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Abstract. We introduce the space Π(G) of equivalence classes of π-points of
a finite group scheme G, and associate a subspace Π(G)M to any G-module
M . Our results extend to arbitrary finite group schemes G over arbitrary fields
k of positive characteristic and to arbitrarily large G-modules the basic results
about “cohomological support varieties” and their interpretation in terms of
representation theory. In particular, we prove that the projectivity of any (pos-
sibly infinite dimensional) G-module can be detected by its restriction along
π-points of G. Unlike the cohomological support variety of a G-module M ,
the invariant M 7→ Π(G)M satisfies good properties for all modules, thereby
enabling us to determine the thick, tensor-ideal subcategories of the stable
module category of finite dimensional G-modules. Finally, using the stable
module category of G, we provide Π(G) with the structure of a ringed space
which we show to be isomorphic to the scheme ProjH•(G, k).

0. Introduction

In [14], we considered flat maps α : k[t]/tp → kG factoring through an abelian
subgroup scheme C ⊂ G of a finite group scheme G over an algebraically closed
field k. Such maps were called “abelian p-points”. As pointed out to us by Rolf
Farnsteiner (cf [15]), our theory requires us to restrict consideration to flat maps
α which factor through a unipotent abelian subgroup scheme. We call these more
restricted maps “p-points” of G; all of the results of [14] are valid if “abelian p-
point” is replaced by p-point. In particular, for a finite group scheme G over an
algebraically closed field k, [14] introduces a space P (G) of equivalence classes of
p-points, with the equivalence relation determined in terms of the behaviour of re-
strictions of finite dimensional kG-modules. Furthermore, to a finite dimensional
kG-module M , we associated a closed subspace P (G)M . These invariants are gen-
eralizations of Carlson’s rank variety for an elementary abelian p-group E and the
cohomological support variety for a finite dimensional kE-module M [8],[2].

The purpose of this paper is to pursue further our point of view, thereby ex-
tending earlier results to any finite group scheme G over an arbitrary field k of
characteristic p > 0 and to an arbitrary kG-module M . We suggest that our con-
struction of “generalized p-points” (which we call “π-points”) is both more natural
and more intrinsic than previous considerations which utilized a combination of
cohomological and representation-theoretic invariants.

The innovation which permits us to consider finite group schemes over an ar-
bitrary field and their infinite dimensional (rational) representations is the consid-
eration of equivalence classes of flat maps K[t]/tp → KGK which factor through
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some unipotent abelian subgroup scheme CK of GK not necessarily defined over k,
where K/k is some field extension. Our fundamental result is Theorem 3.6 which
asserts that for an arbitrary finite group scheme over a field k there is a natural
homeomorphism

ΨG : Π(G) ∼ // Proj(H•(G, k))
relating the space Π(G) of π-points of G to the projectivization of the affine scheme
given by the cohomology algebra H•(G, k). In other words, consideration of flat
maps K[t]/tp → KGK for field extensions K/k enables us to capture the informa-
tion encoded in the prime ideal spectrum of H•(G, k) rather than simply that of
the maximal ideal spectrum. Indeed, we verify in Theorem 4.2 a somewhat sharper
result, in that we determine (up to a purely inseparable field extension of controlled
p-th power degree) the minimal field of definition of such a π-point in terms of its
image under ΨG.

The need to consider such field extensions K/k when one considers infinite dimen-
sional kG-modules had been recognized earlier. Nevertheless, our results improve
upon results found in the literature for infinite dimensional modules for various
types of finite group schemes over an algebraically closed field [3], [5], [6], [18],
[22], [23]. Perhaps the most important and difficult of these results is Theorem 5.3
which asserts that the projectivity of any (possibly infinite dimensional) module
M for an arbitrary finite group scheme G can be detected “locally” in terms of
the restrictions of M along the π-points of G. This was proved for finite groups
in [6], for unipotent group schemes in [3] and for infinitesimal group schemes in
[23]. This, together with the consideration of certain infinite dimensional modules
introduced by Rickard in [26], provides us with the tools to analyze the tensor-ideal
thick subcategories of the stable category of finite dimensional kG-modules.

Our consideration of the (projectivization) of the prime ideal spectrum rather
than the maximal ideal spectrum of H•(G, k) enables us to associate a good in-
variant (the Π-supports, Π(G)M ⊂ Π(G), of the kG-module M) to an arbitrary
kG-module. This invariant Π(G)M is defined in module-theoretic terms, essentially
as the “subset of those π-points at which M is not projective.” Although Π(G)M

corresponds naturally to the cohomological support variety of M whenever M is
finite dimensional, it does not have an evident cohomological interpretation for infi-
nite dimensional kG-modules. The difference in behaviour of this invariant for finite
dimensional and infinite dimensional kG-modules is evident in Corollary 6.7 which
asserts that every subset of Π(G) is of the form Π(G)M for some kG-module M .
Our analysis is somewhat motivated by and fits with the point of view of Benson,
Carlson, and Rickard [6].

We establish in Theorem 6.3 a bijection between the tensor-ideal thick subcate-
gories of the triangulated category stmod (G) of finite dimensional G-modules and
subsets of Π(G) closed under specialization. This theorem verifies the main conjec-
ture of [18] (for ungraded Hopf algebras), a conjecture first formulated in [20] in the
context of “axiomatic stable homotopy theory” and then considered in [18], [19].
As a corollary, we show that the lattice of thick, tensor-closed subcategories of the
stable module category stmod (G) is isomorphic to the the lattice of thick, tensor-
closed subcategories of Dperf (Proj H•(G, k)), the full subcategory of the derived
category of coherent sheaves on Proj H•(G, k) consisting of perfect complexes.

Finally, Theorem 7.1 demonstrates how the scheme structure of Proj H•(G, k)
can be realized using Π(G) and the category stmod (G).
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We remark that the consideration of π-points suggests the formulation of finer
invariants than Π(G)M which would provide more information about a kG-module
M . In a forthcoming paper [16], the authors and Andrei Suslin formulate the
maximal Jordan type of a finite dimensional representation of a finite group scheme
based on the point of view and results of this paper. This in turn enables the
formulation of the non-maximal support variety of a G-module M which provides
information complementary to that provided by Π(G)M .

Throughout this paper, p will be a prime number and all fields considered will be
of characteristic p. We shall typically denote by k an arbitrary field of characteristic
p and denote by k an algebraic closure of k.

The first author thanks Paul Balmer for helpful comments and insights. The
first author thanks ETH-Zurich for providing a most congenial environment for the
preparation of this paper, and the second author is especially grateful to the Insti-
tute for Advanced Study for its support. The Petersburg Department of Steklov
Mathematical Institute generously offered us the opportunity to work together to
refine our central notion of equivalence of π-points. Finally, we gratefully acknowl-
edge the contribution of Rolf Farnsteiner who observed that for our theory to be
valid we must restrict attention to p-points (and, more generally) π-points, flat maps
which factor through the group algebra of a unipotent abelian subgroup scheme.

1. Recollection of cohomological support varieties

Let G be a finite group scheme defined over a field k. Thus, G has a commutative
coordinate algebra k[G] which is finite dimensional over k and which has a coproduct
induced by the group multiplication on G, providing k[G] with the structure of a
Hopf algebra over k. We denote by kG the k-linear dual of k[G] and refer to kG
as the group algebra of G. Thus, kG is a finite dimensional, co-commutative Hopf
algebra over k.

Examples to keep in mind are that of a finite group π (so that kπ is the usual
group algebra of π) and that of a finite dimensional, p-restricted Lie algebra g (so
that the group algebra in this case can be identified with the restricted enveloping
algebra of g). These are extreme cases: π is totally discrete (a finite, etale group
scheme) and the group scheme G(1) associated to the (p-restricted) Lie algebra of
an algebraic group over k is connected.

By definition, a G-module is a comodule for k[G] (with its coproduct structure)
or equivalently a module for kG. If M is a kG-module, then we shall frequently
consider the cohomology of G with coefficients in M ,

H∗(G,M) ≡ Ext∗G(k, M).

If p = 2, then H∗(G, k) is itself a commutative k-algebra. If p > 2, then the even
dimensional cohomology H•(G, k) is a commutative k-algebra. We denote by

H•(G, k) =

{
H∗(G, k), if p = 2,
Hev(G, k) if p > 2.

As shown in [17], the commutative k-algebra H•(G, k) is finitely generated over
k. Following Quillen [24], we consider the maximal ideal spectrum of H•(G, k),

|G| ≡ Specm H•(G, k).
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Following the work of Carlson [8] and others, for any finite dimensional kG-module
M we consider

|G|M = Specm H•(G, k)/ annH•(G,k) Ext∗G(M,M),

where the action of H•(G, k) on Ext∗G(M, M) is via a natural ring homomorphism
H•(G, k) → Ext∗G(M,M) (so that this annihilator can be viewed more simply as
the annihilator of idM ∈ Ext0G(M,M)).

In this paper, we shall be interested in prime ideals which are not necessarily
maximal. Indeed, this is the fundamental difference between this paper and [14].
We shall not give a special name for Spec H•(G, k), the scheme of finite type over
k whose points are the prime ideals of H•(G, k) or to the scheme
Spec H•(G, k)/ annH•(G,k) Ext∗G(M,M), refinements of |G| and |G|M respectively.

We shall often change the base field k via a field extension K/k. We shall use
the notations

GK = G×Spec k Spec K, MK = M ⊗k K

to indicate the base change of the group scheme G over k and the base change of the
kG-module M to a KGK-module (where KGK = kG ⊗k K will often be denoted
KG).

In [28, 29], a map of schemes

ΨG : Vr(G) → Spec H•(G, k)

is exhibited for a finite, connected group scheme G over k and shown to be a
homeomorphism. Here, Vr(G) is the scheme of 1-parameter subgroups of G, a
scheme representing a functor which makes no reference to cohomology. Moreover,
this homeomorphism restricts to homeomorphisms

ΨG : Vr(G)M → Spec H•(G, k)/ annH•(G,k) Ext∗G(M,M)

for any finite dimensional kG-module M , where once again Vr(G)M is defined
without reference to cohomology. One of the primary objectives of this paper is to
extend this correspondence to all finite group schemes. Even for finite groups other
than elementary abelian p-groups, such an extension has not been exhibited before.

2. π-points of G

We let G be a finite group scheme over a field k. In this section, we introduce
our construction of the π-points of G and establish some of their basic properties.
If f : V → W is a map of varieties or modules over k and if K/k is a field extension
then we denote by fK = f ⊗ 1K : VK → WK the evident base change of f . Given a
map α : A → B of algebras and a B-module M , we denote by α∗(M) the pull-back
of M via α.

Our definition of π-point is an extension of our earlier definition of p-point (as
corrected in [15]), now allowing extensions of the base field k. This enables us to
consider finite group schemes defined over a field k which is not algebraically closed.
Moreover, even if the base field k is algebraically closed, it is typically necessary
to consider more “generic” maps K[t]/tp → KG than those defined over k when
considering infinite dimensional kG-modules.

We remind the reader that the representation theory of K[t]/tp is particularly
simple: a K[t]/tp-module is projective if and only if it is free; there are only finitely
many indecomposable modules, one of dimension i for each i with 1 ≤ i ≤ p.



Π-SUPPORTS FOR MODULES FOR FINITE GROUP SCHEMES 5

Definition 2.1. Let G be a finite group scheme over k. A π-point of G (defined
over a field extension K/k) is a (left) flat map of K-algebras

αK : K[t]/tp → KG

(i.e., a K-linear ring homomorphism with respect to which KG is flat as a left
K[t]/tp-module) which factors through the group algebra KCK ⊂ KGK = KG of
some unipotent abelian subgroup scheme CK of GK (with CK → GK defined over
K, but not necessarily defined over k).

If βL : L[t]/tp → LG is another π-point of G, then αK is said to be a specialization
of βL , written βL ↓ αK , provided that for any finite dimensional kG-module M ,
α∗K(MK) being free implies that β∗L(ML) is free.

Two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG are said to be equivalent,
written αK ∼ βL, if αK ↓ βL and βL ↓ αK .

Observe that the condition that a π-point αK : K[t]/tp → KG factors through
the group algebra of a unipotent abelian subgroup scheme CK ⊂ GK is the only
aspect of the definition of a π-point which uses the Hopf algebra structure of kG.
We point out that the homeomorphism of Theorem 3.6 requires consideration of
π-points αK which factor through the group algebra of unipotent abelian subgroup
schemes CK ⊂ GK defined over field extensions K/k of positive transcendence
degree even in the case in which G = SL2(1) (the first infinitesimal subgroup scheme
of the algebraic group SL2, with group algebra the restricted enveloping algebra of
sl2).

In the following remark we demonstrate that the notion of specialization of π-
points often has a familiar geometric interpretation.

Remark 2.2. Let R be a commutative Noetherian domain over k with a field of
fractions K. Let αR : R[t]/tp → RG be a flat map of R-algebras, and M be a
kG-module of dimension m. Let αK = αR⊗R K : K[t]/tp → KG, and assume that
αK defines a π-point of G (i.e. we assume that αK factors through a unipotent
abelian subgroup scheme of GK). The action of t on α∗K(MK) is given by some
p-nilpotent matrix Aα ∈ Mm(R), and α∗K(MK) is free if and only if the Jordan
form of the matrix Aα consists of Jordan blocks each of which are of size p if and
only if the rank of Aα is p−1

p ·m.
Let φ : R → k be a map of k-algebras such that the base change of αR via φ,

αφ = αR ⊗φ k : k[t]/tp → kG, is a π-point of G. The action of t on α∗φ(Mk) is
given by (Aα)φ = Aα ⊗φ k ∈ Mm(k), and, hence, α∗φ(Mk) is free as k[t]/tp-module
if and only if the rank of (Aα)φ is p−1

p ·m. This is the case only if the rank of Aα

is p−1
p · m. Therefore, α∗φ(Mk) being free implies α∗K(MK) being free. Since this

works for any module M , we conclude that αφ is a specialization of αK in the sense
of Definition 2.1.

