
NORTHWESTERN UNIVERSITY

Infinite dimensional Modules for

Infinitesimal Group Schemes

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mathematics

By

Julia Pevtsova

EVANSTON, ILLINOIS

May 2002



c© Copyright by Julia Pevtsova 2002

All Rights Reserved

ii



Abstract

Infinite dimensional Modules for

Infinitesimal Group Schemes

Julia Pevtsova

We prove that the projectivity of an arbitrary (possibly infinite dimensional)

module for an infinitesimal group scheme can be detected by restrictions to one-

parameter subgroups. Building upon this result, we introduce the support cone of

such a module, extending the construction of support variety for a finite dimensional

module, and show that such support cones satisfy most of the familiar properties

of support varieties. We also verify that our representation-theoretic definition of

support cones admits an interpretation in terms of Rickard idempotent modules

associated to thick subcategories of the stable category of finite dimensional modules.

As a necessary step towards the proof of the projectivity detection theorem we

investigate properties of the induction functor in the context of infinitesimal group

schemes.
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CHAPTER 1

Background

In this chapter we recall some necessary definitions and set some notation which

will be used throughout. Since the material of this section is widely known, we will

try to get through it quickly and painlessly (skipping all the details), most of which

can be found in [Jan].

1.1. Group schemes and representations

Let k be an algebraically closed field of characteristic p > 0. An affine scheme X

over k is a representable k-functor (represented by a k-algebra R) from the category

of commutative k-algebras to the category of sets:

X(A) = Homk−alg(R,A)

for any commutative k-algebra A. The algebra R is the coordinate algebra of the

affine scheme X. It will be denoted k[X]. The simplest example of an affine scheme

is an affine line A1, which, as a k-functor, is given as:

A1(A) = A.

The coordinate algebra of A1 is k[A1] = k[x], polynomial ring of one variable over

k.
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Recall the Yoneda lemma: for any two affine schemes X and Y we have

Homk−alg(k[Y ], k[X]) = MorSh/k(X, Y ).

Applying the Yoneda lemma to Y = A1, we get

k[X] = MorSh/k(X,A1).

An affine k-group scheme G is a representable functor from the category of

commutative k-algebras to the category of groups. If the coordinate algebra k[G] is

finitely generated over k, then G is an algebraic group scheme. In this case algebra

k[G] has an extra structure of a Hopf algebra, i.e. there is a coproduct map

∆ : k[G] → k[G]⊗ k[G],

a counit map

ε : k[G] → k

and a coinverse map

s : k[G] → k[G],

which are homomorphisms of k-algebras and make standard diagrams commutative.

In particular, the coproduct is coassociative. When the coproduct is also cocommu-

ative, the Hopf algebra is called cocommutative. The augmentation ideal of a Hopf

algebra is the kernel of the counit map.

Next we mention two basic examples of algebraic group schemes and their coor-

dinate algebras, which will be referred to throughout the text.
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- General linear group. As a k-group functor, GLn is defined as

GLn(A) = {n× n matrices with entries in A and non-zero determinant},

where multiplication is the usual matrix multiplication. Furthermore,

k[GLn] = k[Tij, 1/det(Tij)]1≤i,j≤n,

and coalgebra structure is given as follows:

∆(Tij) =
k=n∑

k=1

Tik ⊗ Tkj, ε(Tij) = δij.

- Additive group Ga. Again, as a functor,

Ga(A) = A+,

the additive group of the ring A. The coordinate algebra k[Ga] = k[T ], a polynomial

ring of 1 variable, and coproduct is given by T → 1⊗ T + T ⊗ 1.

An algebraic group is a reduced algebraic group scheme, where we say that an

affine scheme is reduced if its coordinate algebra is reduced. Although we would be

taking a functorial point of view on algebraic groups, we would like to mention here

that they are affine algebraic groups in the “standard” sense: the set of k-rational

points of an algebraic group is an affine variety over k with group operations given

by regular functions.

Over an algebraically closed field k, a reduced affine group scheme G is auto-

matically smooth, hence k[G] is a regular ring (cf. [Har]). Any connected algebraic

group can be embedded into some GLn for an appropriate n.
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Representations. We will briefly describe three different (equivalent) ways of

giving a G-representation.

A module (or a representation) of an affine algebraic group scheme G is a k-

vector space M such that the corresponding affine scheme Ma (Ma(A) = M ⊗k A)

is endowed with an action of G:

G(A)×M ⊗ A → M ⊗ A,

and the action is functorial on A. For each A we thereby get a group homomorphism

G(A) → AutA(M ⊗ A) which leads to a group scheme homomorphism

G → GL(M).

If we take A = k[G], then the identity homomorphism idk[G] ∈ G(k[G]) =

Homk−alg(k[G], k[G]) acts on M ⊗ k[G] and we define

∆M : M → M ⊗ k[G]

via ∆M(m) = idk[G](m ⊗ 1) ∈ M ⊗ k[G]. The map ∆M gives a comodule structure

on M . One has an equivalence of categories

{G - modules} ←→ {k[G] - comodules}.

The action of G on k[G] defined via

g ◦ f(•) def
= f(g−1•),
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g ∈ G, f ∈ k[G], yields the left regular representation of G. By setting

g ◦ f(•) def
= f(•g)

one gets the right regular representation. As k[G]-comodules, the right regular rep-

resentation is given by the coproduct map ∆ : k[G] → k[G] ⊗ k[G], whereas the

comodule structure for the left regular representation is given by the the formula

T12◦(s⊗id)◦∆ : k[G] → k[G]⊗k[G], where s is the coinverse map and T12 permutes

the factors in the tensor product.

Frobenius kernels. An affine algebraic group scheme is called finite if its coordi-

nate algebra is finite-dimensional over the ground field k. In this case the linear dual

to the coordinate algebra is again a finite-dimensional Hopf algebra. We will use #

for the linear dual. For a finite k-group scheme G we can extend the equivalence of

categories mentioned above:

{G - modules} ←→ {k[G] - comodules} ←→ {k[G]# - modules}.

Finite group scheme is called infinitesimal is its coordinate algebra is local. This

is equivalent to the augmentation ideal being nilpotent. The most important (for

us) example of an infinitesimal group scheme is provided by Frobenius kernels which

we define below.

Let f : k → k be the Frobenius automorphism of the field k: f(a) = ap. Let M

be any k-module. Define M (1), the Frobenius twist of M , as

M (1) = M ⊗f k,
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i.e. λm ⊗ 1 = m ⊗ λp for λ ∈ k. Another way of saying this is that M coincides

with M (1) as an abelian group and λ ∈ k acts on M (1) as λ−p acts on M .

For a commutative k-algebra A we get a map of k-algebras:

F ∗ : A(1) → A; a⊗ λ → λap

Note that if A is a Hopf algebra, then so is A(1), and the map above is a map of

Hopf algebras.

Let G be an affine k-group scheme. Then k[G](1) defines a new k-group scheme,

which we denote G(1). The map F ∗ : k[G](1) → k[G] induces a map of group schemes,

which we call Frobenius map:

F : G → G(1).

G(1) is the first Frobenius twist of G. By iterating F we get higher Frobenius twists

G(r). Next, we define the r-th Frobenius kernel of a k-group scheme G, denoted G(r),

to be the scheme-theoretic kernel of the map F r : G → G(r).

If the group scheme G is defined over the prime field Fp, then there is a natural

isomorphism G(1) ∼= G. Indeed, in this case k[G] = Fp[G] ⊗Fp k. Thus, k[G](1) =

k[G] ⊗f k ' Fp[G] ⊗Fp k ⊗f k ' Fp[G] ⊗Fp k = k[G]. Therefore, for group schemes

defined over Fp, Frobenius map can be written as

F : G → G.
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If M is a representation of G, then M (1) has a natural structure of a G-module

obtained via twisting the structure on M with the Frobenius map:

G → GL(M)
F→ GL(M)(1) = GL(M (1)).

One can also apply Frobenius twist to the comodule map on M to obtain the same

G-structure on M (1):

M (1) ∆(1)→ (M ⊗ k[G])(1) = M (1) ⊗ k[G](1)
id

M(1)⊗F ∗→ M (1) ⊗ k[G]

In short, the category of G - modules is closed under taking Frobenius twists.

- GLn(r). The Frobenius map on GLn is given by taking each matrix entry to

the p-th power. Precisely,

F r(A) : GLn(A) → GLn(A) : F r((aij)) = (apr

ij ).

As a k-group functor, the r-th Frobenius kernel of GLn can be described as

GLn,(r)(A) = KerF r(A) = {(aij) ∈ Mn(A) : apr

ij = δij}.

We also describe the coordinate algebra of GLn,(r):

k[GLn,(r)] = k[Tij]/(T
pr

ij − δij), 1 ≤ i, j ≤ n.

- Ga(r). F : Ga → Ga is simply given by F (a) = ap. We immediately get

Ga(r)(A) = {a ∈ A : apr

= 0},

k[Ga(r)] = k[T ]/T pr

.
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We will fix notations for the dual algebra k[Ga(r)]
# which will be used later in the

text. Let v0, . . . vpr−1 be the basis of k[Ga(r)]
# = (k[T ]/T pr

)# dual to the standard

basis of k[T ]/T pr
. Denote vpi by ui. Then

k[Ga(r)]
# = k[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1).

Let G be an infinitesimal finite k-group scheme and I be the maximal ideal of

k[G]. Since G is infinitesimal, I is nilpotent. The height of G, denoted htG, is the

minimal integer r suth that for any x ∈ I, xpr
= 0. Clearly, if G is an algebraic

group, then htG(r) = r. Any infinitesimal group scheme of height r can be embedded

into the r-th Frobenius kernel of GLn for an appropriate n.

A 1-parameter subgroup of height r of an infinitesimal group scheme G is a

homomorphism Ga(r) → G. We say that a 1-parameter subgroup is injective if this

homomorphism is a closed embedding of group schemes.

1.2. Overview of projectivity detection results

Since the key result of this work concerns detection of projectivity of modules,

we will briefly state the known results in this direction.

As always, historically (chronologically) finite groups come first. An elementary

abelian p-group is a group isomorphic to a direct product of Z/p.

Theorem 1.2.1. (Chouinard [C], 1976). Let G be a finite group, and M be a kG-

module. Then M is projective if and only if it is projective as a kE - module for

every elementary abelian p-subgroup E ⊂ G.
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Let us make a note here that the theorem of Chouinard does not require module

M to be finite dimensional.

Once we reduce to the case of elementary abelian p-group, we can apply “Dade’s

lemma” to reduce to even smaller objects. We define these smaller objects first.

Let Er = Z/pn be an elementary abelian p-group, and denote generators by

σ1, . . . , σn. A cyclic shifted subgroup of kE is a subalgebra generated by a p-unipotent

element 1 + α1(σ1 − 1) + · · · + αn(σn − 1), where α1, . . . αn ∈ k. Note that this

subalgebra is isomorphic to kZ/p but does not necessarily come from a subgroup of

E - here is the name “cyclic shifted subgroup”.

Theorem 1.2.2. (Dade [D], 1978). Let E be an elementary abelian p-group and

M be a finite dimensional kE-module. M is projective if and only if it is projective

upon restriction to every non-trivial cyclic shifted subgroup of kE.

Dade’s lemma was generalized to infinite dimensional modules in the work of

Benson, Carlson and Rickard. In particular, they observed that in its original form

Dade’s lemma does not hold in the infinite dimensional case: one can produce a

non-projective module ( which will be done in the context of infinitesimal group

schemes in Section 4.4), whose restrictions to all cyclic shifted subgroups defined

over k are projective.

Theorem 1.2.3. (Benson, Carlson, Rickard [BCR2], 1997). Let E be an elemen-

tary abelian p-group, and M be any kE-module. M is projective if and only if the
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restriction of M ⊗K to every non-trivial cyclic shifted subgroup of KE is projective

for any field extension K/k.

So, in order to detect projectivity of an infinite dimensional module, we have to

pass to field extensions. This fact has an easy geometric interpretation which will

be explained in the next section, once we introduce the notion of support varieties.

Representation theories of Er and Ga(r) are equivalent thanks to the fact that

kEr
∼= k[Ga(r)]

#. In order to apply the “generalized Dade’s lemma” of Benson-

Carlson-Rickard to the representations of Ga(r), we reformulate the theorem in a

more suitable for our purposes way.

Theorem 1.2.4. Let A = k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1) and M be an A-module.

M is projective if and only if for any field extension K/k and any element z =

c0u0 + · · ·+ cr−1ur−1, where c0, . . . , cr−1 ∈ K, the restriction of M ⊗K to K[z]/(zp)

is projective.

In representation theory of restricted Lie algebras (which is equivalent to the

representation theory of a suitable infinitesimal group scheme of height 1), the pro-

jectivity detection result is “one-step” and follows from works of Jantzen [Jan1] and

Friedlander and Parshall:

Theorem 1.2.5. (Friedlander-Parshall, [FP3], 1986) Let g be a finite dimensional

restricted Lie algebra and let M be a finite-dimensional restricted g-module. Then
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M is projective if and only if M is projective as a restricted < X >-module for every

non-zero p-nilpotent element X in g.

Next, we turn to the case of an arbitrary infinitesimal group scheme. In [SFB1],

[SFB2] Suslin, Friedlander and Bendel develop a theory of support varieties for

infinitesimal group schemes. As an application, they generalize the theorem of

Friedlnader-Parshall and prove the following projectivity detection result:

Theorem 1.2.6. (Suslin-Friedlander-Bendel, [SFB2], 1997). Let G be an infini-

tesimal group scheme over an algerbaically closed field k. Let further M be a finite

dimensional G-module. Then M is projective if and only if for any subgroup scheme

H ⊂ G isomorphic to Ga(r) the restriction of M to H is a projective H-module.

Bendel in [B1] further generalized this result to infinite dimensional modules

for unipotent infinitesimal group schemes. A finite group scheme is called unipotent

if it admits a filtration with quotients isomorphic to Ga(1). Or, equivalently, if it

can be embedded in a Frobenius kernel of the algebraic group of upper triangular

matrices ( = unipotent radical of GLn). Note that once we turn to the case of

infinite dimensional modules, we have to take into account field extensions of k.

