.

Corollary. Every representation over C is completely reducible
- a direct sum of simple modules.

Modular representation theory: char k | #G .
Representations are not completely reducible. Lots of non-split
extensions (exact sequences of G -modules).

N
� � // M // // M/N



Cohomology
and Support

Varieties

Julia Pevtsova

Quillen
Stratification
theorem

Extensions

Support variety

D8-example

Varieties for
modules

“Related
topics”

Rank varieties:
a different
point of view

Cyclic group

Cyclic shifted
subgroups

π-points

Modules of
Constant
Jordan type

and the structure of H∗(G , k)

Cohomology H∗(G , k) oo // extensions [k → · · · → k].

Hi (G , k) = ExtiG (k, k), additive group for every n.

Yoneda Product: ExtiG (k, k)× ExtjG (k, k)→ Exti+j
G (k, k).

[k → · · · → Mj → k] ◦ [k → N1 → · · · → k]

k → · · · → Mj → k = k → N1 → · · · → k

k → · · · → Mj → N1 → · · · → k

H∗(G , k) = Ext∗G (k, k) =
⊕
i≥0

ExtiG (k, k)

Remark. This gives the same cohomology ring as the one
defined in Dave Benson’s talk two weeks ago (in terms of
projective resolutions and cup product).
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Example [Cohomology of elementary abelian p-groups].

E = (Z/p)×r , rkE = r

H∗(E , k) = k[x1, . . . , xr ]⊗ Λ∗(y1, . . . , yn)︸ ︷︷ ︸

nilpotents

H∗(E , k)red = k[x1, . . . , xr ]
Spec k[x1, . . . , xr ] ' Ar

(x1 − λ1, . . . , xr − λr )︸ ︷︷ ︸
max ideal

↔ (λ1, . . . λr )︸ ︷︷ ︸
point on Ar

.

Definition (Support variety)

|G | = Spec H•(G , k),

the support variety of G (set of prime ideals with Zariski
topology).

Example. |E | ' Ar , dim |E | = r .
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Quillen stratification theorem

Roughly: |G | is “determined” by |E | ⊂ |G |, where E ⊂ G runs
over all elementary abelian p-subgroups of G .

E ⊂ G
 H•(G , k)→ H•(E , k)

 resG ,E : |E | → |G | finite map

resG ,E |E | ' |E |/WE , where WE = NG (E )/E

Theorem (Quillen (weak form))

|G | =
⋃

E⊂G

resG ,E |E |
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Consequences

Theorem (Quillen (weak form))

|G | =
⋃

E⊂G

resG ,E |E |

Corollary (Atiyah-Swan conjecture)

Krull dim H•(G, k) = dim Spec H•(G, k) = dim |G| =
maxE⊂G dim |E| = maxE⊂G dim ArkE = maxE⊂G rkE

Corollary

Irreducible components of |G | ↔ conjugacy classes of
maximal elementary abelian subgroups
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Example: D8

D8 = 〈σ, τ |σ4 = τ2 = 1, τστ = σ−1〉

〈τ, σ2τ〉 = (Z/2)2 〈στ, σ3τ〉 = (Z/2)2

〈σ2〉 = Z/2

hhQQQQQQQQQQQQQ

66lllllllllllll

|D8| A2 A2

A1

hhPPPPPPPPPPPPP

88ppppppppppppp

|D8| ' A2 ×A1 A2

Can check the answer because ...
H∗(D8, k) = k[x1, x2, z ]/(x1x2)
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Varieties for modules

Alperin – Evens, Carlson, Avrunin – Scott.

A G -module M // a subvariety |G |M ⊂ |G |.

Ext∗G (M,M) is a ring (operations as for Ext∗G (k, k)).

H•(G , k) = Ext•G (k, k)
⊗M // Ext∗G (M,M)

k → · · · → k 7→ k ⊗M // · · · // k ⊗M

IM = Ker{H•(G , k)→ Ext∗G (M,M)}

Definition

The support variety of a G -module M

|G |M = Z (IM) ⊂ |G |,

where Z (IM) = 〈℘ | IM ⊂ ℘〉
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Properties

|G |M⊕N = |G |M ∪ |G |N .

If 0→ M1 → M2 → M3 → 0 is a short exact sequence,
then |G |Mi

⊂ |G |Mi+1
∪ |G |Mi+2

.

|G |ΩM = |G |M .

(Tensor product property) |G |M⊗N = |G |M ∩ |G |N
(Restriction) Let H ⊂ G , M - a G -module. Then
resG ,H(|H|M) = |G |M .

dim |G |M = complexity of M ( = rate of growth of the
minimal projective resolution).

|G |Lζ
= 〈ζ〉 - a hypersurface in |G | defined by ζ = 0,

ζ ∈ H•(G , k).
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Froms groups to algebras

Group algebra kG
basis as k-vector space: {eg}g∈G

multiplication: eg · eh = egh

kG is a finite-dimensional Hopf algebra
(has a coproduct: kG → kG ⊗ kG , eg 7→ eg ⊗ eg )

Representations of G
∼←→ kG -modules

Cohomology of G
∼←→ cohomology of kG
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Other structures

Other algebraic structures that correspond to fin. dim-l Hopf
algebras (and have theories of support vareities)

Lie algebras in char p

Finite group schemes (e.g., inifinitesimal subgroups of
algebraic groups, such as GLn)

Small quantum groups

Lie superalgebras (actually, no Hopf algebra here )

Theorem (Friedlander-Suslin, (1997))

Let A be a finite-dimensional co-commutative Hopf algebra
over a field k of positive characteristic. Then the cohomology
algebra H•(A, k) is finitely generated.
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p-Lie algebras

Let G be an algebraic group defined over k, g = Lie(G ).

g ↔ u(g),

the restricted enveloping algebra of g .