The following three examples involve sufficiently small finite group schemes G
that their analysis is quite explicit. Nonetheless, the justification of the “genericity”
assertions in these examples requires Theorem 3.6.

Example 2.3. Let G be the finite group Z/p×Z/p, so that kG ' k[x, y]/(xp, yp).
A map αK : K[t]/tp → KG is flat if and only if t is sent to a polynomial in x, y
with non-vanishing linear term [14, 2.2]. Such a flat map αK is equivalent to a flat
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map βK : K[t]/tp → KG if and only if αK(t) and βK(t) have linear terms which
are scalar multiples of each other [14, 2.2,2.6].

For example, a group homomorphism Z/p → Z/p × Z/p sending a generator σ
of Z/p to (ζi, ξj) where ζ, ξ are generators of Z/p, induces a map of group algebras

k[σ]/(σp − 1) → k[ζ, ξ]/(ζp − 1, ξp − 1); σ 7→ ζiξj .

Viewed as a map of algebras, this is equivalent to α : k[t]/tp → k[x, y]/(xp, yp)
sending t to ix+ jy since the images of the nilpotent generator under the two maps
differ by a polynomial in the generators of the augmentation ideal without linear
term.

Thus, any equivalence class has a representative which is given by a linear poly-
nomial in x and y, unique up to scalar multiple. Let K0 = k(z, w), the field of
fractions of the polynomial ring k[z, w]. Let ηK0 : K0[t]/tp → K0[x, y]/(xp, yp) be
the map that sends t to zx + wy. Then any flat map α : k[t]/tp → k[x, y]/(xp, yp)
defined by sending t to a linear polynomial on x and y is a “specialization” of ηK0

in the sense that we get α via specializing z, w to some elements of k. This is easily
seen to imply that ηK0 ↓ α.

Indeed, we can be more efficient in defining a “generic” π-point for G, for we
observe that any α : k[t]/tp → k[x, y]/(xp, yp) defined by sending t to a linear
polynomial in x and y is a “specialization” of

ξk(z) : k(z)[t]/tp → k(z)[x, y]/(xp, yp), t 7→ zx + y.

Namely, the flat map

φa,b : k[t]/tp → k[x, y]/(xp, yp), t 7→ ax + by

with a, b ∈ k is a specialization of ξk(z): if b 6= 0 (respectively, a 6= 0), then φa,b is
equivalent to the specialization of ξk(z) obtained by setting z = a

b (resp., replacing
ξk(z) by the equivalent ξ′k(z) : k(z) → k(z)[x, y]/(xp, yp), t 7→ x + 1

z y and setting
1/z = b

a ).
We give a direct proof of the fact that any π-point φa,b is a specialization of

ξk(z) in the sense of Definition 2.1 (which follows in much greater generality from
Corollary 4.3, for example). We assume b 6= 0. Let M be a kE-module and
suppose φ∗a,b(M) is free. Write φ∗a,b(M) = ⊕ (k[t]/tp) ei, where {ei} for a basis for
φ∗a,b(M) as a free k[t]/tp-module. Since (ax + by)p−1ei 6= 0 in M , we conclude that
(zx + y)p−1ei 6= 0 in M ⊗ k(z). Therefore, M ⊗ k(z) ' ⊕ k(z)[t]/tp ei and thus is
free. In fact, we shall be able to conclude that any π-point αK is a specialization
of ξk(z) in the sense of Definition 2.1.

Example 2.4. Let E ∼= (Z/2)×3, char k = 2, {g1, g2, g3} be chosen generators of
E. As in Example 2.3, any π-point of kE is a specialization of

ηk(x,y) : k(x, y)[t]/tp → k(x, y)E, t 7→ x(g1 − 1) + y(g2 − 1) + (g3 − 1).

Let Ma,b,c be a 4-dimensional kE-module indexed by the triple a, b, c ∈ k with
action of g1, g2, g3 given by

g1 7→




1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1


 g1 7→




1 0 0 0
0 1 0 0
a 0 1 0
0 b 0 1


 g1 7→




1 0 0 0
0 1 0 0
0 c 1 0
1 0 0 1



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The computation of [4, II.5.8] together with the homeomorphism of Theorem 3.6
implies that

αu,v,w : k[t]/tp → kE, t 7→ u(g1 − 1) + v(g1 − 1) + w(g3 − 1)

satisfies the condition that α∗s,t,u(Ma,b,c) is not projective if and only if 〈u, v, w〉 ∈
P2 lies on the quadric Qa,b,c defined as the locus of the homogeneous polynomial
(x + ay)(x + by) = cz2. (In the terminology to be introduced in Definition 3.1,
Π(E)Ma,b,c

⊂ Π(E) equals the quadric Qa,b,c).
Thus, for c 6= 0, every π-point of kE for which the restriction of Ma,b,c is not

projective is a specialization of the π-point given as

αK0 : K0[t]/tp → K0E; αK0(t) = x(g1 − 1) + y(g2 − 1) + (g3 − 1),

where K0 = frac{k[x, y]/(x + ay)(x + by)− c}.
Example 2.5. Consider G = (SL2)(1), the first infinitesimal kernel of the algebraic
group SL2, and assume that p > 2 for simplicity. Then the group algebra kG can be
identified with the restricted enveloping algebra of sl2, the (p-restricted) Lie algebra
of 2×2 matrices of trace 0. We can explicitly describe kG as the (non-commutative)
algebra given by

kG = k{e, f, h}/〈ep, fp, hp − h, he− eh− 2e, hf − fh + 2f, ef − fe− h〉.
Let K/k be a field extension. A choice of values (E, F,H) ∈ K, not all 0 and
satisfying H2 = −EF , determines a flat map

K[t]/tp → KG, t 7→ Ee + Ff + Hh.

If we let xi,j denote the natural coordinate functions on 2× 2 matrices, then the
variety of (p-) nilpotent elments is given by

N = Spec k[x1,1, x1,2, x2,1]/x2
1,1 + x1,2x2,1.

Let K0 denote the field of fraction of N ,

K0 = frac{k[x1,1, x1,2, x2,1]/x2
1,1 + x1,2x2,1}.

Then any flat map K[t]/tp → KG is a specialization of the following “generic” flat
map:

K0[t]/tp → K0G, t 7→ x1,2e + x2,1f + x1,1h.

As in Example 2.3, we readily verify that we can more efficiently define this flat
map as

frac{k[x, y]/(1 + xy)}[t]/tp → frac{k[x, y]/(1 + xy)}G, t 7→ ye + xf + h.

The proof of the following proposition follows immediately from the equality

(αΩ)∗(MΩ) = (α∗K(MK))Ω
for any triple Ω/K/k of field extensions and kG-module M and any π-point αK :
K[t]/tp → KG.

Proposition 2.6. Let G be a finite group scheme over a field k. Let αK : K[t]/tp →
KG, βL : L[t]/tp → LG be π-points of G. Then the following conditions are
equivalent:

(1) αK ∼ βL.
(2) For some field extension Ω/k containing both K and L, αΩ ∼ βΩ.
(3) For any field extension Ω/k containing both K and L, αΩ ∼ βΩ.
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It is worth observing that the equivalence of αΩ, βΩ as π-points of G does not
imply their equivalence as π-points of GΩ (because for the latter one must test
projectivity on all finite dimensional ΩGΩ-modules and not simply those which arise
from kG-modules). As we shall see, this can be reformulated as the observation
that the space of π-points of GΩ does not map injectively to the space of π-points
of G. We discuss this further prior to Theorem 4.6.

The preceding proposition admits the following two corollaries concerning the
naturality properties of π-points. The first follows immediately from the observation
that the image under a map of group schemes of a unipotent abelian finite group
scheme is once again a unipotent abelian finite group scheme. Namely, if C ′ →
C is a quotient map of affine group schemes with C ′ a unipotent abelian finite
group scheme, then kC ′ → kC is a surjective homomorphism (cf. [31, 15.1]);
since kC ′ is commutative and local, so is kC. The second corollary is essentially a
tautology, based on the observation that for field extensions Ω/L/K/k, a π-point
αΩ : Ω[t]/tp → ΩG of the group scheme GL can be naturally viewed as a π-point
of GK .

Corollary 2.7. Let j : H → G be a flat homomorphism of finite group schemes over
a field k (i.e., assume with respect to the induced map kH → kG of group algebras
that kG is flat as a left kH-module). Let j∗ : kH → kG be the induced map on
group algebras. The composition with j∗ sending a π-point αK : K[t]/tp → KH
to j∗ ◦ αK : K[t]/tp → KG induces a well defined map from the set of equivalence
classes of π-points of H to the set of equivalence classes of π-points of G.

Corollary 2.8. Let G be a finite group scheme over the field k, L/K/k be field
extensions. Then the natural inclusion of the set of π-points αΩ : Ω[t]/tp → ΩG into
the set of π-points βF : F [t]/tp → FG, where Ω/L and F/K are field extensions,
induces a well defined map from the set of equivalence classes of π-points of GL to
the set of equivalence classes of π-points of GK .

The following construction of a finite dimensional kG-module Lζ associated to
a (homogeneous) element ζ ∈ H•(G, k) is due to J. Carlson [9]. We remind the
reader of Heller shifts Ωj(M) of a kG-module constructed in terms of a minimal
projective resolution of M (cf. [4]). For ζ ∈ H2i(G, k), let Lζ be the kG-module
defined by the short exact sequence

(2.8.1) 0 → Lζ → Ω2i(k) → k → 0,

where the map Ω2i(k) → k represents ζ ∈ HomG(Ω2i(k), k) = Ext2i
G(k, k).

These Carlson modules Lζ will be used frequently in what follows.

Proposition 2.9. Let G be a finite group scheme over a field k and let αK :
K[t]/tp → KG be a π-point of G. Let ζ ∈ H2i(G, k) and let ker{α∗K} denote the
kernel of the algebra homomorphism α∗K : H•(GK ,K) → H•(K[t]/tp,K).

Then ζ ∈ ker{α∗K} ∩ H•(G, k) if and only if α∗K(Lζ,K) is not projective as a
K[t]/tp-module, where we use Lζ,K to denote (Lζ)K .

Proof. Since the Heller operators commute with field extensions, LζK = Lζ,K as
KG-modules, where for clarity we have used ζK ∈ H•(G,K) to denote the image of
ζ ∈ H•(G, k). We apply the flat map αK to the short exact sequence of KG-modules
to obtain a short exact sequence of K[t]/tp-modules:

0 → α∗K(Lζ,K) → α∗K(Ω2i(K)) → K → 0.
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As argued in [14, 2.3], α∗K(ζK) 6= 0 if and only if α∗K(Lζ,K) = α∗K(LζK ) is projective.
¤

We now present our cohomological reformulation of specialization of π-points of G.

Theorem 2.10. Let G be a finite group scheme over k and αK , βL be two π-points
of G. Then βL ↓ αK if and only if

(2.10.1) (ker{β∗L}) ∩H•(G, k) ⊂ (ker{α∗K}) ∩H•(G, k).

Proof. We first show the “only if” part. Let αK be a specialization of βL. Let ζ be
any homogeneous element in (ker{β∗L}) ∩ H•(G, k). By Proposition 2.9, β∗L(Lζ,L)
is not projective. Since βL ↓ αK , we conclude that α∗K(Lζ,K) is not projective.
Applying 2.9 again, we get that ζ ∈ (ker{α∗L}) ∩ H•(G, k). Since the ideals under
consideration are homogeneous, the asserted inclusion follows.

Conversely, suppose αK is not a specialization of βL. By Proposition 2.6, we
can assume that both αK and βL are defined over the same algebraically closed
field Ω/k. Clearly, if we enlarge the field, the intersections (ker{β∗L}) ∩ H•(G, k)
and (ker{α∗K})∩H•(G, k) do not change, so that we may assume that K = L = Ω,
with Ω algebraically closed.

Then, by Definition 2.1, there exists a finite dimensional kG-module M such
that α∗Ω(MΩ) is projective but β∗Ω(MΩ) is not. For a finite dimensional module,
there is a natural isomorphism Ext∗GΩ

(MΩ, MΩ) ' Ext∗G(M, M)) ⊗k Ω. Further-
more, since tensoring with Ω is exact, we have annH•(G,k)(Ext∗G(M,M) ⊗k Ω) =
annH•(GΩ,Ω)(Ext∗GΩ

(MΩ,MΩ)).
Theorem [14, 4.11] now implies that

(2.10.2)
annH•(G,k)(Ext∗G(M, M))⊗k Ω = annH•(GΩ,Ω)(Ext∗GΩ

(MΩ,MΩ)) ⊂ ker{β∗Ω},
and
(2.10.3)

annH•(G,k)(Ext∗G(M, M))⊗k Ω = annH•(GΩ,Ω)(Ext∗GΩ
(MΩ,MΩ)) 6⊂ ker{α∗Ω}.

Intersecting (2.10.2) with H∗(G, k), we get

(2.10.4) annH•(G,k)(Ext∗G(M, M)) ⊂ ker{β∗Ω} ∩H•(G, k)

On the other hand, (2.10.3) implies that

(2.10.5) annH•(G,k)(Ext∗G(M, M)) 6⊂ ker{α∗Ω} ∩H•(G, k).