Theorem 1.2.7. (Bendel, [B1], 2001) Let G be an infinitesimal unipotent group

scheme over k. Let further M be any G-module. Then M is projective if and only if

for any field extension K/k and any subgroup scheme H ⊗K ⊂ G⊗K isomorphic

to Ga(r) ⊗K, the restriction of M ⊗K to H ⊗K is a projective H ⊗K-module.
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As a closing point of this discussion we can now state the main theorem of

chapter two (Theorem 2.3.4), which proves projectivity detection property for any

infinitesimal group scheme:

Theorem. Let G be an infinitesimal group scheme over k. Let further M be any

G-module. Then M is projective if and only if for any field extension K/k and any

subgroup scheme H⊗K ⊂ G⊗K isomorphic to Ga(r)⊗K, the restriction of M⊗K

to H ⊗K is a projective H ⊗K-module.

1.3. Support varieties

Since one of the goals of this work is to generalize the notion of support variety to

infinite dimensional modules, we briefly go over their definition and basic properties

in the finite dimensional case. The following general constructions can be done both

for finite groups (as it originally happened) and infinitesimal group schemes. Let G

be either of them until specified further. A good reference for finite groups is [Ben].

A literature for infinitesimal group schemes is more scattered: see [FP1], [FP2],

[FP3], [Jan1] for the case of a restricted Lie algebra ( = infinitesimal group scheme

of height one), and [SFB1], [SFB2] [B2] for the general case.

The even part of the cohomology algebra of G, Hev(G, k) is commutative Noe-

therian algebra over k ([E] for finite groups, [FS] for arbitrary finite group schemes).

Thus, one can consider an affine scheme which is the prime ideal spectrum of this

algebra. For p = 2 we look at the entire cohomology ring which is commutative in
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this case. To simplify notation assume that p > 2 for the rest of the section. For

p = 2 everything is the same once we substitute H∗(G, k) for Hev(G, k).

Define the cohomological support scheme of G to be Spec Hev(G, k). The co-

homological support variety of G is the variety of k-rational points of this scheme,

or, equivalenty, the maximal ideal spectrum of Hev(G, k). Denote this variety by

|G|. For a finite dimensional G - module M , let the cohomological support variety of

M , |G|M , be the closed homogenious subvariety of |G| defined by the graded ideal

AnnHev(G,k)(Ext∗G(M,M)), i.e.

|G|M = Vk(AnnHev(G,k)(Ext∗G(M, M)).

Of course, |G|M is the variety of k-rational points of the closed conical affine sub-

scheme of Spec Hev(G, k) defined by the same ideal.

Support varieties capture substantial amount of information about G-modules.

Here is a list of their basic properties:

(a) |G|M = 0 if and only if M is a projective G-module.

(b) Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of G-modules. Then

for any permutation (ijk) of (123) we have |G|Mi
⊂ |G|Mj

∪ |G|Mk
.

A special case of this property is |G|M⊕N = |G|M ∩ |G|N .

(c) “Tensor product theorem”. |G|M⊗N = |G|M ∩ |G|N for any two G-modules

M and N .

The most elusive property if we take the cohomological approach described above

is the tensor product theorem.
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?Naturality?

In both finite group and infinitesimal group cases the solution to the problem

comes from developing a different, representation-theoretic approach.

For finite groups one defines rank variety of a module for an elementary abelian

p-group ([?]). Let E be an elementary abelian p-group of rank r, and let J be the

augmentation ideal of kE. The rank variety of E, VE, is the affine r-space J/J2. The

rank variety of a finite-dimensional E-module M is a closed homogeneous subset of

VE defined by

VE(M) = {v̄ ∈ VE : M ↓1+v is not free} ∪ 0.

(one shows this is weel-defined). With this definition the tensor product theorem is

straightforward. For instance, the proof of Theorem 3.3.2 immediately applies here.

By a thereom of Avrunin and Scott, VE(M) ' |E|M . The tensor product theorem

for an arbitrary finite group G now follows from the weak version of the Quillen’s

stratification theorem:

|G|M =
⋃

E⊂Gab

(resG
E)∗(|E|M).

cohom defn, list of properties. rank varieties. nullcone.



CHAPTER 2

Local Projectivity Test

2.1. Some algebraic lemmas

Recall that a finite dimensional Artin algebra A is called Frobenius if it admits

a non-degenerate bilinear form and is called quasi-Frobenius if it is self-injective,

i.e. A ∼= A# as an A-module. By a theorem of Faith-Walker ([FW]), an algebra is

quasi-Frobenius if and only if any projective A-module is injective and vice versa.

By a result of Larson and Sweedler [LS], any finite dimensional cocommutative

Hopf algebra is Frobenius. Since we only need to know that projectives coincide with

injectives, it is sufficient for our purposes to prove that for a finite group scheme H,

k[H]# is quasi-Frobenius. We will follow [Jan] in the proof of the following

Lemma 2.1.1. Let H be a finite group scheme. Then k[H]# is a quasi-Frobenius

algebra.

Proof. Let n = dimk k[H]. By applying tensor identity (cf. Section 2.2), we get

the following isomorphism:

k[H]⊗ k[H]# = IndH
1 (k)⊗ k[H]# = IndH

1 (k ⊗ ResH
1 (k[H]#)) = IndH

1 (kn) = k[H]n.

On the other hand, k[H] ⊗ k[H]# is self-injective, so we conclude that k[H]n ∼=
(k[H]#)n. By Krull-Shmidt theorem, k[H] ∼= k[H]#.

16
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The lemma implies that in the category of k[H]# - modules projectives and

injectives are the same. Since this category is equivalent to the category of H-

modules, we conclude that projective H-modules coincide with injective ones.

Lemma 2.1.2. Let A be a quasi-Frobenius algebra and M be an A-module. If M

admits a finite injective resolution, then M is injective.

Proof. Assume that M is not injective and let

M −→ I0 −→ I1 −→ . . . −→ In −→ 0

be an injective resolution of M of minimal length. By our assumption n > 0.

Since A is quasi-Frobenius and In is injective, it is also projective. Then the last

map δn : In−1 → In in the injective resolution above splits and In−1 = Jn−1
⊕

In

for some injective module Jn−1. Then

M −→ I0 −→ I1 −→ . . . −→ In−2 −→ Jn−1 −→ 0

is an injective resolution of M of smaller length than the original one. Thus, M is

injective.

We shall denote by Ω−nM the −n-th Heller operator of M . Precisely, if M →
I0 → I1 → . . . is the minimal injective resolution of M , then Ω−nM = coker(In−2 →
In−1) for n > 1 and Ω−1M = coker(M → I0).
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Lemma 2.1.3. Let A be a quasi-Frobenius algebra and M be an A-module. If

there exists an integer n0 such that ExtnA(S,M) = 0 for all n > n0 and any simple

A-module S, then M is projective.

Proof. Let

M → I0 → I1 → · · · → In → . . .

be the minimal injective resolution of M. Let further S be a simple A-module. Mini-

mality of I• implies that the complex HomA(S, I•) has zero differentials. Indeed, sup-

pose δ : In−1 → In induces a non-zero differential δ̄ : Hom(S, In−1) → Hom(S, In).

Then there is an embedding S ↪→ In−1 such that composing with δ on the right,

we still get am embedding S ↪→ In−1δIn. If I(S) denotes the injective hull of S,

then embeddings of S into In−1 and In extend to embeddings of I(S). Since pro-

jective=injective, I(S) splits off as a direct summand of both In−1, on which δ is

an identity. This contradicts the minimality of I•. Thus, differentials are zero as

claimed and Extn
A(S, M) = HomA(S, In) = HomA(S, Ω−nM), where the last equality

holds because In is the injective hull of Ω−nM). Our assumption now implies that

HomA(S, Ω−nM) = 0 for all n > n0. Therefore, Ω−nM = 0 for all n > n0 (since any

non-trivial module has a simple submodule). This implies that the minimal injective

resolution of M is finite. The statement now follows from Lemma 2.1.2.

We will need the following algebraic lemma to finish the proof of Proposi-

tion 2.2.2.
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Lemma 2.1.4. Let A be a regular ring of finite Krull dimension d and J• be a

cochain complex of flat A-modules such that J•⊗A k(µ) is acyclic in positive degrees

for any prime ideal µ ⊂ A. Then Hn(J•) = 0 for all n > d.

Proof. We proceed by induction on d = dim A.

First note that J• has zero cohomology in degrees greater than m if and only if

J•µ has zero cohomology in degrees greater than m for all prime ideals µ. Indeed,

the only if part follows from the exactness of localization. To prove the opposite

direction assume that J• is not acyclic. Let [α] ∈ Hn(J•) be a non-zero cycle. Since

J• is a complex of A-modules, Hn(J•) also has a structure of an A-module. Let µ

be a prime ideal in A containing AnnA[α]. Then [α]µ = [αµ] is a non-zero cycle in

Hn(J•)µ = Hn(J•µ) or, equivalently, Hn(J•µ) 6= 0.

In view of the preceding remark it suffices to prove the assertion of the lemma

for local rings.

Let d = 1.

In this case A is a discrete valuation ring. Denote by π a generator of the maximal

ideal of A, and by K the fraction field of A. Consider the short exact sequence

0 → A → A → A/πA → 0

and tensor it with J• over A. Since J• is flat we get an exact sequence of cochain

complexes:

0 → J• → J• → J•/πJ• → 0
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and, therefore, a long exact sequence in cohomology:

· · · → Hn−1(J•/πJ•) → Hn(J•) → Hn(J•) → Hn(J•/πJ•) → . . . .

Note that J•/πJ• = J• ⊗A A/πA is acyclic in degrees higher than 0 by the as-

sumption of the lemma. Therefore, multiplication by π induces an isomorphism on

Hn(J•) for all n > 1, which implies that the action of A on Hn(J•) extends to an

action of K = Frac(A). Thus, Hn(J•) = Hn(J•)⊗A K = Hn(J• ⊗A K) = 0.

d− 1 ⇒ d

Denote by M the maximal ideal of A. Let t ∈ M but t 6∈ M2. To apply the

induction hypothesis to J•/tJ• as a module over A/tA we have to check:

(i) J•/tJ• is flat.

Let M → N be an injective map of A/tA modules. Then M ⊗A/tA Jn/tJn ∼=
M ⊗A/tA Jn⊗A A/tA ∼= M ⊗A Jn and in the same way N ⊗A/tA Jn/tJn ∼= N ⊗A Jn.

To complete the argument we notice that M ×A Jn → N ⊗A Jn is injective since Jn

is flat.

(ii) “local acyclicity”.

Let µ ∈ Spec (A/tA). Denote by π∗ the map induced on spectra Spec A/tA →
Spec A and let ν = π∗(µ). We have

J•/tJ• ⊗A/tA k(µ) = J• ⊗A A/tA⊗A/tA k(µ) = J• ⊗A k(ν)

which implies that J•/tJ• is acyclic in positive degrees.

(iii) dim A/tA ≤ dim A− 1.
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This allows us to conclude that Hn(J•/tJ•) = 0 for n > d − 1. Combining this

observation with a long exact sequence in cohomology:

· · · → Hn−1(J•/tJ•) → Hn(J•) → Hn(J•) → Hn(J•/tJ•) → . . . ,

we get that multiplication by t induces an isomorphism on Hn(J•) for n > d.

Let S = {t ∈ A : multiplication by t induces an isomorphism on Hn(J•) for n >

d}. Then S is a multiplicative system in A which contains M\M2. Therefore,

dim S−1A < dim A and we can apply induction hypothesis to S−1A.

Let [a] ∈ Hn(J•), n > d. S−1[a] ∈ S−1Hn(J•) = Hn(S−1J•) = 0. So there

exists t ∈ S such that t[a] = 0. Since multiplication by any element in S induces an

isomorphism on cohomology we conclude that [a] = 0 and, therefore, Hn(J•) = 0

for n > d

2.2. Induction

We start by recalling the definition and basic properties of induction. Details

can be found in [Jan].

Let G be any affine group scheme and H be a subgroup scheme of G. We define

the functor

IndG
H : {H - mod} → {G - mod}

by setting IndG
H(M) = (k[G] ⊗M)H , where the action of H is as given on M and

via the right regular representation on k[G], and the structure of G-module is given

via the left regular action of G on k[G].
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Definition 2.2.1. Let H be an infinitesimal group scheme and M be an H-module.

We will say that M is locally projective if for any field extension K/k and any

injective 1-parameter subgroup Ga(r) ⊗ K → H ⊗ K, the restriction of M ⊗ K to

Ga(r) ⊗K is projective.

Proposition 2.2.2. Let G be a connected smooth algebraic group and G(r) be the

r-th Frobenius kernel of G. Let further M be a locally projective G(r)-module. Then

IndG
G(r)

(M) is locally projective as a G(r)-module.

Proof. We shall follow closely the proof of Theorem 4.1 of [SFB2].

Fix a Borel subgroup B ⊂ G and let T and U be the corresponding torus and

unipotent subgroup respectively. Denote by B(r) and G(r) the r-th Frobenius twists

of corresponding groups. Furthermore, let B(r) = B ∩ G(r), U(r) = U ∩ G(r), and

T(r) = T ∩G(r).

Let H ⊗ K → G(r) ⊗ K be an injective one-parameter subgroup. We need to

show that IndG
G(r)

(M)⊗K restricted to H ⊗K is projective. By extending scalars

from k to K and by taking further the image of H in G we can assume that H is a

k-subgroup scheme of G.

All invariants throughout the proof will be taken with respect to the action via

the left regular representation of various subgroup schemes of G on k[G] unless

specified otherwise. To distinguish between right and left regular representations

we shall use subscripts “l” or “r”. Normality of G(r) in G implies that k[G]
G(r)
r =

k[G]
G(r)

l , so in this particular case we will just write k[G]G(r) .
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Let M → I• be the standard G(r)-injective resolution of M : Im = M ⊗
k[G(r)]

⊗m+1, where G(r) acts on Im via the right regular representation on the last

tensor factor. Then IndG
G(r)

(M) → IndG
G(r)

(I•) is an injective resolution of IndG
G(r)

(M)

as an H-module. (IndG
G(r)

is exact since G(r) is a finite group scheme (cf. [Jan,

I.5.13b)]) and ResG
H takes injectives to injectives because any injective G-module is

a direct summand of k[G]⊗ <trivial G-module> and injectivity of k[G] ↓H itself is

equivalent to the exactness of IndG
H (cf. [Jan, I.4.12]).)