This is a Hopf algebra,
which is a finite dimensional quotient of the universal
enveloping algebra of g .
Assume p = char k is “big enough” (p > h).

Theorem (Friedlander-Parshall, Andersen-Jantzen (1983-84))

|g | = N (g),

where N (g) is the nullcone of g, the variety of all nilpotent
elements of g .

Very different from finite groups! In particular, N is irreducible.
Support varieties for modules ↔ theory of nilpotent orbits.
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Representation theory of the cyclic group Z/p

Representation theory of a finite group is usually “wild” - we
cannot classify indecomposable modules.

Exception: Z/p = 〈σ〉.

kZ/p =
k[σ]

(σp − 1)
=

k[σ]

(σ − 1)p
=

k[t]

tp
,

Complete description of representation theory:

k - simple module
k, k[t]/t2, . . . , k[t]/tp – p indecomposable modules.

Z/p–module M ↔ Jordan canonical form of σ as an operator
on M ↔ partition (1a12a2 . . . pap) ` dim M

Write additively:
k[t]/tp - module M ←→ Jordan type a1[1] + a2[2] + · · ·+ ap[p]

Free k[t]/tp-module =
⊕
a

k[t]/tp ←→ Jordan type a[p].
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Cyclic Shifted Subgroups

E = (Z/p)×r . Choose generators g1, . . . , gr . Let
t1 = g1 − 1, . . . , tr = gr − 1.

kE = k[g1, . . . , gr ]/(gp
i − 1) = k[t1, . . . , tr ]/(tp

i ).

Definition

Let α = (α1, . . . , αr ) ∈ Ar . A shifted cyclic subgroup < α > of
E corresponding to α is a cyclic subgroup of kE generated by a
p-unipotent element α1t1 + · · ·+ αr tr + 1.

Cyclic shifted sub-s are parametrized by the affine space An
k .

VE = variety of cyclic shifted subgroups.

There is a natural isomorphism VE ' |E |.
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Definition (Carlson)

VE (M) = {α = (α1, . . . , αr ) ∈ Ar | 〈α1t1 + . . . + αr tr + 1〉

does not act freely on M}

- the rank variety of M.

Theorem (Avrunin-Scott, (1982))

Let M be a finite-dimensional kE-module. The isomorphism
VE ' |E | restricts to

VE (M) ' |E |M .

Cyclic shifted subgroup is NOT a subgroup of E . It is a
subgroup of kE .
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Cyclic shifted subgroup 〈α〉 = 〈α1t1 + . . . + αr tr + 1〉 of E
determines a map of algebras

k[t]/tp t 7→α1t1+...+αr tr // kE

Definition (π-point)

A π-point α of a finite group G is a map of algebras

k[t]/tp

##G
G

G
G

G
α //_______ kG

kA

>>||||||||

which factors through some abelian p-subgroup A ⊂ G .

The map kA→ kG is induced by a subgroup, the other two are
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From π-points to cohomology

A π-point k[t]/tp → kG  

H•(G , k)→ H•(k[t]/tp, k) ' k[x ]  

A1 =

Spec k[x ]→ Spec H•(G , k) = |G |

Projectivize (factor out the scalar action of k∗):

pt ∈ Proj |G|.

Some π - points 7→ same point on Proj H•(G , k)

Example. E = Z/p × Z/p, kE = k[t1, t2]/(tp
1 , tp

2 ).
t 7→ α1t1 + α2t2 t 7→ α1t1 + α2t2 + t2

1

Equivalence relation on π–points Solely in terms of local
α ∼ β properties of representations
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Π-space

Definition (Π-space)

Π(G ) =
〈π − points α : k[t]/tp → kG 〉

∼

This is a topological space.

Definition

Let M be a G -module.

Π(G )M =< [α] : k[t]/tp → kG : α∗M is not free >

α∗M is a k[t]/tp – module where t acts via α(t) ∈ kG .

M - finite dimensional 7→ Π(G )M are precisely the closed sets
of Π(G ).
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Carlson’s conjecture holds for Π-spaces:

Theorem (Friedlander-P.)

Π(G ) ' Proj |G |

Π(G )M︸ ︷︷ ︸
local prop

' Proj |G |M︸ ︷︷ ︸
cohomology

Theorem (Detection of projectivity)

M is projective ⇔ Π(G )M = ∅ ⇔ M is free when
restricted to any subalgebra k[t]/tp → kG.

Projectivity can be detected locally on π-points.

Can replace kG by any finite dimensional co-commutative
Hopf algebra
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Modules of Constant Jordan type

M is projective ⇔ at every π-point α : k[t]/tp → kG the
Jordan type of M is a[p].

In particular, the Jordan type is the same at every π-point.

Are there other modules with this property?

Definition

M is a module of constant Jordan type if the Jordan type of M
at every π-point α : k[t]/tp → kG is the same (the operator
α(t) on M has the same Jordan canonical form for all α).

A very interesting and elusive class of modules!
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Realizibility

If M is of constant Jordan type, then M is determined by
this unique type.

Which Jordan types can occur?

Some constructible examples:

indecomposable modules of type n[1] + m[p] for any n
(Auslander-Reiten theory),
n[p − 1] + m[p],
[1] + n[2]

Quite limited!

Conjecture. [Carlson-Friedlander-P.] Let p > 3, dim |G | > 1.
The type [2] + n[p] does not occur.

Theorem (D. Benson, March 2008)

Let G be a finite group, dim |G | > 1. There does not exist a
G-module of constant Jordan type [a] + n[p] for 2 ≤ a ≤ p− 2.
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G-module of constant Jordan type [a] + n[p] for 2 ≤ a ≤ p− 2.
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