Indeed, if this inclusion did hold, then by tensoring with Ω and then applying the
fact that (ker{α∗Ω} ∩ H•(G, k)) ⊗k Ω ⊂ ker{α∗Ω}, we would get a contradiction to
(2.10.3). Putting (2.10.4) and (2.10.5) together we get

(ker{β∗Ω}) ∩H•(G, k) 6⊂ (ker{α∗Ω}) ∩H•(G, k),

thereby proving the converse.
¤

As an immediate corollary, we add the following equivalent formulation of equiv-
alence of π-points to those of Proposition 2.6 which will play a key role in the proof
of our main theorem, Theorem 3.6.

Corollary 2.11. Let G be a finite group scheme over k and αK , βL be two π-points
of G. Then βL ∼ αK if and only if

(ker{β∗L}) ∩H•(G, k) = (ker{α∗K}) ∩H•(G, k).
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3. The homeomorphism ΨG : Π(G) → ProjH•(G, k)

In this section, we show for an arbitrary finite group scheme G over an arbitrary
field k of characteristic p > 0 that the prime ideal spectrum of the cohomology
ring can be described in terms of π-points of G. This is a refinement of [14] which
provides a representation theoretic interpretation of the maximal ideal spectrum of
the cohomology ring of G provided that k is algebraically closed.

The bijectivity of Theorem 3.6 below in the special case in which the finite
group scheme is an elementary abelian p-group E and k is algebraically closed is
equivalent to the foundational result of J. Carlson identifying the (maximal ideal)
spectrum of H•(E, k) with the rank variety of “shifted subgroups” of E [8]; the
fact that this bijection is a homeomorphism in this special case is equivalent to
“Carlson’s Conjecture” proved by Avrunin and Scott [2]. In the special case in
which G is connected, the homeomorphism of Theorem 3.6 is a weak form of the
theorem of Suslin-Friedlander-Bendel which asserts that Spec H•(G, k) is isogenous
to the affine scheme of 1-parameter subgroups of G [28].

Let αK : K[t]/tp → KG be a π-point, and denote by α∗K : H•(G, K) →
H•(Z/p,K) the induced map in cohomology. Let K be the algebraic closure of
K. As it is shown in the proof of [14, 3.4], the map α∗

K
is finite and, hence, the

kernel of this map, ker{α∗
K
}, is a homogeneous prime ideal strictly smaller than the

augmentation ideal of H•(G,K). Hence, ker{α∗K} = ker{α∗
K
} ∩H•(G,K) does not

contain the augmentation ideal of H•(G,K).

Definition 3.1. For any finite group scheme G over a field k, we denote by Π(G)
the set of equivalence classes of π-points of G,

Π(G) ≡ {[αK ]; αK : K[t]/tp → KG is a π−point of G}.
For a finite dimensional kG-module M , we denote by

Π(G)M ⊂ Π(G)

the subset of those equivalence classes [αK ] of π-points such that α∗K(MK) is not
projective for any representative αK : K[t]/tp → KG of the equivalence class [αK ].
We say that Π(G)M is the Π-support of M .

Finally, we denote by

(3.1.1) ΨG : Π(G) → Proj H•(G, k)

the injective map sending an equivalence class [αK ] of π-points to the homogeneous
prime ideal ker{α∗K} ∩H•(G, k).

The fact that ΨG is well defined and injective is immediately implied by Theorem
2.10 and the above observation that ker{α∗K} is not the augmentation ideal of
H•(G,K) (so that ker{α∗K} ∩H•(G, k) is not the augmentation ideal of H•(G, k)).

Theorem 4.6 will enable us to retain in Definition 5.1 the same definition for
kG-modules M which are possibly infinite dimensional. Moreover, Propositions 3.2
and 3.3 will remain valid for infinite dimensional kG-modules.

The following proposition, known as the “tensor product property”, is somewhat
subtle because a π-point αK : K[t]/tp → KG need not respect the coproduct struc-
ture and thereby need not commute with tensor products. This tensor product
property is one of the most important properties of Π-supports. The correspond-
ing statement for cohomological support varieties has no known proof using only
cohomological methods.
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Proposition 3.2. Let G be a finite group scheme over a field k and let M, N be
finite dimensional kG-modules. Then

Π(G)M⊗N = Π(G)M ∩Π(G)N .

Proof. For any π-point α : K[t]/tp → KG and any algebraically closed field ex-
tension Ω/k, α∗K((M ⊗ N)K) is projective as a K[t]/tp-module if and only if
α∗Ω((M ⊗ N)Ω) is projective as a Ω[t]/tp-module. On the other hand, [14, 3.9]
asserts that α∗Ω((M ⊗ N)Ω) is projective if and only if either α∗Ω(MΩ) or α∗Ω(NΩ)
is projective which is the case if and only if either α∗K(MK) or α∗K(NK) is projec-
tive. ¤

We now provide a list of other properties of the association M 7→ Π(G)M which
follow naturally from our π-point of view. Namely, each of the properties can
be checked one π-point at a time, thereby reducing the assertions to elementary
properties of K[t]/tp-modules.

Proposition 3.3. Let G be a finite group scheme over a field k and let M1,M2,M3

be finite dimensional kG-modules. Then
(1) Π(G)k = Π(G).
(2) If P is a projective kG-module, then Π(G)P = ∅.
(3) If 0 → M1 → M2 → M3 → 0 is exact, then

Π(G)Mi ⊂ Π(G)Mj ∪Π(G)Mk

where {i, j, k} is any permutation of {1, 2, 3}.
(4) Π(G)M1⊕M2 = Π(G)M1 ∪Π(G)M2 .

The topology we give to Π(G) is the natural extension of that defined on the
space P (G) of p-points for G over an algebraically closed field given in [14, 3.10].
Observe that the formulation of this topology is given without reference to coho-
mology, although the verification that our topology satisfies the defining axioms of
a topology does involve cohomology.

Proposition 3.4. Let G be a finite group scheme over a field k. The class of
subsets of Π(G),

{Π(G)M ⊂ Π(G) : M finite dimensional G−module},
is the class of closed subsets of a (Noetherian) topology on Π(G).

Moreover, we have the equality

Π(G)M = Ψ−1
G (Proj(H•(G, k)/ annH•(G,k) Ext∗G(M, M)))

for any finite dimensional kG-module M , where ΨG is the map of 3.1.1.

Proof. By Propositions 3.2 and 3.3, our class contains ∅, Π(G) itself, and is closed
under finite intersections and finite unions.

Observe that Proj H•(G, k) is Noetherian and that each

Proj(H•(G, k)/ annH•(G,k) Ext∗G(M, M)) ⊂ Proj H•(G, k)

is closed. Therefore, to complete the verification that we have given Π(G) a Noe-
therian topology, it suffices to verify the asserted equality. This is equivalent to
the following assertion for any finite dimensional kG-module M and any π-point
αK : K[t]/tp → KG: namely, α∗K(MK) is not projective if and only if ker{α∗K}
contains annH•(G,k) Ext∗G(M, M). By base change from k to the algebraic closure
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of K, we may assume that k is algebraically closed and K = k. In this case, αK

is a p-point of G and the equality is verified (with Π(G)M ⊂ Π(G) replaced by
P (G)M ⊂ P (G)) in [14, 4.8] as corrected in [15]. ¤

Remark 3.5. We call Π(G) with this topology the space of π-points of G.

We now verify that our space Π(G) is related by a naturally defined homeomor-
phism to Proj H•(G, k).

Theorem 3.6. Let G be a finite group scheme over a field k, let ProjH•(G, k)
denote the space of homogeneous prime ideals (excluding the augmentation ideal) of
the graded, commutative algebra H•(G, k) equipped with the Zariski topology, and
let Π(G) denote the set of π-points of G provided with the topology of Proposition
3.4.

Then

ΨG : Π(G) → ProjH•(G, k), [αK ] 7→ ker{α∗K} ∩H•(G, k)

is a homeomorphism.
Moreover, if j : H → G is a flat homomorphism of finite group schemes over k,

then the following square commutes:

(3.6.1)

Π(H)

²²

ΨH // Proj H•(H, k)

²²
Π(G)

ΨG // Proj H•(G, k)

In this square, the left vertical arrow is given by Corollary 2.7 and the right vertical
arrow by the map H•(H, k) ← H•(G, k) induced by H → G.

Furthermore, if K/k is a field extension, then the following square commutes:

(3.6.2)

Π(GK)

²²

ΨGK // Proj H•(GK ,K)

²²
Π(G)

ΨG // Proj H•(G, k)

In this square, the left vertical arrow is given by Corollary 2.8 and the right vertical
arrow by the base change map H•(G, k) → H•(GK ,K).

Proof. The verifications of the commutativity of squares (3.6.1) and (3.6.2) are
straight-forward, and we omit them.

The injectivity of ΨG is given by Theorem 2.10 (as stated in Definition 3.1). To
prove surjectivity, we consider a point x ∈ ProjH•(G, k) with residue field k(x)
and base change to the algebraic closure K of k(x), so that x is the image of a K-
rational point x ∈ Proj H•(GK ,K). The commutativity of square (3.6.2) enables
us to replace k by K, and thus reduces us to showing the surjectivity of ΨG on
k-rational points, with k algebraically closed. This is proved in [14, 4.8].

The equality in the statement of Proposition 3.4 implies that the bijective map
ΨG sends a closed subset (which by definition is of the form Π(G)M ) of Π(G) to a
closed subset of ProjH•(G, k), thereby establishing the continuity of (ΨG)−1.

To complete the proof that ΨG is a homeomorphism, it suffices to show that ΨG

is continuous, i.e. that the preimage of any closed subset of ProjH•(G, k) is closed
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in Π(G). Hence, the theorem is implied by the following Proposition which is of
interest on its own.

Proposition 3.7. Let G be a finite group scheme over a field k and I ⊂ H•(G, k)
be a homogeneous ideal generated by homogeneous elements ζ1, . . . , ζn. Then

(3.7.1) Ψ−1
G (V (I)) = Π(G)Lζ1⊗···⊗Lζn

,

where V (I) ⊂ Proj H•(G, k) is the zero locus of the homogeneous ideal I, and Lζi

are the Carlson modules as introduced in 2.8.1.

Proof. We first consider the case in which I = 〈ζ〉 ⊂ H•(G, k) is generated by
a single element ζ. Let αK be a π-point of G. The bijectivity of ΨG implies
that [αK ] ∈ Ψ−1

G (V (〈ζ〉) if and only if ζ ∈ ΨG([αK ]) = ker{α∗K} ∩ H•(G, k). By
Proposition 2.9, ζ ∈ ker{α∗K} ∩ H•(G, k) if and only if α∗K(Lζ,K) is not projective.
We conclude that [αK ] ∈ Ψ−1

G (V (〈ζ〉)) if and only if [αK ] ∈ Π(G)Lζ
. Hence,

Ψ−1
G (V (ζ)) = Π(G)Lζ

.
Consequently, if I is generated by ζ1, . . . ζn, then we have

Ψ−1
G (V (I)) = Ψ−1

G (V (〈ζ1〉)∩ · · · ∩ V (〈ζn〉)) = Ψ−1
G (V (〈ζ1〉))∩ · · · ∩Ψ−1

G (V (〈ζn〉)) =

Π(G)Lζ1
∩ · · · ∩Π(G)Lζn

= Π(G)Lζ1⊗···⊗Lζn

where the last equality is implied by the tensor product property (Proposition 3.2).
¤

Applying ΨG to the equality (3.7.1) and using Proposition 3.4 we get the follow-
ing result which is an extension to prime ideal spectra of the corresponding result
for k-rational points with k algebraically closed which is proved in [9] for finite
groups and in [29] for infinitesimal group schemes.

Corollary 3.8. Let G be a finite group scheme over a field k and I ⊂ H•(G, k) be
a homogeneous ideal generated by homogeneous elements ζ1, . . . , ζn. Then

V (I) = Proj(H•(G, k)/ annH•(G,k) Ext∗G(M,M)))

where V (I) ⊂ Proj H•(G, k) is the zero locus of the homogeneous ideal I, and
M = ⊗iLζi .

4. Applications of the homeomorphism Ψ

In this section, we give some first applications of Theorem 3.6.

Remark 4.1. Let G be a finite group scheme over k and let A denote the coordinate
algebra of G, A = k[G]. By definition, π0(G) is the spectrum of the maximal
separable subalgebra of A. The projection G → π0(G) admits a splitting if and
only if the composition Gred → G → π0(G) is an isomorphism; i.e., if and only if
A modulo its nilradical N ⊂ A is a separable algebra. The two conditions that the
projection GF → π0(GF ) split and that π0(GF ) be constant are equivalent to the
condition that AF /NF is isomorphic to a product of copies of F , where AF = A⊗kF
and NF ⊂ AF is the nilradical of AF . Since Ak/Nk is isomorphic to a product of
copies of k (where k is an algebraic closure of k) and since A is finite dimensional
over k, we may therefore choose some F/k finite over k such that the projection
GF → π0(GF ) splits (so that GF is a semi-direct product G0

F o π0(GF )) and that
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π0(GF ) is a constant group scheme. By perhaps taking F to be a somewhat larger
finite extension of k, we can insure that G0

F is geometrically connected (i.e., that
the base change of G0

F to any extension L/F is connected).

Utilizing Theorem 3.6, we obtain the following result concerning the field of
definition of a representative of a π-point αK .

Theorem 4.2. Let G be a finite group scheme over k and let F be a finite field
extension F/k with the property that the projection GF → π0(GF ) splits and that
π0(GF ) is a constant group scheme. Let r denote the height of the connected com-
ponent G0 ⊂ G.

For any π-point αK : K[t]/tp → KGK of G, let k[α] denote the residue field of
ΨG([αK ]) ∈ ProjH•(G, k). Then αK is equivalent to some π-point βL : L[t]/tp →
LGL with L a purely inseparable extension of degree ≤ pr of the composite F ·k[α].