If we set J• = (IndG
G(r)

(I•))H , then H∗(J•) = H∗(H, IndG
G(r)

(M)). Note that J•

has a natural structure of a complex of k[G(r)] = k[G/G(r)]-modules. Indeed, for

any map M1 ⊗M2 → M3 of G(r)-modules, we get a G-module map IndG
G(r)

(M1) ⊗
IndG

G(r)
(M2) → IndG

G(r)
(M3). By taking M1 = k and M2 = M3 = In, we get a natural

structure of an IndG
G(r)

k = k[G/G(r)]-module on IndG
G(r)

In compatible with the action

of G. Since k[G/G(r)] ∼= k[G]G(r) is H-invariant, J• is a k[G/G(r)]-subcomplex of

IndG
G(r)

(I•).

We point out next that all Jn are flat k[G/G(r)]-modules. Indeed,

Jn = (IndG
G(r)

(In))H = IndG
G(r)

(Q⊗k[G(r)]))
H = Q⊗(IndG

G(r)
(k[G(r)]))

H ∼= Q⊗k[G]Hl

where Q = M ⊗ k[G(r)]
⊗n is a vector space with trivial G(r)-action. We have an

extension of rings k[G/G(r)] ∼= k[G(r)\G] → k[H\G] → k[G] where the composition

and the second extension are faithfully flat since they correspond to a quotient by a

finite group scheme acting freely (cf. [Jan, I.5.7]). Consequently, the first extension
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k[G]
G(r)

l
∼= k[G(r)\G] → k[H\G] ∼= k[G]Hl is flat, which implies that Jn = Q⊗k[G]H

is flat over k[G]G(r) .

For any point g ∈ G we are going to establish the following isomorphism:

J• ⊗
k[G]

G(r) k(g) ∼= (I• ⊗ k(g))g−1(H⊗k(g))g. (∗)

First note that there is a natural isomorphism (Ind
G⊗k(g)
G(r)⊗k(g)(N ⊗ k(g)))H⊗k(g) ∼=

(IndG
G(r)

(N))H ⊗ k(g). Furthermore, J• ⊗ k(g)⊗k(g)[G/G(r)] k(g) ∼= J• ⊗k[G/G(r)] k(g).

Thus, it suffices to prove (∗) for a k-rational point g and then proceed by extension

of scalars.

For a k-rational point g ∈ G denote by g its image under the projection G →
G/G(r). For any G(r)-module N we have a natural homomorphism

εg : IndG
G(r)

(N) → N

given by evaluation at g, i.e. εg(n⊗f) = f(g)n. The restriction of εg to (IndG
G(r)

(N))H

lands in N g−1Hg. As it was noted above, (IndG
G(r)

(N))H has a natural structure of a

k[G]G(r)- module. If we make N into a k[G]G(r)-module via evaluation at g, then εg

becomes a homomorphism of k[G]G(r)-modules. Tensoring the left hand side with k

over k[G]G(r) , we get a natural map of k-vector spaces:

εg : (IndG
G(r)

(N))H ⊗
k[G]

G(r) k → N g−1Hg.

When N = k[G(r)] this is an isomorphism as one sees from the following Cartesian

square:
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g−1Hg\G(r)

x→gx

²²

// Spec k

g

²²

H\G // G(r)\G

Hence, εg is an isomorphism for any injective G(r)-module. This implies the

isomorphism of complexes (∗).
Computing cohomology of both sides of (∗) we get that H∗(J• ⊗

k[G]
G(r) k(g)) =

H∗(g−1(H⊗k(g))g, M⊗k(g)) and the latter is trivial for ∗ > 0, since g−1(H⊗k(g))g

is again a one-parameter subgroup of G(r) ⊗ k(g) and M is locally projective. We

conclude that J• ⊗
k[G]

G(r) k(g) is acyclic in positive degrees for any point g ∈ G.

We have J•⊗
k[G]

G(r) k(g) = J•⊗
k[G]

G(r) k(g)⊗k(g)k(g) and the extension of scalars

k(g) → k(g) gives an injective map on cohomology. Therefore, J• ⊗
k[G]

G(r) k(g) is

also acyclic in positive degrees. Since the projection G → G/G(r) is a bijection on

points, we get that for any point x ∈ G/G(r) the complex J•⊗
k[G]

G(r) k(x) is acyclic

in positive degrees. Since G(r) is a closed normal subgroup of G, G/G(r) is a smooth

affine scheme and hence k[G/G(r)] is a regular ring. Lemma 2.1.4 now implies that

J• is acyclic in all sufficiently large degrees. Hence, H∗(H, IndG
G(r)

(M)) = 0 in

all sufficiently large degrees. Since k is the only simple H-module, we get that

IndG
G(r)

(M) is injective by applying Lemma 2.1.3.
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We will announce the following proposition here, postponing its proof until the

end of section 3.4. The strategy of the proof will be the following: using Propo-

sition 2.2.2, we prove Local Criterion for Projectivity for Frobenius kernels (The-

orem 2.3.2). Building upon this result, we develop the theory of support varieties

for Frobenius kernels in chapter 3. We then employ it to prove Proposition 2.2.3,

derive Local Criterion for Projectivity for an arbitrary infinitesimal group scheme

and finally claim that the entire chapter 3 goes through for any infinitesimal group

scheme, since the only thing we really use there is Local Criterion for Projectivity.

Proposition 2.2.3. Let G be an infinitesimal group scheme and M be a locally

projective G-module. Let G ↪→ G′ be a closed embedding of G into some Frobenius

kernel of the same height as G. Then IndG′
G (M) is locally projective as a G′-module.

Remark 2.2.4. In fact, we will prove the following statement: if M ⊗ K is

projective restricted to an injective 1-parameter subgroup H⊗K ↪→ G⊗K for some

field extension K/k, then the restriction of IndG′
G (M) to H ⊗K is also projective.

2.3. Suslin-Friedlander-Bendel spectral sequence

To prove Theorem 2.3.4 we are going to exploit one more construction introduced

in [SFB2, §3] which we briefly discuss below.

Let H be an affine k-group scheme, H ′ be a closed subgroup scheme, and X

be the quotient scheme H/H ′ with the quotient map p : H → X. There is an

equivalence of categories between the category of quasi-coherent sheaves M on X
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and the category of rational H ′-modules M provided with the structure of a left k[H]-

module such that the multiplication k[H]⊗M → M is a homomorphism of rational

H ′-modules, where H ′ acts on k[H] via the right regular representation, given by

the functor M 7→ Γ(H, p∗M). Moreover, the sheaf cohomology H∗
Zar(X,M) is

naturally isomorphic to the rational cohomology H∗(H ′, Γ(H, p∗M)).

Let Gr be an infinitesimal group scheme which is a normal closed subgroup

of a smooth connected algebraic group G. Fix a Borel subgroup B and unpotent

radical U in G. Let further Br = Gr ∩ B, G′ = G/Gr and B′ = B/Br. Since

B′ is a Borel subgroup of G′, G′/B′ is a projective variety. We are going to show

that cohomology groups Hn(Br, IndG
Gr

(M)) belong to the aforementioned category

of rational B′-modules with the compatible structure of a left k[G′]-module. Once

this is done, we can associate to Hn(Br, IndG
Gr

(M)) a quasi-coherent sheaf on X,

denoted Hq(Br,M), with the property

Hp(B/Br, H
q(Br, IndG

Gr
(M))) ∼= Hp(X,Hq(Br, M)). (∗∗)

Lemma 2.3.1. For any Gr-module M and any n ≥ 0, the cohomology group

Hn(Br, IndG
Gr

(M)) has the natural structures of a rational B/Br-module and a left

k[G/Gr]-module such that the action of k[G/Gr] on M is a B/Br-homomorphism.

Proof. Let M → I• be the standard Gr-injective resolution of M . The cohomology

groups Hn(Br, IndG
Gr

(M)) can be computed via the complex J• = (IndG
Gr

(I•))Br ,
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which has the natural structures of B/Br and k[G/Gr]-modules. The action of

k[G/Gr] is given explicitly via

k[G/Gr]⊗ (IndG
Gr

(I•))Br → (IndG
Gr

(I•))Br

φ⊗ (f ⊗ s) −→ φf ⊗ s

which one easily checks to be a homomorphism of B/Br-modules, where B/Br acts

on k[G/Gr] via the left regular representation (since this is how the standard G-

action on IndG
Gr

(N) = (k[G]⊗N)Gr is defined).

To get the compatibility with B/Br acting on k[G/Gr] via the right regular rep-

resentation we have to change the structure of k[G/Gr] on J• via the automorphism

of G/Gr: G/Gr
σ→ G/Gr, σ(x) = x−1.

Next, we prove Local Criterion for Projectivity. We treat the case of a Frobenius

kernel first.

Theorem 2.3.2. Let G(r) be the r-th Frobenius kernel of a smooth connected alge-

braic group G and M be a G(r)-module such that for any field extension K/k and

any injective one-parameter subgroup Ga(s)⊗K → G(r)⊗K the restriction of M⊗K

to Ga(s) ⊗K is projective. Then M is projective as a G(r)-module.

Proof. Let X be the quotient scheme G(r)/B(r). Consider the Hochschild-Serre

spectral sequence

Ep,q
2 = Hp(B(r), Hq(B(r), IndG

G(r)
(M))) =⇒ Hp+q(B, IndG

G(r)
(M)).
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By Theorem 3.6 in [SFB2], which is an extension to not necessarily reductive alge-

braic groups of a fundamental theorem of [CPSvdK],

Hn(B, IndG
G(r)

(M)) ∼= Hn(G, IndG
G(r)

(M)),

and by Shapiro’s lemma

Hn(G, IndG
G(r)

(M)) ∼= Hn(G(r),M).

Since M is locally projective, Proposition 2.2.2 implies that IndG
G(r)

(M) is also locally

projective as a G(r)-module and thus as a U(r)-module. Now, by a theorem of Bendel

(Theorem 1.2.7), which applies to unipotent infinitesimal group schemes, IndG
G(r)

(M)

is projective as a U(r)-module. We have a short exact sequence of group schemes:

1 → U(r) → B(r) → T(r) → 1, where T(r) = T ∩G(r) is diagonalizable and hence co-

homologically trivial. Applying the Serre spectral sequence, we get an isomorphism:

H∗(B(r), IndG
G(r)

(M)) ∼= H∗(U(r), IndG
G(r)

(M))T(r) and the latter is 0 in positive de-

grees, since IndG
G(r)

(M) is a projective U(r)-module. Thus, Hq(B(r), IndG
G(r)

(M)) = 0

for q > 0, so that the Hochschild-Serre spectral sequence above collapses and we get

an isomorphism

Hp(B(r), H0(B(r), IndG
G(r)

(M))) ∼= Hp(G(r),M).

Combining this with the isomorphism (∗∗) one gets:

Hp(X,H0(Br,M)) ∼= Hp(G(r),M).
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Let x = dim X. Since X is a projective variety, its cohomology groups with

coefficients in any quasi-coherent sheaf are trivial in degrees higher than x (cf. [Har,

III.2.7]). Thus, Hp(G(r),M) = 0 for p > x. Applying the same argument to M⊗N#,

we get Extp
G(r)

(N,M) = 0 for all p > x and all finite-dimensional modules N . By

Lemma 2.1.3, M is projective.

Remark 2.3.3. Let G be a semi-simple simply connected algebraic group. As-

sume all the hypotheses of Corollary 2.3.2 and also assume that the G(r)-structure

on M comes from a structure of a rational G-module. In this case we do not need

to consider induced modules and can significantly simplify the proof of our local

criterion for projectivity. Indeed, for a rational G-module M , we have the following

spectral sequence ([AJ]):

Hp(G(r)/B(r),L(Hq(B(r),M))) =⇒ Hp+q(G(r),M),

where L(Hq(B(r),M)) is the sheaf on G(r)/B(r) associated to Hq(Br,M) considered

as a B(r)-module (cf. [Jan, I.5]).

Local projectivity of M implies that M is a projective B(r)-module which makes

the spectral sequence collapse. Thus, we get an isomorphism:

Hp(G(r)/B(r),L(H0(B(r),M))) ∼= Hp(G(r),M).

Since G(r)/B(r) is a projective variety, Hp(G(r)/B(r),L(H0(B(r), M))) = 0 for

p > dim G(r)/B(r). Thus, Hp(G(r),M) = 0 for p > dim G(r)/B(r). Applying the
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same argument to M ⊗ S#, we get that

Extp
G(r)

(S,M) = 0

for any simple G-module and any p > dim G(r)/B(r). Due to the assumptions

made on G we know that all simple G(r)-modules come from restricting simple G-

modules corresponding to restricted dominant weights (cf. [Jan, II.3]). Thus, we

have vanishing of Ext-groups in all sufficiently large degrees for all simple G(r)-

modules. By Lemma 2.1.3, M is projective as a G(r)-module.

Finally, we derive Local Projectivity Test for any infinitesimal group scheme.

Theorem 2.3.4. Let G be an infinitesimal k-group scheme of height r. Let M be

a G-module such that for any field extension K/k and any injective one-parameter

subgroup Ga(s) ⊗K → G ⊗K the restriction of M ⊗K to Ga(s) ⊗K is projective.

Then M is projective as a G-module.

Proof. Embed G into some Frobenius kernel G(r). In view of the Prop. 2.2.3, lo-

cal projectivity of G-module M implies local projectvity of G(r)-module Ind
G(r)

G (M).

The Local Criterion for Projectivity for Frobenius kernels enables us to conclude that

Ind
G(r)

G (M) is projective as a G(r)-module. Therefore, H∗(G,M) = H∗(G(r), Ind
G(r)

G (M)) =

0 for ∗ > 0. Applying the same argument to all modules of the form M ⊗S# for all

simple G-modules S, we get that

Ext∗G(S,M) = 0 for∗ > 0
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Hence, M is projective.



CHAPTER 3

Support Cones for Infinitesimal Group Schemes

In this chapter G will denote an arbitrary infinitesimal k-group scheme of height

r. We assume that p > 2 simply for notational convenience: everything still holds

for p = 2 if we change Hev(G, k) to H∗(G, k).

3.1. Definition of Support Cones

The purpose of this section is to give a suitable definition of a “support” of an

infinite dimensional G-module. To start, we recall some necessary constructions and

results from [SFB1], [SFB2].

Define the functor

V (G) : (comm k-alg) → (sets)

by setting

V (G)(A) = HomGr/A(Ga(r) ⊗k A,G⊗k A).

This functor is representable by an affine scheme of finite type over k, which we

will still denote V (G). Indeed, the following statement, which is Theorem 1.5 in

[SFB1], holds:

Proposition 3.1.1. The functor V (G) is represented by an affine scheme of finite

type over k. Moreover, G → V (G) is a covariant functor from the category of affine

33
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group schemes over k of height ≤ r to the category of affine schemes of finite type

over k, which takes closed embeddings to closed embeddings.

We shall specify further the correspondence between one-parameter subgroups

of G (i.e. group scheme homomorphisms Ga(r) ⊗K → G⊗K) and points of V (G).

Let s ∈ Vr(G) be a point. This point defines a canonical k(s)-point of V (G) and

hence an associated group scheme homomorphism over k(s):

νs : Ga(r) ⊗k k(s) → G⊗k k(s).

Note that if K/k is a field extension and ν : Ga(r)⊗k K → G⊗k K is a group scheme

homomorphism, then this data defines a point s ∈ Vr(G) and a field embedding

k(s) ↪→ K such that ν is obtained from νs by extending scalars from k(s) to K.

As it will be discussed in more details in the next section, the affine scheme V (G)

is a cone, or, which amounts to the same thing, its coordinate algebra is graded

connected. We have that V (G) is homeomorphic to the cohomological support of

G, Spec Hev(G, k), which we denoted by |G|. Again, we quote a result from [SFB2].

Theorem 3.1.2. There is a natural homomorphism of graded commutative k-algebras

ψ : Hev(G, k) → k[V (G)]

which induces a finite universal homeomorphism of schemes

Ψ : V (G) → |G|
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([SFB1, 1.14]; [SFB2, 5.2]). Furthermore, restricted to V (G)M , the “representation-

theoretic” support variety of a finite dimensional G-module M , defined as in 3.1.3

below, Ψ is a homeomorphism onto |G|M ([SFB2, 6.8]).

Looking for a good definition of a “support” for an infinite dimensional module

it seems natural to establish the following criteria:

1. Restricted to the finite dimensional case our new construction should give the

standard support variety for finite dimensional modules.

2. Standard properties of support varieties for finite dimensional modules should

remain valid as properties of “supports” for all G-modules.

The natural extension of the cohomological definition of support variety does

not satisfy the “tensor product property” for infinite dimensional modules. We

will give an example of this failure as we look at Rickard idempotent modules in

the next chapter. On the other hand, our extension of the representation-theoretic

construction is not necessarily a closed subset of V (G). This particular feature,

though, shows that, extended to infinite dimensional modules, V (G)M gives a “finer”

invariant than |G|M . As it will be shown later (cf. Corollary 4.3.6), any conical

subset of V (G) can be realized as V (G)M for some G-module M .

Getting more sets as support cones also emphasizes the difference between finite

and infinite dimensional case. The category of all modules is “richer” with respect

to this invariant than the category of finite dimensional modules.

For these reasons we choose as our definition of “support” of an arbitrary G-

module module M the representation-theoretic construction appearing below.
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We recall a notation introduced in the Chapter . Let v0, . . . vpr−1 be the basis of

k[Ga(r)]
# = (k[T ]/T pr

)# dual to the standard basis of k[T ]/T pr
. Denote vpi by ui.

Then the algebra k[Ga(r)]
# coincides with k[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1). We will give

a special name ε to the map k[Ga(1)] = k[u]/up ↪→ k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1) =

k[Ga(r)]
# defined by sending u → ur−1. This is just a map of algebras, not a map

of group schemes.

Definition 3.1.3. Let G be an infinitesimal k-group scheme of height r and let M

be a rational G-module. The support cone of M is the following subset of V (G):

V (G)M = {s ∈ V (G) : M ⊗k k(s) is not projective as a module for the subalgebra

k(s)[ur−1]/(u
p
r−1) ⊂ k(s)[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1) = k(s)[Ga(r)]

#}.

We remark that by a “subset” of an affine scheme X = Spec A we would mean

simply a set of prime ideals in A. We shall often use the same notation for a point

in X and the corresponding prime ideal in A.

Let Er be an elementary abelian p-group of rank r (i.e. Er = (Z/p)r). If we

view Er as a commutative Lie algebra with trivial restriction, then its representation

theory is equivalent to the representation theory of the infinitesimal group scheme

G×r
a(1). Taking this point of view on elementary abelian groups, it is easy to see that

our definition of support cone in the special case of G×r
a(1) agrees with the extension

to infinite dimensional Er-modules of the notion of rank variety given in [BCR2].
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Note that any group scheme homomorphism Ga(s) → G, s ≤ r, can be extended

canonically to a one-parameter subgroup of height r, Ga(r) → G, via the projection

pr,s : Ga(r) → Ga(s) given by the natural embedding of coordinate algebras

k[Ga(s)] = k[T1]/(T
ps

1 )
T1→T pr−s

// k[T ]/(T pr
) = k[Ga(r)].

The corresponding map of dual algebras is

k[Ga(r)]
# = k[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1) →

k[ur−s, . . . , ur−1]/((u
p
r−s, . . . , u

p
r−1)

∼= k[Ga(s)]
#.

As we immediately see from the formula above, extending a 1-parameter subgroup

this way does not change the image of the map ε.

Conversely, any one-parameter subgroup Ga(r) → G can be decomposed as

Ga(r)
pr,s−→ Ga(s) ↪→ G

for some s ≤ r.

As an example, which will also be used later in the text, we compute VGa(r)
(see

also [SFB1, 1.10]).

Lemma 3.1.4. VGa(r)
= Ar

Proof. By definition, VGa(r)
(A) = HomGr/A(Ga(r)⊗A,Ga(r)⊗A). A map of group

schemes Ga(r) ⊗ A → Ga(r) ⊗ A is given by a map of Hopf algebras A[T ]/T pr →
A[T ]/T pr

. Since the generator T is primitive (∆(T ) = 1⊗T +T ⊗1), to give such a

map is equivalent to giving an additive polynomial on T , i.e. P (T ) = a0T + a1T
p +
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. . . ar−1T
pr−1

. Thus, 1-parameter subgroup corresponds to an r-tuple (a0, . . . , ar−1).

We apply the Generalized Dade’s lemma (Theorem 1.2.4) to show that support

cones satisfy “projectivity detection” property for representations of Ga(r).

Lemma 3.1.5. Let M be a Ga(r)-module. M is projective if and only if

V (Ga(r))M = 0.

Proof. The category of Ga(r)-modules is equivalent to the category of k[Ga(r)]
# =

k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1)-modules. To apply Theorem 1.2.4 we have to show

that V (Ga(r))M = 0 is equivalent to the assumption of the theorem. Let z =

c0u0+· · ·+cr−1ur−1, where c0, . . . , cr−1 ∈ K, K is an extension of k, which we assume

to be perfect (we can always extend scalars further). Consider an endomorphism α

of Ga(r) ⊗K defined on the level of coordinate algebras via the formula:

K[Ga(r)] // K[Ga(r)]

K[T ]/(T pr
)

T→Pr−1
0 cp−i

i T pr−1−i

// K[T ]/(T pr
)

Dual to this map is an endomorphism of K[Ga(r)]
# = K[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1),

which takes ur−1 to c0u0 + · · ·+ cr−1ur−1. By definition of V (Ga(r)), α corresponds

to a point there defined over K.
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Since V (Ga(r))M is assumed to be 0, the restriction of M⊗K to K[ur−1]/(u
p
r−1) ⊂

K[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1) = K[Ga(r)]

# is projective, where M ⊗ K is con-

sidered as a K[Ga(r)]
#-module via the pull-back of α. By the construction of α

this is equivalent to M ⊗ K being projective when restricted to the subalgebra of

K[Ga(r)]
# = K[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1) generated by z = c0u0 + · · · + cr−1ur−1.

Thus we proved that for any z as above M ⊗ K is projective when restricted to

K[z]/(zp) ⊂ K[Ga(r)]
#. Now we can apply Theorem 1.2.4 to conclude that M is

projective.

To prove the “only if” part it suffices to show that for any one-parameter sub-

group Ga(r)
α→ Ga(r), k[Ga(r)]

# is projective over k[ur−1]/(u
p
r−1), where the module

structure on k[Ga(r)]
# is given via the composition k[ur−1]/(u

p
r−1) ⊂ k[Ga(r)]

# α∗→
k[Ga(r)]

#. Decompose α as Ga(r)
pr,s→ Ga(s) ↪→ Ga(r). Since Ga(s) is a finite

group scheme, k[Ga(r)]
# is injective (and hence projective) as a Ga(s)-module (cf.

[Jan, I.5.13b)]). The composition k[ur−1]/(u
p
r−1) ⊂ k[Ga(r)]

# (pr,s)∗→ k[Ga(s)]
# =

k[u0, . . . , us−1]/(u
p
0, . . . , u

p
s−1) takes ur−1 to us−1, which clearly implies that k[Ga(s)]

#

(and, therefore, k[Ga(r)]
#) is free as a k[ur−1]/(u

p
r−1)-module.

3.2. Conical Sets

We shall call an affine k-scheme X = Spec A conical if A is a graded connected

k-algebra. The data of a (non-negative) grading on A is equivalent to a right monoid

action of A1 on X, where the monoid structure on A1 is just the usual multiplication.
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(The correspondence is given in the following way: the canonical k-algebra homo-

morphism A → A[T ] defined by the grading on A induces a morphism of schemes

X × A1 → X which defines a monoid action of A1. Conversely, given an action we

get a homomorphism A → A[T ] which defines a non-negative grading on A).

Definition 3.2.1. (conical subset) Let X = SpecA be a conical affine scheme,

where the conical structure is given by the map ρ : X × A1 → X. Denote by

πX : X × A1 → X the canonical projection onto X. A subset W of X is said to be

conical if it is stable under the action of A1 on X and if for any point s ∈ X we

have πX(ρ−1(s)) ⊂ X.

Note that if W is a closed subset, then it is conical if and only if it is defined by

a graded ideal, or, equivalently, if it corresponds to a homogeneous subvariety. In

fact, in this familiar case or even in the more general case of a subset closed under

specialization, the second condition is redundant and implied by the first.

Next we give an example of a conical set which we find to be more illuminating.

Since A is connected we can give a precise meaning to the 0-point: this is the point

corresponding to the augmentation ideal in A and it belongs to any conical subset.

Example 3.2.2. Let s ∈ X be a point corresponding to a graded prime ideal µs ⊂ A.

Denote πX(ρ−1(s)) ⊂ X by L(s). Then L(s) ∪ 0 is the minimal conical subset

containing s: by our definition of “conical”, s ∈ W implies L(s) ⊂ W for any
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conical subset W . We give a description of L(s) in terms of prime ideals:

L(s) = {µ ∈ SpecA : µ is not homogeneous, µs ⊂ µ and ht(µ) = ht(µs) + 1} ∪ {s}

To justify this claim we make three simple observations. Denote the action of A1 on

X by •.
First, the action of A1 cannot increase the height of the ideal and can lower it

at most by one.

Second, since any set of the form {homogeneous ideal} ∪ 0 is stable under the

action, L(s) does not contain any homogeneous ideals other than µs.

Third, let p be any point in X, c be the generic point of A1, and s be the point

corresponding to the maximal homogeneous ideal contained in the ideal µp. Assume

also that µs is strictly contained in µp (i.e. µp is not homogeneous), in which case

ht(µs) = ht(µp)− 1. Then p • c = s which implies that p ∈ L(s).

To see that p • c = s we note that if µp is the kernel of the map A → k(p), then

the kernel of the induced map

A

Pn
0 ai→

Pn
0 aiT

i

// A[T ] // k(p)(T )

is the maximal homogeneous ideal contained in µp, i.e. µs.

Next we describe how to give an action of A1 on V (G) and, therefore, define a

grading on k[V (G)].



42

We have a natural morphism of schemes defined by taking composition of mor-

phisms

V (G)× V (Ga(r)) → V (G).

Namely, if νA : Ga(r)⊗A → Ga(r)⊗A and µA : Ga(r)⊗A → G⊗A are one-parameter

subgroups, then we send µA × νA to µA ◦ νAGa(r) ⊗ A toG⊗ A.

Taking G to be Ga(r) we see that V (Ga(r)) has a natural structure of a monoid

scheme over k. Restricting the action to a submonoid of V (Ga(r)) consisting of ho-

momorphisms of Ga(r) given by linear maps of coordinate algebras, we get a right

monoid action of A1 on V (G), which, consequently, defines a grading on k[V (G)].

Moreover, k[V (G)] becomes a graded connected ([SFB1, 1.12]) k-algebra with re-

spect to this grading which makes V (G) into a conical k-scheme.

3.3. Properties of Support Cones

The following theorem establishes the list of properties satisfied by support cones.

The most difficult one is 3.3.2.3, the detection of projectivity “on” support cones,

which follows from the Local Criterion of Projectivity of section 2.3 and Corol-

lary 3.1.5.

We will need an obvious little lemma about Ga(1)-modules (equivalently, Z/p-

modules), which seems to be easier to prove than to find a reference for.

Lemma 3.3.1. Let M , N be finite dimensional Ga(1)-modules and assume further

that M ⊗N is projective. Then either M or N is projective.
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Proof. Since modules are finite dimensional, we can apply the theory of support

varieties. Suppose neither M , nor N is projective. Then varieties of both M and

N , being non-zero conical subsets of A1 = VGa(1)
, must coincide with A1. Thus,

VGa(1)
(M)∩VGa(1)

(N) = A1. On the other hand, projectivity of M⊗N together with

tensor product property implies that VGa(1)
(M) ∩ VGa(1)

(N) = VGa(1)
(M ⊗ N) = 0.

We get a contradiction, so the statement follows.

Theorem 3.3.2. Let G be an infinitesimal k-group scheme of height r which is a

closed normal subgroup of a smooth algebraic group and let M and N be G-modules.

Support cones satisfy the following properties:

0. For a finite dimensional module M , V (G)M
∼= |G|M .

1. V (G)M is a conical subset of V (G).

2. “Naturality.” Let f : H → G be a homomorphism of infinitesimal group schemes

of height ≤ r. Denote by f∗ : V (H) → V (G) the associated morphism of schemes.