Proof. To prove the proposition we may replace G by GF ; in other words, we may
(and will) assume that G ' G0o π0(G) with π0(G) constant and G0 geometrically
connected. We consider some π-point αK : K[t]/tp → KGK of G.

Let τ denote the finite group π0(G). Suslin’s detection theorem [27] asserts that
modulo nilpotents any homogeneous element of H•(G, k) has a non-zero restriction
via some group homomorphism of the form Ga(r)L ×E → GL for some field exten-
sion L/k and some elementary abelian subgroup E ⊂ τ . Since G = G0 o τ such a
map must factor through some subgroup of G of the form (G0)E×E. Consequently,
the natural map

H•(G, k) →
⊕

E⊂τ

H•((G0)E × E, k)

has nilpotent kernel, where the sum is indexed by conjugacy classes of elementary
abelian p-subgroups of τ . This implies that any point of ProjH•(G, k) lies in the
image of Proj H•((G0)E × E, k) for some elementary abelian p-subgroups E ⊂
τ . The naturality of the homeomorphism ΨG of Theorem 3.6 (with respect to
(G0)E × E → G) implies that [αK ] lies in the image of Π((G0)E × E) for such an
elementary abelian p-group E ⊂ τ .

Since the height of any infinitesimal subgroup scheme (G0)E ⊂ G0 is at most r,
it suffices to consider group schemes of the form G′ = (G′)0×E for some elementary
abelian p-group E of rank s. Let r′ be the height of the connected component (G′)0.

Assume first that (G′)0 is trivial, so that G′ = E. Then a choice of generators
for E determines the rank variety V (E) and we can identify Proj(V (E)) with
Π(E) – namely, each shifted cyclic subgroup of KE is a π-point of E, and we
can represent any equivalence class of π-points by such a cyclic shifted subgroup.
Then, the homeomorphism ΨE : Π(E) ' ProjH•(E, k) refines to an isomorphism
of k-algebras k[x1, . . . , xs] ∼= H•(E, k)red. Here, the coordinate algebra of the rank
variety is identified with k[x1, . . . , xs], so that a shifted cyclic subgroup

∑s
i=1 ai(gi−

1) is identified with
∑s

i=1 ai, where {gi, . . . , gs} is a fixed choice of generators of
E; the map k[x1, . . . , xs] → H•(G, k)red is given by sending xi to the dual of gi if
p = 2 and to the Bockstein of the dual of gi if p > 2. In particular, any π-point
αK : K[t]/tp → KE can be represented by a π-point defined over k[α].

Assume now that s = 0, so that (G′)0 = G′. Let V ((G′)0) denote the scheme
of 1-parameter subgroups of (G′)0. By [29, 5.5], there is a natural k-algebra homo-
morphism

ψ : H•((G′)0, k) → k[V ((G′)0)]
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the image of which contains k[V ((G′)0)]p
r

. Thus, the bijective map Ψ(G′)0 :
V ((G′)0) → Spec H•((G′)0, k) induces a map on residue fields which is an iso-
morphism up to a purely inseparable extension of degree at most pr. This clearly
implies the same assertion for Ψ(G′)0 : Proj V ((G′)0) → ProjH•((G′)0, k). We con-
clude that any π-point αK : K[t]/tp → K(G′)0 can be represented by a π-point
defined over a purely inseparable extension of k[α] of degree at most pr.

More generally, consider G′ = (G′)0 × E. For any (scheme-theoretic) point
0 6= x = (x1, x2) ∈ Spec (H•((G′)0, k) ⊗ H•(E, k)), k(x) equals the composite
(inside some universal field extension of k) of k(x1) and k(x2), and moreover k(x)
is the residue field of the corresponding point of Proj H•(G, k). As argued in [14,
4.1], every equivalence class of π-points of G is represented by a sum of π-points of
the form βF ⊗ 1 + 1 ⊗ γL for π-points βF , γL of (G′)0, E respectively. Thus, this
general case follows from the two special cases considered above.

¤
Essentially by definition, the condition (2.10.1):

(ker{β∗L}) ∩H•(G, k) ⊂ (ker{α∗K}) ∩H•(G, k),

holds if and only if (ker{α∗K})∩H•(G, k) lies in the closure of (ker{β∗L})∩H•(G, k)
as points of Proj H•(G, k). Thus, Theorems 2.10 and 3.6 imply the following topo-
logical interpretation of specialization of π-points.

Proposition 4.3. Let G be a finite group scheme over k, and let αK , βL be π-points
of G. Then βL ↓ αK if and only if ΨG(αK) ∈ ProjH•(G, k) lies in the closure of
ΨG(βL).

Consequently, the set of π-points of G which are specializations of a given π-point
αK form a closed subset {[αK ]} ⊂ Π(G).

Proposition 4.4. Let k/k′ be a field extension and σ : k → k a field automorphism
over k′. Assume that the finite group scheme G over k is defined over k′, so that
G = G′ ×k′ Spec k for some group scheme G′ defined over k′. Then there is a
natural action of σ on Π(G), [α] 7→ [ασ], which commutes with the homeomorphism
ΨG : Π(G) → Proj H•(G, k), where the action on the right is induced by the map

σ ⊗ 1 : H•(G, k) = k ⊗k′ H•(G′, k′) → k ⊗k′ H•(G′, k′) = H•(G, k).

Moreover, if M is a kG-module defined over k′, and αK : k[t]/tp → KGK is a
π-point, then (ασ

K)∗(MK) is projective if and only if α∗K(MK) is projective.

Proof. Let αK : K[t]/tp → KG be a π-point of G. By replacing K/k by a finite
extension of K if necessary, we may assume that the automorphism σ of k/k′

extends to an automorphism σ̃ : K → K over k′. Then σ̃ defines a map of k′-
algebras

σ̃ : KG = K ⊗k′ k′G′
σ̃⊗1 // K ⊗k′ k′G′ = KG

We define ασ̃
K : K[t]/tp → KG to be the K-algebra map which sends t to (αK(t))σ̃ =

σ̃(αK(t)). Since σ̃ : KG → KG induces a map in cohomology

H•(GK ,K) = K ⊗k′ H•(G′, k′)
σ̃⊗1 // K ⊗k′ H•(G′, k′) = H•(GK ,K),

which is again twisting by σ̃ we get

ker{(ασ̃
K)∗} = (ker{α∗K})σ̃,
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where we denote by P σ̃ the image of a homogeneous prime ideal P ⊂ H•(GK ,K)
under the action of σ̃. Since H•(GK , K) σ̃⊗1→ H•(GK ,K) restricts to H•(G, k) σ⊗1→
H•(G, k), we further conclude that

ΨG([ασ̃
K ]) = ker{(ασ̃

K)∗} ∩H•(G, k)) = (ker{(αK)∗})σ̃ ∩H•(G, k)) =

(ker{α∗K} ∩H•(G, k))σ = (ΨG([αK ]))σ

Since ΨG is an isomorphism on the equivalence classes of π-points, we get that send-
ing αK to ασ̃

K determines a well defined action on Π(G): [αK ] 7→ [ασ̃
K ]. Moreover,

the action does not depend upon the choice of extension σ̃ of σ, and is compatible
with the homeomorphism ΨG.

Let M be a kG-module defined over k′ and write M = k ⊗k′ M ′. If ρ : k′G′ →
Endk′(M ′) specifies the k′G′-module M ′, then ρK(ασ̃

K(t)) when viewed as a matrix
is simply the result of applying σ̃ to the matrix entries of ρK(αK(t)). Consequently,
we see that (ασ̃

K)∗(MK) ∼= (αK)∗(MK). Thus, α∗K(MK) is free if and only if
(ασ̃

K)∗(MK) is free.
¤

Let p ∈ ProjH•(G, k) be a closed point which is rational over a finite separable
extension F/k but is not k-rational, and let p̃, q̃ ∈ Proj H•(GF , F ) be distinct points
mapping to p. Choose π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG with the
property that ΨGF

([αK ]) = p̃, ΨGF
([βL]) = q̃. Then for every finite dimensional

kG-module M , α∗K(MK) is projective if and only if β∗L(ML) is projective; however,
there exists a finite dimensional FGF -module N such that α∗K(NK) is projective
and β∗(NL) is not projective.

To further illustrate the behaviour of the map Π(GK) → Π(G) of Corollary 2.8,
we determine the pre-images of this map in the special case of Example 2.3.

Example 4.5. We adopt the notation and conventions of Example 2.3 and let K =
k(z), the field of fractions of “generic” π-point of G = Z/p × Z/p. As established
in Example 2.3,

ξk(z) : k(z)[t]/tp → k(z)[x, y]/(xp, yp), t 7→ zx + y

represents the unique equivalence class of “generic” π-points of G. One readily
observes that a π-point of G defined by t 7→ f(z)x + y with f any non-constant
rational function f is equivalent to ξk(z). However, points corresponding to distinct
non-constant functions f are not equivalent as π-points of GK (by [14, 2.2]). Thus
the pre-image of the generic point of G under the map Π(GK) → Π(G) has closed
points in one-to-one correspondence with elements of K∗− k∗. On the other hand,
a closed point of Π(G) is represented by a flat map of the form

k[t]/tp → k[x, y]/(xp, yp), t 7→ ax + by

with at least one of a, b ∈ k non-zero. The pre-image of such a point in Π(GK)
consists of a single element, the equivalence class of

K[t]/tp → K[x, y]/(xp, yp), t 7→ ax + by.

More generally, the pre-image of Π(GK) → Π(G) above some [αK ] ∈ Π(G) is
non-empty, and any point of this pre-image has closure in Π(GK) with dimension
at most the transcendence degree of the residue field of [αK ] over k. This last
statement can be verified using the homeomorphism Ψ of Theorem 3.6.
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In view of this observation of non-injectivity of the functorial map Π(GF ) →
Π(G) for a field extension F/k, the following result is somewhat striking.

Theorem 4.6. Let G be a finite group scheme over a field k. We say that two
π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG are strongly equivalent if for any
(possibly infinite dimensional) kG-module M α∗K(MK) is projective if and only if
β∗L(ML) is projective.

If αK ∼ βL, then αK is strongly equivalent to βL.

Proof. We first prove the statement in the special case when L = K = k, with k
algebraically closed.

We quote here the statement of [14, 2.2] which will be used extensively through-
out the proof: let M be a k vector space and α, β and γ be pair-wise commuting
endomorphisms of M such that α, β are p-nilpotent and γ is pr-nilpotent for some
r ≥ 1. Then M is free as a k[u]/up-module via the action of α if and only if M if
free via the action of α + βγ.

Let C be a unipotent abelian subgroup scheme of G. Thus, C is co-connected;
i.e., the dual C# (whose coordinate algebra is kC) is connected. The struc-
ture theorem for connected finite group schemes [31, 14.4] implies that kC '
k[t1, t2, . . . tn]/(tp

i1

1 , . . . tp
in

n ). By [14, 4.11], the space of equivalence classes of p-
points of C is homeomorphic to ProjH•(C, k), which in turn is homeomorphic to
Pn−1

k . Let [α1 : · · · : αn] be a point representing an equivalence class of p-points of
C. Let α : k[t]/tp → kC be a p-point given by the formula

α(t) = α1t
pi1−1

1 + · · ·+ αntp
in−1

n

and let β : k[t]/tp → kC be an arbitrary representative of the same equivalence
class.

As seen in [14], distinct linear terms of flat maps k[t]/tp → kC give distinct maps
in cohomology, polynomials without linear terms correspond to non-flat maps which
are zero in cohomology, and the identification of non-zero linear terms corresponds
to taking Proj(−). Hence, β is given by the formula

β(t) = c(α1t
pi1−1

1 + . . . , +αntp
in−1

n ) + p(t1, t2, . . . , tn)

where c is a non-zero scalar, and p(t1, t2, . . . , tn) is a sum of monomials each one
of which is a product of the term of the form tp

ij−1

j for some j and at least one
other term of degree at least 1. Since Proposition [14, 2.2] quoted above applies
to a possibly infinite dimensional k-vector space, this proposition implies that α is
strongly equivalent to β.

We thereby conclude that equivalence implies strong equivalence for unipo-
tent abelian finite group schemes. Applying [14, 4.2], we get that any p-point
α : k[t]/tp → kC is equivalent and thus strongly equivalent to a p-point factor-
ing through a quasi-elementary abelian subgroup scheme, i.e. a subgroup scheme
isomorphic to Ga(r) × E where E is an elementary abelian p-group.

By definition, any p-point of an arbitrary finite group scheme G over an alge-
braically closed field k factors through some unipotent abelian subgroup scheme
of G. As argued above, any such p-point is strongly equivalent to one factoring
through some quasi-elementary abelian subgroup scheme of G. Consider equivalent
p-points of G , α and β, each of which factors through some quasi-elementary abelian
subgroup scheme of G. Let G0 be the connected component of G and π = π0(G)
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be the group of connected components. Corollary [14, 4.7] implies that α, β are
conjugate by an element of π to equivalent p-points which factor through the same
subgroup scheme (G0)E × E, where E ⊂ π is an elementary abelian subgroup of
π. Since conjugation by elements of π does not change the strong equivalence class
of a p-point, we are further reduced to the case in which G is of the special form
G′×E with G′ connected. Since kE ' kGa(r), we may further assume that G itself
is connected.