Then

f−1
∗ (V (G)M) = V (H)M ,

where M is considered as an H-module via f .

3. V (G)M = 0 if and only if M is projective.

4. “Tensor product property.” V (G)(M⊗N) = V (G)M ∩ V (G)N .

5. V (G)(M
L

N) = V (G)M ∪ V (G)N .
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6. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of G-modules. Then for

any permutation (ijk) of (123) we have

V (G)Mi
⊂ V (G)Mj

∪ V (G)Mk
.

Proof. Note that over the algebra K[u]/(up) projective=free which we shall use

without mention throughout the argument.

0. This is proved in [SFB2], Cor.6.8.

1. The proof for finite dimensional modules given in [SFB2], Prop.6.1, general-

izes immediately to our case but we shall include it here for the completeness of the

argument. Denote the action of A1 on V (G), V (G)× A1 → V (G), by •.
Let s ∈ V (G) and let νs : Ga(r) ⊗ k(s) → G ⊗ k(s) be the one-parameter

subgroup determined by s. By the definition of V (G)M , s ∈ V (G)M if and only if

the restriction of M⊗k(s) to k(s)[ur−1]/u
p
r−1 ⊂ k(s)[Ga(r)]

# via νs is not projective.

Let c be a point in A1. We can extend the scalars to a field K/k such that both

s and c are defined over K. Let νs,K : Ga(r) ⊗ K → G ⊗ K be the one-parameter

subgroup which is obtained from νs by extending scalars from k(s) to K. If c = 0,

then the corresponding one-parameter subgroup is trivial and the restriction of the

pull-back of M via the trivial subgroup to K[ur−1]/u
p
r−1 is never projective. So,

in this case c • s ∈ V (G)M . Assume c 6= 0. To prove that V (G)M is conical

we have to show that s ∈ V (G)M if and only if c • s ∈ V (G)M . Considered as

a point in V (Ga(r)) defined over K, c determines a group scheme homomorphism

νc,K : Ga(r) ⊗K → Ga(r) ⊗K, given by the multiplication by c−1 on the coordinate
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algebra K[Ga(r)]. By definition of the action of A1 on V (G), the group scheme

homomorphism νc•s,K : Ga(r) ⊗K → G⊗K is defined via the composition

Ga(r) ⊗K
νc,K−→ Ga(r) ⊗K

νs,K−→ G⊗K.

The homomorphism (νc,K)∗ : K[Ga(r)]
# → K[Ga(r)]

# restricted to K[ur−1]/u
p
r−1 is

given by

K[ur−1]/u
p
r−1

ur−1→cpr−1
ur−1

// K[ur−1]/u
p
r−1

which is clearly a ring isomorphism. Consequently, M is not projective as a module

over the right hand side of the above isomorphism if and only if M is not projective

when restricted to the left hand side. The statement follows.

2. Follows immediately from the definition of V (G)M .

3. Note that V (G)M = 0 implies V (G⊗K)M⊗K = 0 for any field extension K/k.

Let Ga(r) ⊗K → G⊗K be any non-trivial one-parameter subgroup. By naturality

VGa(r)⊗K(M ⊗ K) = 0, which is equivalent, in view of Cor. 3.1.5, to the fact that

the restriction of M ⊗ K to Ga(r) ⊗ K is projective. Applying Theorem 2.3.4, we

conclude that M is projective.

Now suppose that M is a projective G-module. Then M is a direct summand

of k[G]⊗ < trivial module >, and the support variety of k[G] is trivial, since it is

injective as a G-module.

4. The inclusion V (G)M⊗N ⊂ V (G)M ∩ V (G)N follows from the fact that ten-

sor product of a projective module with anything is projective. Indeed, let s ∈
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V (G)M⊗N . By the definition of support cone, M⊗N⊗k(s) is not projective when re-

stricted to k(s)[ur−1]/u
p
r−1 ⊂ k(s)[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1) = k(s)[Ga(r)]

#, where

Ga(r) ⊗ k(s) → G ⊗ k(s) is the one-parameter subgroup of G ⊗ k(s) corresponding

to the point s ∈ V (G). In view of the remark above, neither M ⊗ k(s) nor N ⊗ k(s)

is projective and, therefore, s ∈ V (G)M ∩ V (G)N .

To prove the other inclusion we have to show that if both M⊗k(s) and N⊗k(s)

are not free as modules over k(s)[ur−1]/(u
p
r−1), then M⊗N⊗k(s) is not free. Denote

k(s)[ur−1]/(u
p
r−1) by A. Note that

M ⊗N ⊗ k(s) ∼= (M ⊗ k(s))⊗k(s) (N ⊗ k(s)).

Since any A-module is a direct sum of finite dimensional indecomposables (cf.

[FW]), we can write M ⊗ k(s) =
⊕

I Mi and N ⊗ k(s) =
⊕

J Nj for some finite

dimensional A-modules Mi and Nj. Consequently,

(M ⊗ k(s))⊗k(s) (N ⊗ k(s)) =
⊕
I,J

(Mi ⊗k(s) Nj).

If both M⊗k(s) and N⊗k(s) are not free, then there exist i and j such that Mi and

Nj are not free A-modules. The tensor product of two finite dimensional A-modules

is free if and only if at least one of them is free, which implies that Mi ⊗Nj is not

free. Since over A projective=free, we get that M⊗N⊗k(s) has a direct summand,

namely Mi ⊗Nj, which is not projective. Therefore, M ⊗N ⊗ k(s) is not free.

5. The restriction of (M⊕N)⊗k(s) = (M⊗k(s))⊕(N⊗k(s)) to k(s)[ur−1]/(u
p
r−1)

is not free if and only if the restriction of either (M ⊗ k(s)) or (N ⊗ k(s)) is not.
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6. This follows immediately from the fact that when two k(s)[ur−1]/(u
p
r−1)-

modules out of three in a short exact sequence are free, then the third module has

to be free.

3.4. Weak cohomological properties

Unlike the situation with finite dimensional modules, the support cone V (G)M

for an infinite dimensional G-module M is typically not a closed subset of V (G)

and thus is not homeomorphic to V (AnnHev(G,k)(Ext∗G(M, M))). As the following

proposition shows, a much weaker relationship does hold.

In what follows we identify V (G) and Spec Hev(G, k) via the homeomorphism Ψ

of Theorem 3.1.2.

Proposition 3.4.1. Let G be an infinitesimal k-group scheme of height r satisfying

the hypotheses of Theorem 2.3.4 and M be a G-module. Then

V (G)M ⊂ V (AnnHev(G,k)(Ext∗G(M,M))).

Proof. Let s ∈ V (G)M . Since both V (G)M and V (AnnHev(G,k)(Ext∗G(M, M)))

are conical (the latter corresponds to an annihilator of a graded module, i.e. is

defined by a graded ideal), they are completely determined by their homogeneous

ideals, so we can assume that the point s corresponds to a homogeneous prime

ideal. To simplify notation denote k(s) by K and M ⊗ K by MK . Then s cor-

responds to a one-parameter subgroup νs : Ga(r) ⊗ K → G ⊗ K such that MK



48

restricted to K[ur−1]/u
p
r−1 ⊂ K[Ga(r)]

# via νs is not projective. We have an equiv-

alence of categories between the category of H-modules and K[H]#-modules for

any finite group scheme H. Hence, the composition of algebra homomorphisms

K[ur−1]/u
p
r−1 ⊂ K[Ga(r)]

# → K[G]# induces a map on cohomology which, by some

abuse of notation, we denote ν∗s : Hev(G⊗K,K) → Hev(Ga(1) ⊗K,K). (Note that

this map does not correspond to any “real” map of group schemes, but only to a

map of coalgebras on the level of coordinate algebras.)

Ga(1) has representation theory equivalent to that of Z/p. Recall that Hev(Ga(1)⊗
K, K) ∼= K[x] where x is a generator in degree 2. Note that Hev(Ga(1) ⊗K, MK) =

Ext∗Ga(1)⊗K(K, MK) is naturally a left module for the algebra Ext∗Ga(1)⊗K(MK ,MK)

via Yoneda composition. Furthermore, the action of Hev(Ga(1) ⊗ K, K) on

Ext∗Ga(1)⊗K(K, MK) factors through the action of Ext∗Ga(1)⊗K(MK ,MK) via the natu-

ral map of algebras Hev(Ga(1)⊗K,K)
⊗MK→ Ext∗Ga(1)⊗K(MK ,MK). Since x induces a

“periodicity” isomorphism on H∗(Ga(1)⊗K, MK) (cf. [Ben, v.1,3.5]) and the latter is

non-trivial in positive degrees due to the fact that MK is not projective restricted to

K[ur−1]/u
p
r−1, we conclude that the map Hev(Ga(1)⊗K,K) → Ext∗Ga(1)⊗K(MK ,MK)

is injective.

Thinking of Ext-groups in terms of extensions one sees easily that the following

diagram of algebra homomorphisms is commutative:
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Hev(G, k)

⊗M

²²

⊗K
// Hev(G⊗K,K)

⊗MK

²²

ν∗s
// Hev(Ga(1) ⊗K,K)

⊗MK

²²

Ext∗G(M, M)
⊗K

// Ext∗G⊗K(MK ,MK) // Ext∗Ga(1)⊗K(MK ,MK)

where the right lower map is again restriction via νs. By the construction of the

homeomorphism Ψ : V (G) → Spec Hev(G, k) (cf. [SFB1]), the point s ∈ V (G)

corresponds to the homogeneous prime ideal µs ⊂ Hev(G, k) which is the kernel of

the map Hev(G, k) → Hev(Ga(1) ⊗K, K) appearing as the top row of the commu-

tative diagram above. Now, the commutativity of the diagram together with the

injectivity of the right vertical arrow imply that

Ker (Hev(G, k) → Ext∗G(M, M) → Ext∗Ga(1)⊗K(MK ,MK)) =

Ker (Hev(G, k) → Hev(Ga(1) ⊗K, K)).

Since Ker (Hev(G, k) → Ext∗G(M, M)) = AnnHev(G,k)(Ext∗G(M,M)) is contained

in the left hand side, and the right hand side equals µs, we conclude that

AnnHev(G,k)(Ext∗G(M,M)) ⊂ µs.

Question. Is it right that the closure of VG(M) coincides with

V (AnnHev(G,k)(Ext∗G(M, M))?

The following result, which is immediately implied by the proposition above and

Theorem 3.3.2.3, will be used in the next section to show that the “tensor product
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property” does not hold for the extension to infinite dimensional modules of the

cohomological definition of support variety.

Corollary 3.4.2. Let G be an infinitesimal group satisfying the hypotheses of Theo-

rem 2.3.4 and M be a G-module. If V (AnnHev(G,k)(Ext∗G(M,M))) ⊂ SpecHev(G, k)

is 0, then M is projective.

In this section we will also give a proof of the Prop. 2.2.3. We first recall the

statement:

Proposition. Let G be an infinitesimal group scheme and M be a locally projective

G-module. Let G ↪→ G′ be a closed embedding of G into some Frobenius kernel of

the same height. Then IndG′
G (M) is (locally) projective as a G′-module.

Proof. It is sufficient to show that V (G′)
IndG′

G (M)
= 0 (cf. Theorem 3.3.2.3). Let

s be a point in V (G′). It corresponds to a 1-parameter subgroup νs : Ga(r) ⊗K →
G′ ⊗ K. Since Ind commutes with extension of scalars and since we are going to

study the behavior of M only at this one particular point s, we may assume that

everything is defined over the ground field k.

Let k[Ga(r)]
# = k[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1). To show that s 6∈ V (G′)

IndG′
G (M)

,

one needs to show that the restriction of IndG′
G (M) to k[ur−1]/(u

p
r−1) is projective.

By lowering the height of Ga(r), is necessary, we can assume that the map νs is an

embedding. (This will involve factoring through the “projection” map pr,r′ : Ga(r) →
Ga(r′), which takes generator ur−1 of k[Ga(r)]

# to the generator ur′−1 of k[Ga(r′)]
#)
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Consider the following Cartesian square of group schemes:

Ga(t)
� _

²²

� � // G
� _

²²
Ga(r)

� �
νs

// G′

Set Λ = Endk(M, M). Λ is an associative unital G-algebra. Moreover, restricted

to Ga(t) via the pull-back of the map induced by νs, Λ is projective. Indeed,

H1(Ga(t), Λ) = Ext1
Ga(t)

(M,M) = 0, since M is locally projective G-module. Since

Ga(t) is unipotent, vanishing of the first cohomology group implies that Λ is projec-

tive as a Ga(t)-module. Thus, Ind
Ga(r)

Ga(t)
(Λ), which is again an associative unital Ga(r)

- algebra, is projective.

The natural map of Ga(r)-algebras IndG′
G (Λ) → Ind

Ga(r)

Ga(t)
(Λ) (determined by the

adjointness of Ind and Res) is surjective and has a nilpotent kernel (cf. [SFB2;4.3]).

Denote the kernel by I. Projectivity of Ind
Ga(r)

Ga(t)
(Λ) as a Ga(r)-module implies that

it is projective restricted further to k[ur−1]/(u
p
r−1). Thus,

H∗(k[ur−1]/(u
p
r−1), Ind

Ga(r)

Ga(t)
(Λ)) = 0 for ∗ > 0.

Therefore, the long exact sequence in cohomology corresponding to the short exact

sequence

0 → I → IndG′
G (Λ) → Ind

Ga(r)

Ga(t)
(Λ) → 0

of modules gives an isomorphism

H∗(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) ∼= H∗(k[ur−1]/(u
p
r−1), I)
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in positive degrees. The ideal I is nilpotent, so the algebra without unit

H∗(k[ur−1]/(u
p
r−1), I) is also nilpotent. The isomorphism above implies that the

augmentation ideal H∗>0(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) is nilpotent. On the other hand,

the map of algebras k → IndG′
G (Λ) induces an action of Hev(k[ur−1]/(u

p
r−1), k) ∼= k[x]

(where x is a generator in degree two) on H∗(k[ur−1]/(u
p
r−1), IndG′

G (Λ)). The action

of x, in particular, induces a periodicity isomorphism

H i(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) ∼= H i+2(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) for all i > 0

(cf.). The image of x in H2(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) under the map of algerbas

Hev(k[ur−1]/(u
p
r−1), k) → H∗(k[ur−1]/(u

p
r−1), IndG′

G (Λ)) is nilpotent (since all ele-

ments of positive degree are nilpotent in the target), therefore, the periodicity iso-

morphism induced by the action of x is trivial. Hence,

H∗>0(k[ur−1]/(u
p
r−1), IndG′

G (Λ)) = 0.

There is a natural action of Λ on M compatible with their G-module struc-

ture. This induces an action of IndG′
G (Λ) on IndG′

G (M) compatible with their struc-

ture as G′-modules, and, therefore, k[ur−1]/(u
p
r−1)-modules. Hence, the action of

Hev(k[ur−1]/(u
p
r−1), k) ∼= k[x] on H∗(k[ur−1]/(u

p
r−1), IndG′

G (M)) factors through the

action of H∗(k[ur−1]/(u
p
r−1), IndG′

G (Λ)). The latter is zero in positive degrees. This

implies that the action of x ∈ H2(k[ur−1]/(u
p
r−1), k), which, again, induces pe-

riodicity isomorphism, is trivial. Therefore, H1(k[ur−1]/(u
p
r−1), IndG′

G (M)) = 0.
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Thus, IndG′
G (M) is projective as a k[ur−1]/(u

p
r−1)-module. We conclude that s 6∈

V (G)
IndG′

G (M)
. The statement follows.



CHAPTER 4

Rickard Idempotent modules

In this chapter we give a different interpretation of support cones and connect

them to the work of Benson, Carlson and Rickard on infinite dimensional modules

of finite groups. G will denote an infinitesimal group scheme of height r.

4.1. Stable Module Category of an infinitesimal group scheme

In this section we will give a brief account of the structure of the Stable Module

category of G, a triangulated quotient category of the category of G-modules. The

key point that makes this construction work is the fact that injective G-modules

are projective, which holds for any finite-dimensional cocommutative Hopf algebra.

For a much better exposition in the practically identical case of an abstract finite

group, one may consult [BCR1], [BCR2], [R2]. In the monograph on axiomatic

stable homotopy theory [HPS], a very general and more formal treatment of the

subject can be found. For a discussion of triangulated categories, see [W].

We say that a map f : M → N of two G-modules is stably equivalent to the

trivial map if it factors through a projective G-module. Let PHomG(M,N) denote

the set of all such maps. Two G-module maps f, g : M → N are said to be

stably equivalent if their difference is in PHomG(M, N). Define the Stable Module

54



55

category of G, StModG, to be the category which has G-modules as its objects, and

equivalence classes of maps with respect to the stable equivalence defined above as

morphisms. Denote the set of morphisms in StModG by Hom(M, N). Thus, by

definition,

Hom(M, N) = HomG(M, N)/PHomG(M, N).

We shall use the notation “∼=” for stable isomorphisms.

Proposition 4.1.1. StModG is a triangulated category. The shift operator is given

by the Heller operator Ω−1 : StModG → StModG (cf. section 2.1). Exact triangles

are those stably isomorphic to short exact sequences of G-modules.

Proof. We give a sketchy proof and lazily omit checking the octahedral axiom.

Let i : M ↪→ I be an embedding of M into an injective module. Then the

cokernel of I differs from the cokernel of the embedding of M into its injective

hull by an injective summand. Thus, Ω−1M ∼= cokeri. Similary, to determine

ΩM , the kernel of the projection onto M of the projective cover of M , up to a

stable isomorphism, we can take the kernel of any surjective map to M from a

projective module. Since projective and injective modules coincide, we conclude that

M ∼= ΩΩ−1M and N ∼= Ω−1ΩN and, hence, the Heller operator Ω−1 : StModG →
StModG defines a self-equivalence of the category StModG.

There is a canonical isomorphism

Hom(N, Ω−1M) ' Ext1
G(N, M) (∗)
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Indeed, let M → I0 d1→ I1 → . . . be an injective resolution of M . By definition, d1

factors through Ω−1M : d1 : I0 ³ Ω−1M ↪→ I1. Let α ∈ Hom(N, Ω−1M). Extend

α to a map N → I1 by composing with the embedding Ω−1M ↪→ I1. This is

automatically a cocycle, since the composition Ω−1M ↪→ I1 → I2 is zero. Thus, we

defined a map HomG(N, Ω−1M) → Ext1
G(N, M) and it is functorial in both M and

N . The only thing left is to identify the kernel. Suppose α : N → Ω−1M → I1 is a

coboundary. Then α factors through I0 which means that α ∈ PHomG(M, N). On

the other hand, if α factors through some injective module, then it factors through

the I0, since I0 → Ω(−1)M is surjective. Thus, the kernel is exactly PHomG(M, N),

and the isomorphism follows.

Using the isomorphism (*), we associate to any exact sequence of G-modules

0 → M → L → N → 0 an exact triangle in StModG: M → L → N → Ω−1M .

Next, we check the axioms.

- TR1: every map f : M → N fits in an exact triangle.

Let P be the injective hull of M , and extend f to a stably equivalent map f ′ : M →
N ⊕ I. This map is injective, so we can complete f to a short exact sequence:

0 → M
f ′→ N ⊕ P

g→ L → 0.

In fact, to get an exact triangle fitting f , we take the extension ΩN → L → M

corresponding to the map f : M → N ∼= Ω−1ΩN under the isomorphism (*) and

shift it once.

- TR2: shifts of exact triangles are exact.



57

Let 0 → M
α→ L → N → 0 be an exact sequence of G-modules. It defines a

canonical map N → Ω−1M and we have to show that L → N → Ω−1M → Ω−1L

is again an exact triangle. Under the canonical isomorphism Ext1
G(Ω−1M, L) ∼=

Hom(M, L) the map α corresponds to an extension L → Ñ → Ω−1M which we can

write explicitly as a push-out of the short exact sequence 0 → M → I0 → Ω−1M →
0 (I0 is the first term of an injective resolution of M):

M
� _

α

²²

// I0

²²

// Ω−1M

L // Ñ // Ω−1M

Since Ñ is a push-out, the cokernels of α and the map I0 → Ñ coincide. The latter

is stably isomorphic to Ñ , since I0 is injective, and cokerα = N . Thus, N ∼= Ñ and

the sequence L → N → Ω−1M → Ω−1L is stably isomorphic to the exact triangle

L → Ñ → Ω−1M → Ω−1L. TR2 follows.

TR3 is straightforward once we view exact triangles as short exact sequences.

Lemma 4.1.2. Two G-modules M and N are stably isomorphic if and only if there

exist projective modules P and Q such that M ⊕ P ∼= N ⊕ Q in the category of

G-modules. Moreover, we always can choose one of P and Q to be zero.

Proof. Every G-module M has a maximal projective submodule, which splits off

as a direct summand since projective = injective. The compliment is a module with

no projective submodules, stably isomorphic to the original module. We will call
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this submodule the “projective-free” part of M , denoted Mpf . We can reformulate

the statement of the lemma in the following way: two modules are stably isomorphic

if and only if their projective-free parts are isomorphic. The ”if” part is clear. Now

assume that both M and N are projective-free and let α : M → N be a stable

isomorphism. The embedding ker(α) ↪→ M is stably zero, i.e. factors through a

projective map. Let S be a simple submodule of ker(α). Then the inclusion S ↪→ M

factors through the injective hull of S, I(S), and since I(S) is indecomposable,

the map I(S) → M is again an embedding. This contradicts the “projective-free”

assumption on M . Thus, α is injective. Applying the same argument to the cokernel,

one shows that it is surjective. Hence, α is an isomorphism.

We shall denote by stmod(G) the full triangulated subcategory of StMod(G)

whose objects are represented by finite dimensional modules. This subcategory is

equivalent to the usual stable module category of finite dimensional G-modules

(i.e. the category of finite dimensional G-modules whose maps are equivalence

classes of G-homomorphisms where two maps are equivalent if their difference factors

through a finite dimensional projective G-module). The lemma above implies that

the construction of support cones descends nicely to StModG. Tensor products are

also well-defined up to a stable isomorphism. One can formally rewrite properties

of support cones from Theorem 3.3.2 for StModG. One special property, which is a

consequence of Theorem 3.3.2, is that Heller operator does not affect support cones:

VG(M) = VG(Ω−1M).
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Definition 4.1.3. A full triangulated subcategory C of stmodG (respectively StMod

G) is called thick if it is closed under taking direct summands (respectively taking

direct summands and arbitrary direct sums). It is called tensor-ideal if it is closed

under taking tensor products with any G-module.

4.2. Bousfield localization

We define and prove the existence of Bousfield localization functors for certain

thick subcategories of StModG. To avoid introducing more notation, which will not

be used later in the text, we adapt a general definition of a localization functor for

a “stable homotopy category” to our special situation. A definite advantage is that

we can use ⊗ for the smash products and Hom for morphisms.

Definition 4.2.1. (Localization functor). Let S be the triangulated category

StModG, C be a thick subcategory, and F : S → S be an exact functor. F is a

localization functor with respect to the category C (which is called localizing subcat-

egory) if there is a natural transformation η : IdS → F such that

(i) The natural transformation Fη : F → F2 is an equivalence.

(ii) The map HomS(F(M),F(N))
η∗M→ HomS(M,F(N)) is an isomorphism.

(iii) C coincides with the full subcategory of objects (called F - acyclic) for which

F(M) = 0.
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Remark 4.2.2. The definition immediately implies that for any M , F(M) is C
- local, i.e. there are no non-trivial maps from objects of C to F(M). We say that

F is a localization “away from C”.

We give a dual definition of a colocalization functor:

Definition 4.2.3. (Colocalization functor) Let S be the triangulated category

StModG, C be a thick subcategory, and E : S → S be an exact functor. E is a

colocalization functor (with respect to the localizing category C) if there is a natural

transformation ε : E → IdS such that

(i) The natural transformation Eε : E2 → E is an equivalence.

(ii) The map HomS(E(M), E(N))
εN∗→ HomS(E(M), N) is an isomorphism.

(iii) C coincides with the full subcategory of objects (called E-local) for which εM :

E(M) → M is an isomorphism.

Remark 4.2.4. (i) and (iii) imply that E(M) ∈ C and for any M ∈ C one has

E(M) ∼= M . Thus, E is a “projection” onto the subcategory C. Together with (ii)

this gives that E is the right adjoint to the inclusion functor C ↪→ S

Remark 4.2.5. There is a natural equivalence between localization and colocal-

ization functors, in which F and E correspond if and only if

E(M)
εM→ M

ηM→ F(M)
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is an exact triangle for every M (cf. [HPS, 3.1.6]). Of course, under this correspon-

dence the subcategory of E-local objects coincides with the subcategory of F -acyclic

objects. If we apply Hom(−, L) for any C-local object L to the exact triangle above,

we get a canonical isomorphism

Hom(M, L) ∼= Hom(F(M), L).

Thus, F(M) is not only C-local, but the map ηM : M → F(M) is the universal map

from M to a C-local object.

If C is tensor-ideal, then the value of the localization functor F corresponding

to the localizing subcategory C is completely determined by its value on k, i.e.

F(M) = F(k)⊗M .

Let C be a thick subcategory of stmod(G). Denote by ~C the full triangulated

subcategory of StMod(G) whose objects are filtered colimits of objects in C. (~C co-

incides with the smallest full triangulated subcategory of StMod(G) which contains

C and is closed under taking direct summands and arbitrary direct sums (cf. [R1]).)

Next we sketch a construction of the pair of localization and colocalization func-

tors corresponding to ~C ⊂ StModG. Since ~C is generated by the objects of the cate-

gory stmodG, which are “small” (where an object C is small if the funtor Hom(C, ?)

preserves arbitrary direct sums), we will be talking about the simplest case of Bous-

field localization here - “finite localization”. Our construction is taking from [R1].
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A detailed discussion of Bousfield localization for any finite dimensional cocommu-

tative Hopf algebra can be found in [R2] or [HPS].

Given a module M , we would like to construct F(M) with a canonical map from

M and the property of being C - local. The idea of the construction below is to kill

all the maps from C by consecutive approximations.

Define a homotopy colimit of the sequence M1
f1→ M2

f2→ . . . , hocolim(Mi), by

completing the map
i=∞⊕
i=1

Mi
1−f→

i=∞⊕
i=1

Mi to an exact triangle:

i=∞⊕
i=1

Mi
1−f→

i=∞⊕
i=1

Mi → hocolim(Mi)

Clearly, hocolim(Mi) is stably isomorphic to the lim−→Mi, where lim−→ is taken in the

category of G-modules.

Let Ci run over a complete set of representatives of isomorphism classes of mod-

ules in C. Let M be a G-module. Let further C(M) =
⊕
i

(Ci⊗HomG(Ci,M)) (each

summand is itself a direct sum of copies of Ci as a G-module and, hence, C(M) ∈ ~C).

There is a natural homomorphism C(M) → M , defined by sending each ci ⊗ f to

f(ci), which has the following property: any map C → M for C ∈ C factors through

C(M). Let M = M0. We construct inductively a sequence M1,M2, . . . as follows:

for each Mi complete the map C(Mi) → Mi to an exact triangle

C(Mi) → Mi → Mi+1.
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Set F(M) = hocolimMi. F(M) comes equipped with a map from M0, which we

denote ηM . Now, complete ηM to an exact trianlge and call the third vertex E(M):

E(M)
εM→ M

ηM→ F(M).

Lemma 4.2.6. For any C ∈ C, we have Hom(C,F(M)) = 0 (hence, F(M) is

C-local).

Proof. Any map f : C → F(M) factors through some Mi. Therefore, it factors

through C(Mi) → Mi by the construction of C(M). But then the composition

C → C(Mi) → Mi → Mi+1 is stably trivial and, hence, f : C → F(M) is stably

trivial as well.

Corollary 4.2.7. F(M) is ~C-local.

This is clear since a map from an object in ~C is the same as a map from a filtered

system of objects in C.

Lemma 4.2.8. E(M) ∈ ~C

Proof. In the construction of F(M) each Mi comes equipped with a map from M .

Define Ei by completing this map to an exact trianlge: Ei → M → Mi. Thus, we

have a sequence of exact triangles
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0

²²

// M M0

²²

E1

²²

// M // M1

²²

E2

²²

// M // M2

²²
...

...
...