In this case, write α as the composition of some αC : k[t]/tp → kC with C
a connected unipotent abelian subgroup scheme of G and kC → kG induced by
γ : C ⊂ G. By [14, 3.8], αC is equivalent as a p-point of C to a composition
of the form φ∗ ◦ εr : k[t]/tp → kGa(r) → kC, where εr : k[t]/tp → kGa(r) '
k[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1) is the algebra map sending t to ur−1 and φ∗ is in-

duced by a homomorphism of group schemes φ : Ga(r) → C. Since equivalence
implies strong equivalence for p-points of the unipotent abelian group scheme C,
we conclude that α is strongly equivalent to (α̃)∗ ◦ εr where α̃ = γ ◦ ψ : Ga(r) → G

is a one-parameter subgroup of G. Similarly, β is strongly equivalent to (β̃)∗ ◦ εs

where β̃ : Ga(s) → G is a one-parameter subgroup of G. By replacing α̃ by a
one-parameter subgroup obtained by precomposing α̃ with the natural projection
Ga(r+s) → Ga(r), and similarly for β̃, we may assume r = s. Yet for p-points of
this special form to be equivalent they must be differ by scalar multiples by [14,
3.8] and thus are necessarily strongly equivalent.

Next, we show how to drop the condition that k be algebraically closed. Let
Ω/k be an algebraically closed field of transcendence degree at least the Krull
dimension of H•(G, k). In view of Proposition 2.6, the bijectivity of ΨG, and
Theorem 4.3, we then may assume L = K = Ω. Corollary 2.11 implies that
(ker{β∗Ω}) ∩ H•(G, k) = (ker{α∗Ω}) ∩ H•(G, k). Let F denote the residue field of
H•(G, k) at this prime ideal. Consider the compositions

H•(G, k) → H•(G,Ω) ⇒ H•(Ω[t]/tp, Ω) → Ω

of the base change H•(G, k) → H•(G, k) ⊗k Ω ∼= H•(G,Ω) with α∗Ω, β∗Ω and with
evaluation at T = 1 of the polynomial algebra H•(Ω[t]/tp, Ω) ∼= Ω[T ]. These com-
positions factor through F and determine two embeddings of F into Ω which are
related by an element σ ∈ Gal(Ω/F ). So defined, σ satisfies

ker{β∗Ω} = (ker{α∗Ω})σ.

Since ΨGΩ : Π(GΩ) → Proj H•(GΩ, Ω) commutes with the action of σ by Proposi-
tion 4.4, we have the equality

(ker{α∗Ω})σ = ker{(ασ
Ω)∗},

and thus ασ
Ω ∼ βΩ as p-points of GΩ.

Thus, the special case verified above in which L = K = k is algebraically closed
implies that for any ΩG-module N , (ασ

Ω)∗N is projective if and only if (βΩ)∗N
is projective. On the other hand, Proposition 4.4 implies that for a kG-module
M , (ασ

Ω)∗(MΩ) is projective if and only if α∗Ω(MΩ) is projective. Hence, β∗Ω(MΩ)
is projective if and only if α∗Ω(MΩ) is projective for any kG-module M . In other
words, αK is strongly equivalent to βL.

¤
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In the next proposition, we give several characterizations of closed points of
Π(G). In particular, if k is algebraically closed, then the space P (G) of p-points is
exactly the subspace of closed points of Π(G).

Proposition 4.7. Let G be a finite group scheme over a field k. Then the following
conditions are equivalent on a π-point αK : K[t]/tp → KG of G.

(1) The equivalence class [αK ] of αK is a closed point of Π(G).
(2) Any specialization of αK is equivalent to αK .
(3) αK is equivalent to some π-point βF : F [t]/tp → FG with F/k finite. In

particular, if k is algebraically closed, then the equivalence class of αK , [αK ]
is represented by a map of the form β : k[t]/tp → kG.

(4) There exists some finite dimensional non-projective kG-module M such that
whenever βL : L[t]/tp → LG is a π-point with β∗L(ML) not projective then
αK is equivalent to βL.

Proof. Granted the topology on Π(G) given in Proposition 3.4, a π-point α is a
specialization of a π-point β if and only if α is in the closure of β. Thus, (1) and
(2) are equivalent.

If αK : K[t]/tp → KG is a π-point, then ker{α∗K} ∩ H•(G, k) ∈ ProjH•(G, k)
is defined over K. Consequently, (3) implies (1), for any point of ProjH•(G, k)
defined over an algebraic extension of k must be closed. Conversely, let k denote
the algebraic closure of k. Using Theorem 3.6, we see that any closed point of
Π(G) lies in the image of a closed point of Π(Gk) which corresponds (naturally and
bijectively) to a rational point of Proj H•(Gk, k) which corresponds (naturally and
bijectively) to a p-point of Gk by [14, 4.6]. Any such p-point αk : k[t]/tp → kGk is
defined over some finite extension of k.

The existence of a module M with the property described in (4) implies that for
any βL such that β∗L(M) is not projective, we have [βL] = [αK ]. Hence, Π(G)M ⊂
{[αK ]}. Since M is not projective, we conclude that Π(G)M coincides with {[αK ]}.
Therefore, [αK ] is closed by the definition of the topology on Π(G). Conversely, if
a point [αK ] of Π(G) is closed then there exists a finitely generated non-projective
kG-module M with Π(G)M = {[αK ]}. It is immediate to check that such M
satisfies the required property. Hence, (1) is equivalent to (4).

¤

We shall give an enhanced version of the “Quillen decomposition” of Π(G),
thereby refining the corresponding decomposition given in [14, 5.3] (stated for p-
points, with k algebraically closed) and implicitly clarifying the somewhat ambigu-
ous statement [14, 4.7].

Let G be a finite group scheme of the form G0oτ , where G0 ⊂ G is the connected
component of G which we assume to be geometrically connected and τ = π0(G) is
the (discrete) group of connected components of G. Observe that our assumption
implies that G0

K is connected for any field extension K/k.
We shall make use of the following terminology.

Definition 4.8. Let [αK ] be an equivalence class of π-points of G. A representative
αK is called minimal if αK factors through (G0)E ×E for some elementary abelian
subgroup E ⊂ τ but there is no representative of the same equivalence class which
factors through (G0)E × E′ for some E′ a proper subgroup of E.
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Remark 4.9. Proposition [14, 4.2] implies that any equivalence class admits a
representative which factors through a subgroup scheme isomorphic to Ga(r) × E.
Since E has only finitely many subgroups, we conclude that there is always a
minimal representative for any equivalence class of π-points.

Conjugation by elements of π0(G) induces an action on π-points: αK 7→ (αK)x

for x ∈ π0(G). This action preserves the equivalence classes of π-points, that is
αK ∼ (αK)x for any π-point αK and any x ∈ π0(G). Moreover, the property of
being a minimal representative is preserved by conjugation by elements of π0(G),
and by extensions of scalars.

For a subgroup scheme H ⊂ G we denote by Nτ (H) the stabilizer of H in τ = π0(G).

Lemma 4.10. Let αK : K[t]/tp → K((G0)E × E) → KG, βL : L[t]/tp →
L((G0)F × F ) → LG be two equivalent π-points of G, both minimal in their equiv-
alence classes.

(1) There exists x ∈ τ such that (βL)x factors through L((G0)E × E);
(2) If E = F , then there exists y ∈ Nτ (E) such that αK and (βL)y determine

equivalent π-points of (G0)E × E.

Proof. Arguing as in the last part of the proof of Theorem 4.6, we find an alge-
braically closed field Ω/k and a field automorphism σ : Ω → Ω such that αΩ ∼ βσ

Ω

as Ω-rational π-points of GΩ. Since Galois action does not affect either (G0)E ×E
or the minimality assumption on βL, we may assume that αΩ ∼ βΩ as π-points
of GΩ. Extending scalars from k to Ω we may further assume that α, β are two
equivalent k-rational π-points of G where k is algebraically closed; in other words,
we may assume that α, β are p-points of G. Hence,

ker{α∗} = ker{β∗}
where α∗, β∗ are the corresponding maps on cohomology. Adjusting by a scalar if
necessary we may further assume

α∗ = β∗.

Let

α = iE ◦ α′ : k[t]/tp
α′ // k((G0)E × E)

iE // kG

β = iF ◦ β′ : k[t]/tp
β′ // k((G0)F × F )

iF // kG

where iE (respectively, iF ) is the map on group algebras induced by the embedding
of group schemes (G0)E × E ↪→ G (respectively, (G0)F × F ↪→ G). Consider the
compositions

ᾱ : k[t]/tp
α′ // k((G0)E × E) // kE // kτ

and

β̄ : k[t]/tp
β′ // k((G0)F × F ) // kF // kτ

Since α∗ = β∗, we get
ᾱ∗ = β̄∗.

First, assume that ᾱ∗ and thus β̄∗ are trivial (or, equivalently, ᾱ, β̄ are not flat).
By Proposition [14, 4.1], α′ ∼ α1⊗ c1 + c2⊗α2 with α1 a π-point of (G0)E and α2

a p-point of E. Since ᾱ∗ = 0, we conclude that (c2α2)∗ = 0. Since any p-point is
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flat, α2 induces a non-trivial map in cohomology (see [14, 2.3]). Thus, c2 = 0. By
the minimality of α, we conclude that E is trivial. Similarly, F must be trivial.

Next, assume that both ᾱ and β̄ are flat. Thus, ᾱ, β̄ are well-defined p-
points of kτ . Another application of Proposition [14, 4.1] implies that ᾱ, β̄ are
minimal representatives of their equivalence class in P(τ). Since ᾱ∗ = β̄∗, the
Quillen stratification theorem for finite groups (see [14, 3.6] for the p-points ver-
sion) implies that there exists an elementary abelian subgroup H ⊂ τ such that
[ᾱ] ∈ P(H)/Nτ (H) ∈ P(τ). Choose H to be a minimal such subgroup. Since [ᾱ]
is also in P(E)/Nτ (E), the Quillen stratification and the minimality of H imply
that H ⊂ Ex1 for some x1 ∈ τ . Since [ᾱ] ∈ P(H)/Nτ (H), there exists a p-point
γ : k[t]/tp → kH → kτ such that ᾱ ∼ γ as π-points of τ . The minimality of the
representative ᾱ now implies that H = Ex1 . Similarly, H = F x2 . Consequently,
βx2x−1

1 factors through (G0)E × E. This proves (1).
We now assume α, β : k[t]/tp → k(G0 o E) → kG. (i.e. E = F ). We essentially

repeat a part of the proof of Theorem [14, 4.6] to complete the argument.
Let G′ = G0 o E. Let jE : (G0)E × E ↪→ G′, i : kG′ → kG , and p : kG′ → kE

be the maps on group algebras induced by the embeddings (G0)E ↪→ G′, G′ ↪→ G,
and the projection G′ // // E respectively. We have the following factorizations
for α and β:

α = i ◦ jE ◦ α′ : k[t]/tp
α′ // k((G0)E × E)

jE // kG′
i // kG

β = i ◦ jE ◦ β′ : k[t]/tp
β′ // k((G0)E × E)

jE // kG′
i // kG

Recall the elements σE ∈ H•(E, k) and σG′ = p∗(σE) ∈ H•(G′, k) (cf. [14, 4.3]).
Minimality of E and the bijection P(E) ' Proj |E| imply that

(jE ◦ α′)∗(σG′) = (jE ◦ α′)∗(p∗(σE)) = (p ◦ jE ◦ α′)∗(σE) 6= 0.

Thus, ker(jE ◦ α′)∗ (and, similarly, ker(jE ◦ β′)∗ ) belongs to the open subvariety
ProjH•(G′, k)[σ−1

G ] ⊂ ProjH•(G′, k). Since α∗ = β∗, Corollary [14, 4.4] implies
that there exists y ∈ Nτ (E) = Nτ ((G0)E × E) such that

(jE ◦ α′)∗ = ((jE ◦ β′)∗)y = (jE ◦ (β′)y)∗.

Since the map

jE : k-rat’l pts of Proj H•((G0)E × E, k) → k-rat’l pts of ProjH•(G′, k)

is an embedding by Lemma [14, 4.5], (α′)∗ = ((β′)y)∗ so that α′ ∼ (β′)y ∈
P((G0)E × E) (by Theorem 3.6, for example). ¤

For each elementary abelian p-subgroup E ⊂ τ , define Π0((G0)E×E) ⊂ Π((G0)E×
E) to be the subspace of those π-points which do not admit a representative factor-
ing through (G0)E×E′ with E′ a proper subgroup of E. Since each Π((G0)E×E′) →
Π((G0)E×E) is a closed map because ProjH•((G0)E×E′), k) → Proj H•((G0)E×
E), k) is proper, Π0((G0)E × E) is open in Π((G0)E × E).

Similarly, let Π0(G,E) ⊂ Π(G) be the locally closed subspace of equivalence
classes of π-points which admit a representative factoring through (G0)E × E but
not a representative factoring through (G0)E ×E′ for any E′ a proper subgroup of
E. Since conjugation by an element of τ does not affect the equivalence class of a
π-point of G, we get a natural continuous map

(4.10.1) θE : Π0((G0)E × E)/Nτ (E) → Π0(G,E)
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The following lemma shows that this map is a homeomorphism.

Lemma 4.11. (1) Let E, F be two nonconjugate elementary abelian p-subgroups
of τ . Then Π0(G, E) ∩Π0(G,F ) = ∅.

(2) The map θE : Π0((G0)E × E)/Nτ (E) → Π0(G,E) of (4.10.1) is a homeo-
morphism.