By taking homotopy colimit of this sequence, we get an exact triangle which is

stably isomorphic to the trianlge E(M) → M → F(M). Hence, to prove the lemma

it suffices to show that Ei ∈ ~C for all i. We prove this by induction, the case i = 0

being obvious. Assume Ei ∈ ~C. By shifting once, we obtain two exact triangles

M // Mi

²²

// Ω−1Ei

²²

M // Mi+1
// Ω−1Ei+1

Complete the middle vertical arrow to an exact triangle Mi → Mi+1 → Ω−1C(Mi).

By the octahedral axiom (cf. [W, 10.2.1]), there exists a map Ω−1Ei+1 → Ω−1C(Mi),

which completes the most right vertical arrow of the diagram above to an exact

trianlge and makes the diagram commutative. Adding Ω−1C(Mi) to the diagram

above, we get the following commutative diagram in which all rows and columns are

exact triangles:
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M // Mi

²²

// Ω−1Ei

²²

M // Mi+1

²²

// Ω−1Ei+1

²²

Ω−1C(Mi) Ω−1C(Mi)

Note that C(Mi) is in ~C by construction of C(Mi), and Ei is in vecC by induction

hypothesis. Since ~C is a thick subcategory, we conclude that Ω−1Ei+1 and, hence,

Ei+1, belongs to ~C.

If we replace exact triangles by isomorphic exact sequences, via adding appro-

priate projective summands, then the statement becomes clear without explicitly

appealing to the octahedral axiom. This way would not be as fancy, but might be

more honest, since we did not check the octahedral axiom.

Applying the functor Hom(C, ?) to the exact triangle E(M)
εM→ M

ηM→ F(M) and

using Corollary 4.2.7, we get that E(M) satisfies the following universal property:

for any C ∈ ~C, Hom(C, E(M)) ∼= Hom(C, M), where the isomorphism is induced by

εM . Proceeding as in Remark 4.2.5, we conclude that F(M) satisfies an analogous

universal property with respect to the maps from M to C-local objects. Thus, both

F(M) and E(F ) are well-defined and, furthermore, functorial on M .

Next, we check that F and E are exact. Let M ′ → M → M ′′ be an exact

triangle. By functoriality, we have a commutative diagram of exact triangles
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E(M)

²²

// E(M ′′)

²²

M ′ // M

²²

// M ′′

²²

F(M) // F (M ′′).

By completing the upper and lower rows to exact triangles we get a new commutative

diagram

E

²²

// E(M)

²²

// E(M ′′)

²²

M ′

²²

// M

²²

// M ′′

²²

F // F(M) // F(M ′′).

Since ~C is a thick subcategory, and contains both E(M) and E(M ′′), it contains E.

Applying Hom(C, ?), C ∈ ~C, to the exact trianlge in the last row, we conclude that

F is ~C-local. Thus, the exact trianlge E → M → F satisfies Corollary 4.2.7 and

Lemma 4.2.8. Proceeding as above, we can show that E and F satisfy the universal

properties of E(M) and F(M). Therefore, the constructed trianlge is canonically

isomorphic to E(M) → M → F(M). The exactness of F and E now follows.

If M ∈ ~C, then clearly E(M) ∼= M , since M satisfies the universal property of

E(M). Together with Lemma 4.2.8, this implies that E(E(M))
EεM∼= E(M). Similarly,

F(M) is C-local and, thus, shares the universal property of F(F(M)). Hence,

F(M)
FηM∼= F(F(M)).
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Finally, we show that F and E have a special form when the thick subcategory

C is tensor-ideal.

Proposition 4.2.9. Let C be a tensor-ideal thick subcategory of stmodG. Then

the exact trianlge M ⊗ E(k)
idM⊗εk→ M

idM⊗ηk→ M ⊗ F(k) is stably isomorphic to

E(M)
εM→ M

ηM→ F(M).

Proof. First note that since any G-module can be written as a colimit of finite-

dimensional ones, the category ~C is also tensor-ideal. Therefore, M ⊗ E(k) ∈ ~C.

Let L be a C-local object and N be any finite dimensional G-module. For any

C ∈ C we have Hom(C, N ⊗ L) ' Hom(C ⊗M#, L) = 0. The last equality holds

because L is C-local. Therefore, M ⊗ L is also C-local. Since any G-module is a

direct limit of finite dimensional modules, we can make the same conclusion for an

arbitrary module N . Finally, if M ⊗ L is C-local, then it is ~C-local. Taking L to be

F(k), we see that M ⊗F(k) is C-local.

Using the same argument as before, we obtain that M⊗E(k) and M⊗F(k) share

the universal properties of E(M) and F(M) and, hence, are canonically isomorphic

to them.

We summarize the preceeding discussion in the following theorem.

Theorem 4.2.10. (Bousfield localization)
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I. Let C be a thick subcategory of stmod(G). There exist exact functors EC,FC :

StMod(G) → StMod(G) (colocalization and localization functors with respect to C
respectively) characterized by the following properties:

(i) For any M ∈ StMod(G), the modules EC(M) and FC(M) fit in an exact

triangle:

TC(M) : EC(M) → M → FC(M) → Ω−1EC(M).

(ii) EC(M) belongs to ~C and satisfies the following universal property: the map

εM : EC(M) → M , which occurs in the exact triangle TC(M), is the universal map in

StMod(G) from an object in ~C to M , i.e. for any C ∈ ~C , εm induces an isomorphism

Hom(C, EC(M)) ' Hom(C,M).

(iii) The map ηM : M → FC(M), which occurs in the exact triangle TC(M), is

the universal map in StMod(G) from M to a C-local object

II. Suppose C is also tensor-ideal. Then for any G-module M we have stable

isomorphisms: EC(M) ∼= EC(k)⊗M , FC(M) ∼= FC(k)⊗M .

Remark 4.2.11. At it is easily seen from the proofs above, the exact triangle

TC(M) is uniquely determined up to a stable isomorphism by the following proper-

ties: EC(M) ∈ ~C and FC(M) is C-local.

The modules EC(k) and FC(k) were introduced by J. Rickard ([R1]) for finite

groups and are thereby called Rickard idempotent modules. We justify the name in

the following proposition:
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Proposition 4.2.12. Let C be a tensor-ideal thick subcategory of stmod(G). Then

(a) There are stable isomorphisms:

EC(k)⊗ EC(k) ∼= EC(k) and FC(k)⊗FC(k) ∼= FC(k);

(b) EC(k)⊗FC(k) is projective;

(c) For a finite dimensional G-module M, the following are equivalent:

(i) M ∈ C
(ii) M ⊗ EC(k) is stably isomorphic to M

(iii) M ⊗FC(k) is projective.

Proof. The first statement is a reformulation of the first property in the definition

of localization and colocalization functor, which we showed before. To show that

EC(k) ⊗ FC(k) is projective, tensor EC(k) with the exact triangle TC and apply (a).

For the third claim, the equivalence of (i) and (ii) was showed before, and the

equivalence of (ii) and (iii) follows immediately from the fact that EC(M) → M →
FC(M) → Ω−1EC(M) form an exact triangle.

Lemma 4.2.13. Let W be a subset in V (G) and let CW be the full subcategory

of stmod(G) consisting of finitely generated modules M whose variety V (G)M is

contained in W . Then CW is a tensor-ideal thick subcategory of stmod(G).

The statement of the lemma follows immediately from the standard properties

of support varieties and implies the existence of the Rickard idempotents associated

to the subcategory CW . In this special case we shall use the following notation:
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E(W ) = ECW
(k), F (W ) = FCW

(k) and T (W ) = TCW
(k)

4.3. Support cones via Rickard idempotents

In this section we compute support cones of the Rickard Idempotent modules

and give an alternative description of support cone of any G-module, using Rickard

Idempotents.

Definition 4.3.1. Let W be a subset in an affine scheme X = SpecA. W is said

to be closed under specialization if for any two primes µ ⊂ ν ⊂ A, µ ∈ W implies

ν ∈ W .

Being closed under specialization is equivalent to the fact that for any s ∈ W

the Zariski closure of s, denoted s, is contained in W . For any U ⊂ X we denote

by Cs (U) the closure under specialization of U , i.e.

Cs (U) =
⋃
s∈U

s

Note that closure under specialization of a conical subset is again conical.

Let V be a closed conical subset of V (G). Denote by V ′ the subset of V consisting

of all points of V except for generic points of irreducible components of V . Define

κ(V )
def
= E(V )⊗ F (V ′).
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As a tensor product of idempotent modules, κ(V ) is again idempotent, i.e. κ(V )⊗
κ(V ) ∼= κ(V ).

Note that the generic point of an irreducible closed conical subvariety is a homo-

geneous prime ideal, so that there is a natural 1-1 correspondence between homo-

geneous prime ideals and closed irreducible conical subvarieties. For an irreducible

closed conical set V with the generic point s we shall use κ(s) to denote κ(V ). In

particular, for any point s ∈ V (G) corresponding to a homogeneous prime ideal,

κ(s) will substitute for κ(s) to simplify notation.

Theorem 4.3.2. Let W be a conical closed under specialization subset of V (G).

Then

V (G)E(W ) = W.

Before proving the theorem we state an immediate corollary:

Corollary 4.3.3. For any conical closed under specialization subset W of V (G)

there exists a G-module M whose support cone coincides with W .

The statement of the corollary is an extension of the “realization” theorem for

support varieties of finite dimensional modules (see [Car2] for finite groups, [FP2]

for restricted Lie algebras, [SFB2] for arbitrary infinitesimal groups). There are

many different conical closed under specialization subsets with the same closure: for

example, any union of infinitely many lines through the origin in A2 is a conical

closed under specialization non-closed subset with the closure A2. The theorem,
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thus, demonstrates that V (G)M is a “finer” invariant than one taking values in

closed subsets (e.g. V (AnnHev(G,k)(Ext∗G(M, M)))).

The proof of the theorem given below is adapted to our case from the proof of

the analogous result for elementary abelian groups in [BCR2].

Proof. Let s be a point in W . Since W is conical closed under specialization, the

smallest closed conical subvariety of V (G) containing s is contained in W . Denote

this subvariety by Vs. By the “realization” theorem for finite dimensional modules

(cf. [SFB2, 7.5]), there exists a finite dimensional G-module M such that V (G)M =

Vs. By the definition of CW , we have that M ∈ CW , which is equivalent to the

fact that M ⊗ E(W ) ∼= M in StMod(G) (cf. Prop. 4.2.12). The “tensor product

property” implies that Vs = V (G)M ⊂ V (G)E(W ). Since s ∈ Vs by the construction

of Vs, the inclusion W ⊂ V (G)E(W ) follows.

To prove the other inclusion, choose s /∈ W . By Theorem 4.2.10, E(W ) =

lim−→i∈IMi, where Mi are finite dimensional modules such that V (G)Mi
⊂ W for

all i. Let Ga(r) ⊗ k(s) → G ⊗ k(s) be the one-parameter subgroup corresponding

to the point s. Since s /∈ V (G)Mi
for any i ∈ I, the restriction of Mi ⊗ k(s) to

k(s)[ur−1]/(u
p
r−1) ⊂ k(s)[Ga(r)]

# (see §2 for notation) is always projective. Then

the restriction of E(W ) ⊗ k(s) to the same subalgebra is projective as a filtered

colimit of projective modules (we also use that restriction commutes with colimits).

Thus, E(W ) ↓k(s)[ur−1]/(up
r−1) is projective, which implies that s /∈ V (G)E(W ). The

statement follows.
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Recall that for a non-zero point s ∈ V (G) corresponding to a graded prime ideal

µs ∈ k[V (G)], we denote by L(s) the minimal conical subset containing s with 0

removed. Alternatively, L(s) = {µ ∈ Spec k[V (G)] : µ is not homogeneous, µs ⊂
µ and ht(µ) = ht(µs) + 1} ∪ {s} (cf. Ex. 3.2.2). Let s be the generic point of a

closed irreducible conical subset V of V (G). Let further V ′ = V \{s} and let Ṽ ′ be

the maximal conical closed under specialization subset in V ′. It is easy to see that

Ṽ ′ = V ′\L(s).

The thick subcategory CV ′ ⊂ stmod(G), corresponding to V ′, coincides with the

thick subcategory CfV ′ and, therefore, we have stable isomorphisms:

E(V ′) ∼= E(Ṽ ′), F (V ′) ∼= F (Ṽ ′).

Applying the theorem above to E(Ṽ ′), we get

V (G)E(V ′) = Ṽ ′.

Thanks to our description of Ṽ ′, we can rewrite the last formula as

V (G)E(V ′) = V ′\L(s).

Now we can describe support cones of F and κ - modules. We shall denote by

W c the complement of any subset W of V (G).
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Corollary 4.3.4. For a conical closed under specialization subset W of V (G) we

have

V (G)F (W ) = W c ∪ 0.

Furthermore, if V is an irreducible closed conical subset of V (G) and s is the

generic point of V , then

V (G)κ(V ) = L(s) ∪ 0.

Proof. The existence of the exact triangle T (W ) : E(W ) → k → F (W ) →
Ω−1E(W ) implies that

V (G) ⊂ V (G)E(W ) ∪ V (G)F (W )

(cf. Theorem 3.3.2.6). Proposition 4.2.12.2 asserts that E(W )⊗F (W ) is projective

and hence

V (G)E(W ) ∩ V (G)F (W ) = 0.

We conclude that V (G)F (W ) = W c ∪ 0.

The second statement follows immediately from the “tensor product property”

and the definition of κ(V ) as E(V )⊗ F (V ′).

For a conical subset W in V (G) we denote by Proj W, the “projectivization” of

W , the set of points in W which correspond to homogeneous prime ideals of k[V (G)]
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excluding the augmentation ideal. Proj W can be viewed as a subset of the scheme

Proj k[V (G)].

There is 1-1 correspondence between conical subsets of V (G) and their “pro-

jectivizations”, i.e. a conical subset is completely determined by its homogeneous

ideals. Therefore, the standard properties of support cones, described in Theo-

rem 3.3.2, apply to their “projectivizations”.

In view of this remark the next theorem is a straightforward application of the

above corollary.

Theorem 4.3.5. Let M be a G-module. Then

Proj V (G)M = {s ∈ Proj k[V (G)] : M ⊗ κ(s) is not projective as a G-module}.

Proof. Let s be a homogeneous prime ideal in k[V (G)] such that M ⊗ κ(s) is not

projective as a G-module. Then Proj V (G)M⊗κ(s) = Proj V (G)M ∩ Proj V (G)κ(s) is

non-empty. Since Proj V (G)κ(s) = Proj (L(s)∪0) = {s} in view of the Corollary 4.3.4

above, we conclude that s ∈ Proj V (G)M .

Conversely, if s ∈ Proj V (G)M , then Proj V (G)M⊗κ(s) is non-empty, which im-

plies that M ⊗ κ(s) is not projective as a G-module.

Remark 1. We can restate the previous theorem in terms of the affine support cones

using the following notation: for any prime ideal µ ⊂ k[V (G)] denote by hom(µ) the

maximal homogeneous prime ideal contained in µ. Note that ht(hom(µ)) = ht(µ)−1

unless µ itself is homogeneous. Any conical subset containing µ contains hom(µ) and
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vice versa. Together with the theorem above this observation implies the following

description of V (G)M :

V (G)M = {s ∈ V (G) : M ⊗ κ(hom(s)) is not projective as a G-module}.

As another application of the Corollary 4.3.4, we can generalize our “realization”

statement to arbitrary conical sets. We shall utilize the notation hom(s) introduced

in the remark above.

Corollary 4.3.6. Any conical subset of V (G) can be realized as a support cone of

a G-module.

Proof. Let W be a conical subset of V (G). For any s ∈ W , W contains hom(s).

Furthermore, by the definition of conical subset, for any point s corresponding to a

homogeneous prime ideal, W contains the entire set L(s). We conclude that

W =
⋃

s∈Proj W

L(s) ∪ 0

and, therefore, W is the support cone of the module
⊕

s∈Proj W

κ(s).

4.4. Applications: induction revisited, complexity.

As an application of Theorem 4.3.5 we are going to show that V (G)IndG
H(M) ⊂

V (H)M for an arbitrary H-module M , where H is a subgroup scheme of G. Although

for finite dimensional modules this follows from the cohomological description of the
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support variety of M and Generalized Frobenius reciprocity, in the infinite dimen-

sional case this approach is not available due to the lack of the cohomological de-

scription. We also give an easy argument which shows that the equality takes place

when H is a unipotent group scheme. This might be as good as it gets, since for a

non-unipotent H one can induce a non-projective module and get a projective one

(so that the support variety definitely becomes smaller). An example of this is the

Steinberg module Str, the only projective simple module of the rth Frobenius kernel

of some reductive algebraic group G. We have Str = Ind
G(r)

B(r)
k(pr−1)ρ, where k(pr−1)ρ

is the one-dimensional B(r)-module corresponding to the weight (pr− 1)ρ (cf. [Jan,

II.3]), and the variety of this 1-dimensional module is V (B(r)) 6= 0 = V (G(r))Str .

We shall need the following general fact about Rickard idempotents. The proof

is merely a repetition of the one in [BCR2].

Lemma 4.4.1. Let G be an infinitesimal group scheme, H be a closed subgroup

scheme of G and W be a subset of V (G). Let i∗ : V (H) ↪→ V (G) be the embedding

of schemes induced by the inclusion i : H ↪→ G. Then the following two exact

triangles in StMod(H) are stably isomorphic:

T (i−1
∗ (W )) : E(i−1

∗ (W )) → k → F (i−1
∗ (W )) → Ω−1E(i−1

∗ (W ))

and

T (W ) ↓H : E(W ) ↓H→ k → F (W ) ↓H→ Ω−1E(W ) ↓H .
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Proof. We have to show that T (W ) ↓H satisfies universal properties of the ex-

act triangle T (i−1
∗ (W )). Since E(W ) ∈ ~CW , Prop. 3.3.2.2 implies that E(W ) ↓H

∈ ~Ci−1∗ (W ). To check that F (W ) ↓H is Ci−1∗ (W )-local we note that the fact that

V (G)IndG
H(M) ⊂ V (H)M for a finite dimensional H-module M (see, for example,

[NPV, 2.3.1(b)]) implies that for any H-module M in Ci−1∗ (W ), we have IndG
H(M) ∈

CW . Recall that for any finite dimensional G-module N , V (G)N = V (G)N# , where

N# is the k-linear dual of N . Hence, an isomorphism CoindG
H(M) = (IndG

H(M#))#

(cf. [Jan, I.8.15]) implies that V (G)CoindG
H(M) ⊂ V (H)M for a finite dimensional

H-module M . Applying the fact that F (W ) is CW -local, we get

HomH(M, F (W ) ↓H) = HomG(CoindH
G (M), F (W )) = 0.

for any finite dimensional H-module M . Thus, F (W ) ↓H is Ci−1∗ (W )-local. In view

of Remark 4.2.11, we conclude that T (i−1
∗ (W )) ∼= T (W ) ↓H .

Corollary 4.4.2. Let G be an infinitesimal group scheme and H be a closed subgroup

scheme of G. Let M be an H-module. Then

V (G)IndG
H(M) ⊂ V (H)M .

Proof. The embedding of group schemes i : H ⊂ G induces a closed embedding

of affine schemes i∗ : V (H) ↪→ V (G) (cf. [SFB2, 5.4]). We identify V (H) with its

image in V (G).
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Let M = lim−→i∈IMi, where Mi are finite dimensional H-modules. Then

IndG
H(M) = lim−→i∈IIndG

H(Mi)

and, therefore,

V (G)IndG
H(M) ⊂

⋃
i∈I

V (G)IndG
H(Mi)

⊂ V (H).

The last inclusion holds because the assertion of the corollary is known for finite

dimensional modules (cf. [NPV, 2.3.1(b)]).

To prove the corollary it now suffices to check that for any point s ∈
V (G)IndH

G (M) ⊂ V (H), corresponding to a homogeneous prime ideal in k[V (G)],

s is contained in V (H)M . Let V be the Zariski closure of s. Since s ∈ V (H), and

the latter is closed in V (G), we have i−1
∗ (V ) = V ∩V (H) = V . Lemma 4.4.1 implies

that κ(i−1
∗ (V )) is stably isomorphic to κ(V ) ↓H .

Applying Theorem 4.3.5 we get that IndH
G (M)⊗ κ(V ) is not projective ( = not

injective), since s ∈ V (G)IndH
G (M). By the tensor identity,

IndH
G (M)⊗ κ(V ) ∼= IndG

H(M ⊗ κ(V ) ↓H).

Since induction takes injectives to injectives, we conclude that M ⊗ κ(V ) ↓H
∼=

M ⊗ κ(i−1
∗ (V )) is not injective. Since s is a point in V (H), it is still the generic

point of i−1
∗ (V ). Thus, M ⊗ κ(s) (where κ(s) is now constructed in StMod(H)) is

not projective which implies, using Theorem 4.3.5 once again, that s ∈ V (H)M .
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Proposition 4.4.3. Let i : H ↪→ G be a closed embedding of infinitesimal group

schemes and let further H be unipotent. Then for any H-module M ,

V (G)IndG
H(M) = V (H)M .

Proof. Note that an H-module N is projective if and only if IndG
H(N) is projective.

The “only if” part follows from the general fact that Induction takes injectives to

injectives (hence, projectives to projectives). To prove the the other direction, we

use Shapiro’s lemma: H∗(G, IndG
H(N)) = H∗(H, N). If IndG

H(N) is projective, then

H∗(H,N) = 0 for ∗ > 0. Since H is unipotent, N is projective. Now we can prove

the equality of varieties in 4 easy steps: s ∈ VG(IndG
HM) ⇐⇒ IndG

HM ⊗ κ(s) is not

projective ⇐⇒
IndG

H(M ⊗ κ(s)) is not projective (tensor identity) ⇐⇒
M ⊗ κ(s) is not projective over H ⇐⇒ s ∈ VH(M).

Proposition 4.4.4. Let W be a conical closed under specialization subset in V (G).

Then ~CW = {M ∈ StMod(G) : V (G)M ⊂ W}.

Proof. Suppose M ∈ ~CW . We need to show that V (G)M ⊂ W . It suffices to check

this inclusion for the points corresponding to homogeneous prime ideals. By the

definition of ~CW , M is stably isomorphic to lim−→i∈IMi for some finite dimensional

modules Mi whose varieties are contained in W . Let s be a point in Proj V (G)

which does not belong to W . Then the restriction of Mi⊗k(s) to k(s)[ur−1]/u
p
r−1 ⊂

k(s)[Ga(r)]
#, where Ga(r) ⊗ k(s) → G⊗ k(s) is the one-parameter subgroup defined
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by the point s, is projective for all i. Since restriction commutes with filtered

colimits, and a filtered colimit of projective modules is projective, we conclude that

M restricted to the same subalgebra k(s)[ur−1]/u
p
r−1 is projective. Thus, s 6∈ V (G)M .

The inclusion V (G)M ⊂ W follows.

Next assume that V (G)M ⊂ W . By the “tensor product property” and Corol-

lary 4.3.4, M ⊗ F (W ) is projective. This implies, by tensoring the exact triangle

T (W ) with M , that M ⊗ E(W ) ∼= M in StMod(G). Let M ∼= lim−→i∈IMi for some

finite dimensional modules Mi and E(W ) ∼= lim−→j∈JNj for some finite dimensional

modules Nj, whose support varieties V (G)Nj
are contained in W (the latter being

possible by Theorem 4.2.10.I.(ii)). Then M ∼= M ⊗ E(W ) ∼= lim−→(i,j)∈I×JMi ⊗ Nj

and the variety of Mi ⊗ Nj, V (G)Mi⊗Nj
, is contained in V (G)Nj

which, in turn, is

contained in W for all pairs (i, j) ∈ I × J . Thus, M ∈ ~CW .

The following corollary is an immediate application of the proposition above to

the closure under specialization of V (G)M , Cs (V (G)M).

Corollary 4.4.5. For any G-module M there exists a filtered system of finite di-

mensional G-modules {Mi}i∈I such that

(i) M ∼= lim−→i∈IMi

(ii) V (G)Mi
⊂ Cs (V (G)M).

Recall that complexity of a finite dimensional module M is defined to be the

growth of the minimal projective resolution of M . It is proved to be equal to the
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dimension of the support variety of M ([AE]). In [BCR1] the following extension

of the definition of complexity for infinite dimensional modules is given:

Definition 4.4.6. An arbitrary G-module M is said to have complexity c, denoted

c(M), if it can be realized as a filtered colimit of finite dimensional modules of

complexity c but not lower.

For a subset W of V (G) we define the subset dimension of W as follows:

s. dim(W )
def
= max

s∈W
dim(s).

Note that s. dim(W ) = s. dim(Cs (W )). In particular, for a closed subvariety V , its

“subset dimension” coincides with the usual Krull dimension.

Using the notion of “subset dimension” we can formulate an alternative descrip-

tion of the complexity of an infinite dimensional module similar to the one mentioned

above for the finite dimensional case:

Corollary 4.4.7. c(M) = s. dim(V (G)M)

Proof. Let d = s. dim(V (G)M). The inequality c(M) ≤ d follows immediately

from Corollary 4.4.5.

Suppose c(M) < d. By our definition of subset dimension there exists a point

s ∈ V (G)M such that dim(s) = d. Let Ga(r) ⊗ k(s) → G ⊗ k(s) be the one-

parameter subgroup corresponding to s. According to our definition of complexity,

we can realize M as lim−→i∈IMi for some finite dimensional modules Mi whose varieties
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have dimension no greater than c(M). Then, clearly, s /∈ V (G)Mi
, which implies

that Mi ⊗ k(s) restricted to k(s)[ur−1]/u
p
r−1 ⊂ k(s)[Ga(r)]

# is projective for any

i ∈ I. Hence, the restriction of M ⊗ k(s) to the same subalgebra is also projective

as a filtered colimit of projective modules. By the definition of a support cone,

s /∈ V (G)M . The inequality in question follows.

To conclude, we give as promised an example of the failure of the “tensor product

property” for the extension of the cohomological definition of the “support”, for

which we employ the construction of Rickard idempotents in a special case of a

hypersurface defined by a single homogeneous element.

Example 4.4.8. Let ξ ∈ Hn(G, k), where n is a positive even integer. Assume

further that ξ is not nilpotent. Denote by < ξ > the ideal generated by ξ and by

V (< ξ >) the variety of this ideal, i.e. V (< ξ >) = {µ ∈ SpecHev(G, k) : ξ ∈ µ}.
Let Fξ be the filtered colimit of the sequence

k → Ω−nk → Ω−2nk → . . .

where each map corresponds to ξ via the natural isomorphism

Hn(G, k) ∼= Hom(Ω−rnk, Ω−(r+1)nk).

Fξ is well-defined up to a stable isomorphism and comes equipped with a natural map

from k, k → Fξ. Complete this map to an exact triangle in StMod(G):

Eξ → k → Fξ → Ω−1Eξ.
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It can be shown that this exact triangle satisfies the universal properties of the trian-

gle corresponding to the thick subcategory CV (<ξ>), T (V (< ξ >)) and, thus, is stably

isomorphic to it. Hence, V (G)Eξ
= V (< ξ >) and V (G)Fξ

= V (< ξ >)c ∪ 0. In

particular, Eξ is not projective.

The cohomology of Fξ can be computed as the filtered colimit of the sequence

H∗(G, k) → H∗(G, Ω−nk) → H∗(G, Ω−2nk) → . . .

which is equivalent to

H∗(G, k)
× ξ−→ H∗+n(G, k)

× ξ−→ H∗+2n(G, k)
× ξ−→ . . .

The direct limit of this sequence is isomorphic to H∗(G, k)[1/ξ]. The inclusion

AnnHev(G,k)(Ext∗G(Fξ, Fξ)) ⊂ AnnHev(G,k)(Ext∗G(k, Fξ)) =

AnnHev(G,k)(H
∗(G, k)[1/ξ]) = 0

implies that |G|Fξ
= V (AnnHev(G,k)(Ext∗G(Fξ, Fξ))) = |G|.

Since Fξ ⊗ Eξ is projective, the “tensor product property” for “cohomological

supports”, if valid, would imply that

0 = |G|Fξ⊗Eξ
= |G|Fξ

∩ |G|Eξ
= |G| ∩ |G|Eξ

= |G|Eξ

which, in view of Proposition 3.4.1, contradicts the fact that Eξ is not projective.
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