Proof. (1). Suppose Π0(G,E) ∩ Π0(G,F ) 6= ∅. Then there exist π-points αK :
K[t]/tp → K((G0)E × E) → KG, βL : L[t]/tp → L((G0)F × F ) → LG such
that αK ∼ βL and both αK , βL are minimal representatives for their respective
equivalence classes. By Lemma 4.10 we can find x ∈ τ such that (βL)x factors
through G0 o E. Since βL is a minimal representative, so is (βL)x. Since (βL)x

also factors through G0 o F x, it must factor through G0 o (E ∩ F x). Minimality
of βx

L now implies that E ∩ F x = E = F x. Thus, E and F are conjugate.
(2) Surjectivity of θE is immediate from our definitions. To show the map is

injective, consider the embedding i : (G0)E × E ↪→ G, and let α′K , β′L be two π-
points of (G0)E×E such that i◦α′K ∼ i◦β′L. Lemma 4.10 implies that there exists
y ∈ Nτ ((G0)E × E) such that α′K ∼ (β′L)y, i.e. [α′K ] = [β′L]y in Π0((G0)E × E).
Thus, θE is injective. Continuity of θ−1

E is immediate from the fact that (4.10.1) is
a closed map (because Π((G0)E × E) → Π(G) is a closed map). ¤

Proposition 4.12. Let G be a finite group scheme of the form G0 o τ , with τ =
π0(G) and G0 geometrically connected. Then there is a locally closed decomposition
of Π(G), ∐

Π0((G0)E × E)/Nτ ((G0)E × E) ' Π(G)

where the disjoint union is indexed by conjugacy classes of elementary abelian p-
subgroups of τ .

Proof. By Proposition [14, 4.2], any π-point admits a representative which factors
through a subgroup scheme of the form Ga(r),K × E ⊂ GK . Any such subgroup
scheme embeds into a subgroup scheme of GK of the form ((G0)E × E)K . Thus,
Π(G) =

⋃
Π0(G,E). The statement now follows from Lemma 4.11.

¤

Example 4.13. The reader may find the following computation for G = GL(3,Fp)
instructive, since there are distinct conjugacy classes of maximal elementary abelian
p-groups in G. Assume p ≥ 3. Consider the elements

e12 =




1 1 0
0 1 0
0 0 1


 , e13 =




1 0 1
0 1 0
0 0 1


 , e23 =




1 0 0
0 1 1
0 0 1


 , e3 =




1 1 0
0 1 1
0 0 1




Then the subgroups generated by (e12, e13), (e13, e23), (e3, e13) represent the three
distinct conjugacy classes of maximal elementary abelian p-groups in G.

Quillen’s “stratification theorem” [24] implies that Spec H•(G, k) is the union of
three irreducible surfaces, each the quotient of affine 2-space modulo a finite group,
with common intersection an affine line modulo a finite group. Hence, Theorem
3.6 implies that Π(G) is the 1-point union of 3 irreducible projective curves. In
particular, any π-point of G is a specialization of one of the following three “generic”
π-points:

αk(z) : k(z)[t]/(tp) → k(z)G, t 7→ z(e12 − 1) + (e13 − 1),
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βk(z) : k(z)[t]/(tp) → k(z)G, t 7→ z(e23 − 1) + (e13 − 1),
and

γk(z) : k(z)[t]/(tp) → k(z)G, t 7→ z(e3 − 1) + (e13 − 1).

We conclude this section with another interesting family of examples.

Example 4.14. Let F be a finite field of characteristic ` 6= p with the property
that F contains all p-th roots of unity. Then Quillen determines H∗(GL(n, F ), k)
in [25], establishing that

H∗(GL(n, F ), k) = (H∗(T (n, F ), k))Σn ,

the invariants of the cohomology of the maximal torus T (n, F ) = (F×)n under the
permutation action of the symmetric group Σn. Thus,

Proj H•(GL(n, F ), k) = Pn−1,

n− 1 dimensional projective space over k.
Choose an element 1 6= µ ∈ F with the property that µp = 1 and let Di,i(µ) ∈

T (n, F ) denote the diagonal matrix whose (i, i)-entry is µ and all of whose other
diagonal entries equal 1. Let K = k(λ1, . . . , λn) denote the pure transcendental
field extension of transcendence degree n over k and consider

αK : K[t]/tp → KT (n, F ), t 7→
n∑

i=1

λi(Di,i(µ)− Id).

Then the composition of αK with the map of group algebras induced by i : T (n, F ) →
GL(n, F ) represents a generic π-point of GL(n, F ). The composition i ◦αK can be
represented more efficiently by the equivalent π-point

βL : L[t]/tp → LGL(n, F ), t 7→ (
n−1∑

i=1

σi · (Di,i(µ)− Id)) + (Dn,n(µ)− Id)

where
L = k(

σ1

σn
, . . . ,

σn−1

σn
)

and σi is the i-th elementary symmetric function in λ1, . . . λn (invariant under Σn).

5. The Π-support of an arbitrary G-module

One justification for considering the space Π(G) of π-points of a finite group
scheme G (rather than the simpler space P (G) considered in [14]) is that this space
serves as a useful invariant for kG-modules which are not necessarily finite dimen-
sional. In particular, we shall verify in the next section (Corollary 6.7) that every
subset of Π(G) is the Π-support of some kG-module. Indeed, the consideration of
non-closed points of Π(G) when investigating infinite dimensional kG-modules is
already foreshadowed in the work of Benson, Carlson, and Rickard (see [6]).

Theorem 4.6 allows us to extend the definition of the support to all, not neces-
sarily finite dimensional, G-modules.

Definition 5.1. For a kG-module M , we define Π-support of M to be the subset

Π(G)M ⊂ Π(G)

of those equivalence classes [αK ] of π-points such that α∗K(MK) is not projective
for any representative αK : K[t]/tp → KG of the equivalence class [αK ].
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In view of Theorem 4.6, the properties of the π-support construction, M 7→
Π(G)M , stated in Propositions 3.2 and 3.3 extend to all kG-modules. The proofs
of these properties for finite dimensional modules apply without change to infinite
dimensional modules.

Proposition 5.2. Let G be a finite group scheme over a field k and let M1,M2,M3

be arbitrary kG-modules. Then
(1) Π(G)k = Π(G).
(2) Π(G)M1⊗M2 = Π(G)M1 ∩Π(G)M2 .
(3) Π(G)M1⊕M2 = Π(G)M1 ∪Π(G)M2 .
(4) If P is a projective kG-module, then Π(G)P = ∅.
(5) If 0 → M1 → M2 → M3 → 0 is exact, then

Π(G)Mi ⊂ Π(G)Mj ∪Π(G)Mk

where {i, j, k} is any permutation of {1, 2, 3}.
We next extend the “projectivity test” given by support varieties to arbitrary

kG-modules. This theorem is a measure of the non-triviality of our Π-support
construction. One can view this as a statement that local projectivity implies
projectivity. This result, generalizing a sequence of results by many authors, has
its origins in L. Chouinard’s proof [11] that projectivity of modules for a finite
group G can be detected by restriction to elementary abelian p-subgroups E ⊂ G
and Dade’s investigation [12] of modules for elementary abelian p-groups leading
to the concept due to Carlson [8] of shifted subgroups of the group algebra kE.

Theorem 5.3. Let G be a finite group scheme over a field k and let M be any kG-
module. Then M is projective if and only if for any π-point αK : K[t]/tp → KG,
α∗K(MK) is projective.

Proof. By base change if necessary to the algebraic closure k of k, we may (and
shall) assume that k is algebraically closed. The “only if” part is clear since π-points
are flat maps. We assume that M satisfies the condition that α∗KMK is projective
for every π-point αK : K[t]/tp → KG.

In the special case of a connected finite group scheme, the projectivity of M is
given by [23, 2.2]. Let jE : E → G be a quasi-elementary abelian subgroup scheme,
so that E ' Ga(s) × E for some s ≥ 0 and some elementary abelian group E of
rank r ≥ 0. Then j∗E(M) satisfies the condition that β∗L(j∗EM) is projective for any
π-point βL : L[t]/tp → LE . Choose an identification (as algebras, but not as Hopf
algebras) of kE with kGa(r+s). Since Ga(r+s) is connected, we conclude that j∗EM is
projective as a kGa(r+s)-module. Consequently, j∗EM is projective as a kE-module.

Consider the kG-module Λ = Endk(M). Observe that j∗E(Λ) ' Endk(j∗EM) as a
kE-module, and thus is projective. Therefore, (j∗E(Λ))K is projective for any field
extension K/k. In particular, H∗(E , j∗E(Λ)K) vanishes in positive degrees for every
jE : E → G and every field extension K/k. By a theorem of Suslin [27], this implies
that every homogeneous element of positive degree in H∗(G,Λ) is nilpotent.

To prove the projectivity of M , it suffices to prove for each irreducible kG-module
S (necessarily finite dimensional) that Hi(G,S# ⊗ M) = 0, i > 0: this will then
imply that HomG(S, Ω−1M) = Ext1G(S, M) = 0, and, hence, that Ω−1M = 0. This
implies that M is injective and thus also projective since kG is a Frobenius algebra
([13]). Since S# ⊗M necessarily satisfies α∗K(S# ⊗M) is projective since α∗K(M)
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is projective for any π-point αK by Proposition 5.2, we may (and shall) simplify
notation and replace S# ⊗M by M .

Let G0 denote the connected component of G, let τ = π0(G) denote the dis-
crete group of connected components of G. If i : µ ⊂ τ is a subgroup and
Gµ ⊂ G is the inverse image of µ with respect to the projection G → τ , then
there is a natural transfer map i! : H∗(Gµ,M|Gµ

) → H∗(G,M). A basic prop-
erty of this transfer map guarantees that its composition with the natural map
i∗ : H∗(G,M) → H∗(Gµ,M|Gµ

), i! ◦ i∗, equals multiplication by [τ : µ], the index of
µ in τ . Consequently, we may assume that τ is a finite p-group (one may consult
[3] for a careful presentation of the transfer map in this situation).

We proceed by induction on the order of τ (the connected case already proved in
[23, 2.2]) and consider some surjective map τ → Z/p. Let G1 denote the kernel of
the composition G → τ → Z/p. By induction, we may assume that M is projective
when restricted to G1. Then the Lyndon-Hochschild-Serre spectral sequence for
the extension 1 → G1 → G → Z/p → 1 implies that

(5.3.1) H∗(G,M) ' H∗(Z/p, H0(G1,M)).

Thus, to prove the vanishing of Hi(G,M), i > 0, it suffices to verify that H0(G1, M)
is projective as a Z/p-module.

Assume to the contrary that H0(G1,M) is not projective as a Z/p-module. Then
no power of the generator T of H•(Z/p, k) = k[T ] acts trivially on H∗(Z/p, H0(G1,M)),
since the action of T induces the periodicity isomorphism Hn(Z/p,MG1) → Hn+2(Z/p,MG1).
The multiplicative structure of the Lyndon-Hochschild-Serre spectral sequence im-
plies the compatibility of the pairing at the E2-level with the pairing of abutments;
in particular, we conclude the compatibility of the pairing

(E∗,0
2 (k) = H∗(Z/p,H0(G1, k)))⊗ (E∗,0

2 (M) = H∗(Z/p, H0(G1,M)))

→ (E∗,0
2 (M) = H∗(Z/p, H0(G1,M)))

via the edge homomorphism with the pairing

H•(G, k)⊗H∗(G,M) → H∗(G,M).

Since the pairing at E∗,0
2 is that induced by the “identity” pairing

H0(G1, k)⊗H0(G1,M) → H0(G1,M),

the isomorphism (5.3.1) implies that no power of the image of the generator via
H•(Z/p, H0(G1, k)) → H•(G, k) acts trivially on H∗(G,M).

Since the action of H∗(G, k) on H∗(G,M) factors through H∗(G,Λ) (in other
words, the action of Ext∗G(k, k) on Ext∗G(k, M) factors through Ext∗G(M, M) =
H∗(G, Λ)) and since we have shown that every element of H∗(G,Λ) is nilpotent, we
obtain a contradiction. ¤

As mentioned above, we shall see in Corollary 6.7 that any subset of Π(G) is of
the form Π(G)M whereas ProjH•(G, k)/ annH•(G,k) Ext∗(M, M) ⊂ ProjH•(G, k) is
always closed. However, the equality

Π(G)M = Ψ−1
G (Proj(H•(G, k)/ annH•(G,k)(Ext∗G(M,M)))

of Theorem 3.6 does admit the following partial generalization for arbitrary kG-
modules.
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Proposition 5.4. Let G be a finite group scheme, and let M be a kG-module.
Then

ΨG(Π(G)M ) ⊂ Proj H•(G, k)/ annH•(G,k)(Ext∗G(M,M)).

Proof. We must show that if αK : K[t]/tp → KG is a π-point with the property
that α∗K(MK) is not projective, then

(5.4.1) ker{α∗K} ∩H•(G, k) ⊃ annH•(G,k)(Ext∗G(M, M)).

The commutative diagram

H•(G, k)

⊗K

²²

⊗M // Ext∗G(M, M)

⊗K

²²
H•(GK ,K)

⊗KMK // Ext∗GK
(MK ,MK)

implies the inclusion

annH•(G,k)(Ext∗G(M, M)) ⊂ annH•(GK ,K)(Ext∗GK
(MK ,MK)) ∩H•(G, k),

Hence, we may assume K = k and that k is algebraically closed. For notational
simplicity, we write α for αK .

Recall that α is equivalent to some p-point i∗ ◦α′ : k[t]/tp → kE → kG factoring
through the group algebra of some quasi-elementary abelian subgroup i : E =
Ga(s) ×E ⊂ G. Thinking of Ext-groups in terms of extensions one sees easily that
the square in the following diagram of algebra homomorphisms is commutative:

H•(G, k)

⊗M

²²

i∗ // H•(E , k)

⊗M

²²

(α′)∗ // H•(k[t]/tp, k)

Ext∗G(M,M) // Ext∗E(M, M)
Thus, a simple diagram chase tells us that if (5.4.1) is valid for α′, then it is valid
for α.

Thus, to prove (5.4.1), we may assume that G = E = Ga(s) × E is quasi-
elementary. Since E is a unipotent abelian group scheme,

annH•(E,k)(Ext∗E(M, M)) = annH•(E,k)(H
∗(E ,M)).

Since annH•(E,k)(H
∗(E ,M)) ⊂ H•(E , k) does not change if we change the coproduct

of E , we may replace E by a group scheme isomorphic to Gr+s
a(1) in order to verify

(5.4.1) for E . In this case, we may assume that α : k[t]/tp → kE is a map of Hopf
algebras.

Let Λ = Endk(M). Since α is a map of Hopf algebras, α∗Λ = Endk(α∗(M)) as
a k[t]/tp-algebra. Consider the following commutative diagram, where the left and
right vertical maps are maps of algebras:

(5.4.2)

H•(E , k)

²²

α∗ // H•(k[t]/tp, k)Ä _

²²
H∗(E , Λ) // H∗(k[t]/tp, α∗Λ).

Since α∗(M) is not projective, H∗(k[t]/tp, α∗Λ) = Ext∗k[t]/tp(α∗(M), α∗(M)) is
non-trivial in positive degrees. Consequently, the right vertical map of (5.4.2)
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must be injective since the multiplication by the image of the generator of
H•(k[t]/tp, k) induces the periodicity isomorphism on H∗(k[t]/tp, α∗Λ). Since
H∗(E ,Λ) ∼= Ext∗E(M,M), the fact that the kernel of the left vertical arrow of (5.4.2)
is contained in the kernel of the top arrow implies (5.4.1).

¤

The following corollary is an elaboration of the “local projectivity test” (Theo-
rem 5.3). Of course, we can not replace Π(G)M in Corollary 5.5 by P (G)M because
any module M whose Π-support is non-empty but contains no p-points is not pro-
jective but satisfies P (G)M = ∅.
Corollary 5.5. Let G be a finite group scheme over a field k and M be a kG-
module. The following are equivalent:

(1) M is projective,
(2) Π(G)M = ∅,
(3) Proj H•(G, k)/ ann(Ext∗G(M, M)) = ∅

Proof. Theorem 5.3 implies the equivalence of (1) and (2), (1) clearly implies (3),
and to finish the cycle we note that (3) implies (2) by Proposition 5.4. ¤

Π-supports satisfy the following functoriality properties with respect to change
of finite group scheme.

Proposition 5.6. Let f : G′ → G be a flat map of finite group schemes over a
field k. Then for any kG-module M ,

Π(G′)f∗M = (f∗)−1(Π(G)M ).

Let ρ : Π(GK) → Π(G) be the map induced by a field extension K/k (as in
Corollary 2.8). Then for any kG-module M ,

Π(GK)MK
= ρ−1(Π(G)M ).

Furthermore, for any GK-module N and any k-rational π-point αk : k[t]/tp →
kG, (K ⊗k αk)∗(N) is free if and only if α∗k(N|Gk

) is free.

Proof. Let αL : L[t]/tp → LG be a π-point of G. Then for a flat map f : G′ → G,
[αL] ∈ Π(G)f∗M if and only if α∗L((f∗M)L) = (f ◦ αL)∗(ML) is not projective if
and only if [αL] ∈ (f∗)−1(Π(G′)M ).

The second claim follows immediately from the fact that the map ρ is induced by
the identity map on π-points of G defined over field extensions L/K/k. Namely, for
such a π-point αL : L[t]/tp → LG and a kG-module M , we have [αL] ∈ Π(GK)MK

if and only if α∗L(ML) is not projective if and only if [αL] ∈ Π(G)M .
For the last assertion, observe that (K ⊗k αk)(1 ⊗ t) = αk(t) is a K-linear

endomorphism of N . The freeness of N as either a K ⊗k k[t]/tp or k[t]/tp-module
is equivalent the non-existence of some n ∈ N with tn = 0 and n not in the image
of tp−1 : N → N (using t to also denote 1⊗ t). ¤

The last assertion of Proposition 5.6 enables us to construct very explicit (but
necessarily infinite dimensional) examples of G-modules with no closed points in
their support.

Example 5.7. Take k to be algebraically closed and let K/k be a non-trivial
field extension. Consider any finite group scheme G over k such that Π(G) has
dimension bigger than 0 and consider any K-rational point [αK ] ∈ Π(GK) which
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maps to a non-closed point of Π(G). Let N be a finite dimensional GK-module
with Π(GK)N = {[αK ]}. Then the restriction of N to G, N|G, is not projective but
has the property that Π(G)N|G contains no closed points of Π(G).

One indication of the potential usefulness of the Π-support of a G-module M
is that its dimension has a representation-theoretic interpretation. If M is finite
dimensional, then the following proposition asserts that the closed subset Π(G)M

has (Krull) dimension equal to the “complexity” of M (cf. [1]). If M is not finite
dimensional, then Π(G)M ⊂ Π(G) need not be closed. Following [22], we define the
subset dimension of W ⊂ Π(G) as

s. dim(W )
def
= max

s∈W
dim(s).

where s denotes the closure of an arbitrary point s ⊂ Π(G). As in [5], we define
the complexity of an arbitrary kG-module M to be the smallest c such that M can
be realized as a filtered colimit of finite-dimensional modules of complexity c.

Proposition 5.8. Let G be a finite group scheme over a field k. Then for any
kG-module M , the “subset dimension” of Π(G)M equals the complexity of M .

Proof. This is proved exactly as in [22, 3.17], and we leave the transcription to the
interested reader. ¤

6. Tensor-ideal, thick subcategories of stmod (G)

In this section, we prove (in Theorem 6.3) the conjecture of Hovey, Palmieri, and
Strickland [20] inspired by constructions of Benson, Carlson, and Rickard [7] for
finite groups. In addition to the case of finite groups verified by [7], some special
cases of Theorem 6.3 were proved by Hovey and Palmieri in [18], [19]. We also
give an alternative description of the Π-support Π(G)M of a kG-module following
a construction of Benson, Carlson, and Rickard for finite groups [6]. As we have
throughout this paper, we work in the context of an arbitrary finite group scheme
G over an arbitrary field k.

Let G be a finite group scheme over a field k. Recall that the stable module cate-
gory StMod (G) is the category whose objects are kG-modules, and whose group of
homomorphisms between two kG-modules M, N is given by the following quotient:

HomG(M, N)/{f : M → N factoring through some projective}.
So defined, StMod (G) is a triangulated category, with M [1] represented by the
cokernel of an embedding of M in an injective kG-module (i.e., M [1] = Ω−1M ,
where ΩM is the Heller shift of M , given as the kernel of a surjective map from
a projective kG-module to M). Distinguished triangles come from short exact
sequences in the abelian category of G-modules.

We denote by stmod (G) ⊂ StMod (G) the (triangulated) full subcategory of
StMod (G) whose objects are finite dimensional kG-modules. We shall say that
kG-modules are stably isomorphic if they are isomorphic in StMod (G).

We recall that a full subcategory C of a triangulated category T is said to be a
thick subcategory if it is triangulated, closed under direct summands, and closed
under finite direct sums. Every thick subcategory of stmod (G) is obtained by
restricting some thick subcategory of StMod (G) to its full subcategory of finite
dimensional kG-modules. If T has suitable (tensor) products (i.e., is symmetric
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monoidal), then a triangulated subcategory C ⊂ T is said to be tensor-ideal if it is
closed under taking tensor products with any element in T .

Example 6.1. Let C ⊂ Π(G) be a subset and let CC ⊂ stmod (G) be the full
subcategory of finite dimensional kG-modules M with Π(G)M ⊂ C. Then Proposi-
tions 3.3 and 3.2 enable us to conclude that CC is a thick, tensor-ideal subcategory
of stmod (G).

Following Rickard [26], we associate to any thick, tensor-ideal subcategory C ⊂
stmod (G) two (infinite dimensional) modules EC , FC defined up to natural isomor-
phism with the following properties. Although these properties are stated for finite
groups in [26] (cf. also [22] for connected finite group schemes), the proofs apply
to any finite group scheme.

Proposition 6.2. Let G be a finite group scheme over a field k. For each thick,
tensor-ideal subcategory C ⊂ stmod (G) let EC , FC ∈ StMod(G) denote the Rickard
idempotents associated to C as constructed in [26]. Then

(1) EC , FC fit in a distinguished triangle in StMod (G)

EC → k → FC → EC [1].

(2) EC is a filtered colimit of modules from C and FC is C-local (i.e. there are
no non-trivial maps M → FC in StMod (G) whenever M ∈ C).

(3) For any M ∈ stmod (G), M ∈ C if and only if M is stably isomorphic to
EC ⊗M if and only if FC ⊗M is projective.

(4) EC ⊗EC is stably isomorphic to EC, EC ⊗ FC is projective, and FC ⊗ FC is
stably isomorphic to FC.

A subset W ⊂ Π(G) is closed under specialization if for any equivalence class
of π-points [α] ∈ W , W also contains the equivalence class of every specialization
of α. Equivalently, W is closed under specialization if whenever a point lies in W
then the closure of the point is contained in W . The following theorem gives a
bijective correspondence between subsets of Π(G) closed under specialization and
thick tensor-ideal subcategories of stmod (G). Since this correspondence clearly
respects inclusions of subsets and subcategories, one could phrase the following
theorem more elaborately in terms of lattices. This is the form in which Hovey-
Palmieri-Strickland phrase their conjecture, which we now prove.

Observe that our proof of Theorem 6.3 requires in an essential way our consid-
eration of arbitrary kG-modules and the properties given in Proposition 5.2.

Theorem 6.3. (Hovey-Palmieri-Strickland Conjecture) Let G be a finite
group scheme over a field k. Then there is a natural bijection between the sub-
sets W ⊂ Π(G) which are closed under specialization and the thick, tensor-ideal
subcategories C of stmod (G).

Namely, we associate to any subset W ⊂ Π(G) the thick, tensor-ideal category
CW ⊂ stmod(G) of all finite dimensional modules M with Π(G)M ⊂ W ,

W 7→ CW .

Moreover, we associate to any full subcategory C ⊂ stmod (G) the subset WC ≡
∪M∈Obj(C)Π(G)M closed under specialization,

C 7→ WC .
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These constructions are mutually inverse when restricted to subsets W ⊂ Π(G)
closed under specialization and thick, tensor-ideal subcategories C of stmod (G).

Proof. For any W ⊂ Π(G), CW ⊂ stmod (G) is a thick, tensor-ideal category by
Proposition 3.3 and Proposition 3.2. Moreover, if C ⊂ stmod (G) is a full subcate-
gory, then the subset ∪M∈Obj(C)Π(G)M ⊂ Π(G) is closed under specialization. We
proceed to show that these correspondences are mutually inverse, using the Rickard
idempotents of Proposition 6.2.

We first prove for any W ⊂ Π(G) closed under specialization that W = WCW
.

Essentially by definition, we have the containment WCW
⊂ W for any W . Con-

versely, any W closed under specialization is a (not necessarily finite) union of closed
subsets, W = ∪iCi. By Proposition 3.4, we may find finite dimensional modules
MCi

∈ CW with Π(G)MCi
= Ci so that Ci ⊂ WCW

, and thus W = ∪iCi ⊂ WCW
.

To complete the proof of the theorem, we show for any tensor-ideal thick subcat-
egory C ⊂ stmod (G) that CWC = C. Once again, one inclusion, namely C ⊂ CWC ,
holds essentially by definition. To show the opposite inclusion CWC ⊂ C we first
observe that Π(G)M ∩Π(G)FC = ∅ for any M ∈ C since M ⊗FC is projective. Since
WC =

⋃
M∈Obj(C) Π(G)M , we conclude that

WC ∩Π(G)FC = ∅
Now let M ∈ CWC , that is Π(G)M ⊂ WC . Then Π(G)M ∩Π(G)FC ⊂ WC∩Π(G)FC =
∅. Hence, Π(G)M⊗FC = ∅, so that M ⊗ FC is projective and thus M ∈ C. ¤

As a corollary of Theorem 6.3 and a theorem of R. Thomason, we get the fol-
lowing suggestive bijection.

Corollary 6.4. Let G be a finite group scheme over a field k of positive char-
acteristic. Let Dperf(Proj H•(G, k)) be the full subcategory of perfect complexes
in the derived category of coherent OProj H•(G,k)-modules, a tensor, triangulated
category. Then there is an isomorphism between the lattice of thick, tensor-ideal
subcategories of stmod (G) and the lattice of thick, tensor-ideal subcategories of
Dperf(ProjH•(G, k)).

Proof. Theorem 6.3 establishes a bijection between the lattice of thick, tensor-ideal
subcategories of stmod (G) and the lattice of subsets of Π(G) which are closed under
specialization whereas Thomason [30, 3.15] establishes a bijection between the latter
lattice and the lattice of thick, tensor-ideal subcategories of Dperf(Proj H•(G, k)).

¤

The “Rickard idempotents” of Proposition 6.2 enable us to realize any subset
S ⊂ Π(G) as the Π-support of some kG-module.

Definition 6.5. Let G be a finite group scheme over a field k of characteristic p > 0.
For each equivalence class [α] ∈ Π(G), let E[α], F[α] be the Rickard idempotents
associated to the thick, tensor-ideal subcategory C[α] ⊂ stmod (G) consisting of
finite dimensional kG-modules whose Π-supports are contained in the closure of
[α]. Let Ẽ[α], F̃[α] be the Rickard idempotents associated to the thick, tensor-ideal
subcategory C̃[α] ⊂ stmod (G) consisting of finite dimensional kG-modules whose
Π-supports are strictly contained in the closure of [α] ∈ Π(G) (i.e., do not contain
[α]). Finally, set

κ[α] ≡ E[α] ⊗ F̃[α].
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Proposition 6.6. Let G be a finite group scheme over a field k, let [α] ∈ Π(G)
be an equivalence class of π-points of G, and let E[α], F[α], κ[α] be the kG-modules
defined above. Then

(1) The Π-support of E[α] is the closure of [α] ∈ Π(G).
(2) The Π-support of F[α] is the complement in Π(G) of the closure of [α].
(3) The Π-support of κ[α] equals {[α]}.

Proof. We first show for any closed under specialization subset W ⊂ Π(G) with
associated tensor-ideal thick subcategory C = CW that Π(G)EC = W and Π(G)FC
is the complement of W .

Since W is closed under specialization, W =
⋃

Vi where Vi are closed subsets
of Π(G). Let MVi be a finite dimensional kG-module with Π-support Vi. Since
MVi

⊗ EC is stably isomorphic to MVi
, the tensor product property implies the

inclusion
Vi = Π(G)MVi

⊂ Π(G)EC .

Thus, W ⊂ Π(G)EC . To prove the opposite inclusion, pick a π-point β which is not
in W . Applying Proposition 6.2.2, we write EC = colim Mi as a filtered colimit of
finite dimensional modules Mi such that Π(G)Mi ⊂ W . Since β 6∈ W , we conclude
that β∗(Mi) is projective for all Mi. Since the colimit of injectives is injective and
since a KG-module is projective if and only if it is injective ([13]), we conclude that
β∗(EC) is also projective. Thus, [β] 6∈ Π(G)EC and the inclusion

Π(G)EC ⊂ W

follows.
Since EC⊗FC is projective, Proposition 3.2 implies that Π(G)EC ∩ Π(G)FC = ∅

and thus Π(G)FC is contained in the complement of W . On the other hand, Propo-
sition 3.3 together with Proposition 6.2.1, imply the equality

Π(G)EC ∪ Π(G)FC = Π(G).

Thus, Π(G)FC is precisely the complement of W .
Now, (1) and (2) follow by applying the above to W = [α], the closure {[α]} ⊂

Π(G). Applying the above argument to W = [α]−[α] in order to determine Π(G) eF[α]

and using Proposition 3.2 again, we conclude (3). ¤

The following is an immediate corollary of Proposition 6.6 together with Propo-
sition 5.2(3).

Corollary 6.7. Let G be a finite group scheme over a field k. Then for any subset
S ⊂ Π(G), there exists some kG-module MS with Π-support equal to S,

Π(G)MS
= S.

Namely, we may take

MS =
⊕

[α]∈S

κ[α].

Using κ-modules, one can provide an equivalent characterization of the Π-support
of a kG-module. This is an interpretation using π-points of the definition of Ben-
son, Carlson, Rickard [6] of the support variety of an infinite dimensional module
(for a finite group).
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Proposition 6.8. For any finite group scheme G over a field k and any equivalence
class of π-points [α] ∈ Π(G),

Π(G)M = {[α] : κ[α] ⊗M is not projective }.
Proof. By Theorem 5.3, κ[α] ⊗ M is not projective if and only if the Π-support
of κ[α] ⊗M is non-empty which by Proposition 3.2 is the case if and only the Π-
supports of κ[α] and M have non-empty intersection. Since Π(G)κ[α] = {[α]} by
Proposition 6.6.3, this is the case if and only if [α] ∈ Π(G)M . ¤

Our final proposition verifies that the action on Π(G) by an automorphism of k/k′

constructed in Proposition 4.4 naturally determines an action on Π(G)M provided
that the kG-module M is obtained by base change from a G′-module where G =
G′ ×Spec k′ Spec k. The existence of such an action is therefore an obstruction to
descending the kG-module structure on M to a k′G′-module structure.

Proposition 6.9. Let k/k′ be a field extension and σ : k → k a field automorphism
over k′. Assume that the finite group scheme G over k is defined over k′, so that
G = G′ ×Spec k′ Spec k.

(1) If M is a kG-module defined over k′, then the action of σ stabilizes Π(G)M .

(2) If k/k′ is a finite Galois extension with Galois group τ and if C is a subset of
Π(G) of the form Π(G)M for some kG-module M , then there exists a k′G′-module
N with the property that Π(G)Nk

is the closure of C under the action of τ . If C is
closed, we may choose N to be finite dimensional.

Proof. The first statement follows immediately from the second part of Proposition
4.4.

We now assume that k/k′ is Galois. If V is a k-vector space and if σ ∈ τ , we
define a new k-vector space V σ by

V σ ≡ k ⊗σ V,

where the tensor product k ⊗σ V is taken by viewing k as a k-module via σ.
Equivalently, V coincides with V σ as an abelian group but the action of k is twisted
by σ−1: a ◦ (1⊗σ v) = a⊗σ v = 1⊗σ σ−1(a)v. Since the group G is defined over k′,
the algebra kG = k⊗k′ k

′G′ can be naturally identified with kGσ = k⊗σ k⊗k′ k
′G′

via the k-algebra isomorphism

(6.9.1) kG = k ⊗k′ k′G′ ' k ⊗σ k ⊗k′ k′G′ = kGσ

a⊗ f 7→ a⊗ 1⊗ f.

For a kG-module M , the twisted module Mσ has a natural structure of a kGσ-
module: kGσ ⊗Mσ = (kG⊗M)σ → Mσ. We consider Mσ as a G-module via the
algebra identification 6.9.1.

Let C = Π(G)M for some kG-module M . Let M̃ = k ⊗k′ (M|G′). There is an
isomorphism of kG-modules

(6.9.2) M̃ '
⊕
σ∈τ

Mσ,

given explicitly by
a⊗m 7→ (a⊗σ m)σ∈τ .
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Indeed, one readily observes that k ⊗k′ k → ⊕
σ∈τ

kσ is a k-linear isomorphism: if

{ασ}σ∈τ is a basis of k over k′, then the elements (1⊗σ σ′(ασ))σ∈τ ∈
⊕
σ∈τ

kσ indexed

by σ′ ∈ τ , form a basis of
⊕
σ∈τ

kσ and are in the image of the map above. To verify

isomorphism 6.9.2 for a general module M , we tensor k⊗k′ k '
⊕
σ∈τ

kσ with M and

observe that kσ ⊗k M = k ⊗σ k ⊗k M = k ⊗σ M = Mσ.
We proceed to verify that

(Π(G)M )σ = Π(G)Mσ−1 ,

i.e. that for a π-point αK : K[t]/tp → KGK , α∗K((Mσ−1
)K) is projective if and only

if (ασ
K)∗(MK) is projective. By enlarging the field K if necessary, we assume that σ

extends to an automorphism of K which we denote by σ̃. Let αK(t) =
∑
i

aiti where

ai ∈ K and {ti} is a basis of the algebra k′G′ over k′. Then t acts on the K[t]/tp

module (ασ
K)∗(MK) via ασ

K(t) =
∑
i

σ̃(ai)ti. As the action of αK(t) =
∑
i

aiti on

Mσ−1

K = (MK)σ−1
is the same as the action of

∑
i

σ̃(ai)ti on MK , we conclude the

desired equality (Π(G)M )σ = Π(G)Mσ−1 . Thus, isomorphism (6.9.2) implies that

Π(G)fM =
⋃
σ∈τ

(Π(G)M )σ.

Therefore, we have shown for N = M|G′ that Π(G)Nk
= Π(G)fM is the closure of

C = Π(G)M with respect to the action of τ . By definition, if C is closed, then
M can be chosen to be finite dimensional, and, therefore, N will also be finite
dimensional.

¤

Corollary 6.7 implies that any subset of Π(G) is realizable as a support set of
some G-module M . If a subset is closed, then by definition it is realizable by a
finite-dimensional module. Thus, the proposition above immediately implies the
following “realization” result.

Corollary 6.10. Let k/k′ be a finite Galois field extension, and C ⊂ Π(G) be a
(closed) subset stable under the action of Gal(k/k′). Then there exists a (finite-
dimensional) k′G′-module N such that Π(G)Nk

= C.

7. Realization of the scheme structure for Π(G)

In this final section, we verify that we can endow the topological space Π(G)
with a sheaf of k-algebras determined by the stable module category stmod (G) so
that the associated ringed space is isomorphic to the scheme Proj H•(G, k).

As usual, G will denote a finite group scheme over a field k of positive charac-
teristic. We shall frequently make the identification

Hi(G, k) ' HomG(Ωik, k) ' Homstmod (G)(Ωi+jk, Ωjk),

and we shall use the same notation α for a cohomology class in Hi(G, k) and any G-
map Ωi+j → Ωjk whose stable equivalence class represents this cohomology class.

We denote by C = stmod (G) the stable module category, and by CW the thick
tensor ideal subcategory associated to a closed subset W ⊂ Π(G) as in Theorem 6.3.
We use the standard notation C/CW for the triangulated category obtained by
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localizing C with respect to CW . Thus, Obj(C/CW) = Obj(C) and maps from M to

N in C/CW are represented by triples M
s← Q

f→ N , where the kernel and cokernel
of s are objects of CW (i.e., s is a CW isomorphism).

We now define a sheaf of (not necessarily commutative) rings on Π(G).

Definition 7.1. Consider the presheaf of k-algebras ΘΠ(G) on the topological space
Π(G) defined on the complement (Π(G)−W ) of a closed subset W ⊂ Π(G) by

(Π(G)−W ) 7→ EndC/CW
(k)

and whose restriction maps are the evident localization maps. Let Θ̃Π(G) be the
associated sheaf.

Denote by H the projective scheme ProjH•(G, k), and by OH the structure sheaf
of H. For ζ ∈ Hn(G, k), where n is even if p > 2, let V (ζ) ⊂ H be the hypersurface
defined by the ideal generated by ζ. We have OH(H− V (ζ)) = (H•(G, k)[ 1ζ ])0, the
degree zero part of the localization of the cohomology ring at ζ.

Next, we describe the map which will later serve to identify structure sheaves on
H and Π(G). The construction relies on a result of J. Carlson, P. Donovan, and W.
Wheeler [10, 3.1] which is stated for finite groups but whose proof applies verbatim
to any finite group scheme.

Let W ⊂ Π(G) be a closed subset and let U = Π(G)−W . Identifying H ' Π(G)
via the homeomorphism ΨG of 3.6, we may consider W , U as subsets of H. By
Proposition 3.7, ΨG identifies Π(G)Lζ

⊂ Π(G) with V (ζ) ⊂ H. We shall use
notation Wζ for both Π(G)Lζ

and V (ζ). Let k
s← M

α→ k ∈ EndC/CW
(k). Since s

is a CW -isomorphism, it fits into an exact sequence 0 → N → M → k → 0 such
that Π(G)N ⊂ W . Let ζ ∈ H•(G, k) be a homogeneous cohomology class of degree
n such that W ⊂ Wζ = Π(G)Lζ

. By [10, 3.1], we may find γ : Ωntk → M and a
commutative diagram

(7.1.1)
k Ωtnk

γ

²²

β //ζt

oo k

k M
α //soo k

Thus, we can represent k
s← M

α→ k as k
ζt

← Ωtnk → k in EndC/CWζ
(k).

We now define a map

(7.1.2) φW : EndC/CW
(k) → OH(U)

for any open U ⊂ Π(G). To define a regular function φW (k ← M → k) ∈ OH(U), it
suffices to define it locally. Since the basic open sets of the form Uζ = H−Wζ form a
basis of the topology on H, it suffices to define the restrictions of φW (k ← M → k)
to open subsets Uζ ⊂ U . For this, we choose a representative of k ← M → k of the

form k
ζt

← Ωtnk
β→ k and define

φW (k ← M → k) ↓Uζ
= β/ζt.

In the following proposition we check that φW is well-defined. We remind the reader
that we identify Π(G) and H as topological spaces via the homeomorphism ΨG
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Proposition 7.2. Let W ⊂ Π(G) be a closed subset, and let U = H − W . The
map φW of (7.1.2) is well-defined and determines a ring homomorphism

φW : EndC/CW
(k) → OH(U).

Moreover, for an open subset U ′ ⊂ U of Π(G), we have a commutative diagram

(7.2.1)

EndC/CW
(k)

²²

φW // OH(U)

²²
EndC/CW ′ (k)

φW ′ // OH(U ′)

where W ′ = Π(G)− U ′ and the vertical maps are the natural restriction maps.

Proof. To show that φW is well-defined, we have to check that

(1) φW does not depend on the choice of the commutative diagram 7.1.1 for a
given k ← M → k

(2) φW does not depend on the choice of representative k ← M → k
(3) φW ↓Uζ

and φW ↓Uξ
agree on the intersection Uζ ∩ Uξ = Uζξ

(1) follows by examining the commutative diagram

(7.2.2)

Ωtnk
β

!!CC
CC

CC
CC

C

γ

²²

ζt

}}{{
{{

{{
{{

{

k M
α //soo k Ω(t+t′)nk

ζt′
mm

ζt
rr

Ωt′nk

β′

=={{{{{{{{{
γ′

OO

ζt′

aaCCCCCCCCC

The diagram implies that, considered as cohomology classes, βζt′ = β′ζt. Thus,
β/ζt = β′/ζt′ on Uζ .

To show (2), observe that by definition of the equivalence relation on morphisms
in C/CW , k ← M → k and k ← N → k represent the same endomorphism if and
only if there is a commutative diagram

M
s

~~~~
~~

~~
~~ β

ÃÃ@
@@

@@
@@

@

k T //oo

OO

²²

k

N

β′

>>~~~~~~~~s′

``@@@@@@@@

By choosing the endomorphism k ← Ωl → k representing k ← T → k as in (7.2.1),
we conclude that it also represents both k ← M → k and k ← N → k. This verifies
(2).

To prove (3), one proceeds exactly as for (1) provided one replaces diagram
(7.2.2) by the following diagram
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Ωtnk
β

!!CC
CC

CC
CC

C
γ

²²

ζt

}}{{
{{

{{
{{

{

k M
α //soo k Ωnt+mlk

ξl
mm

ζt
rr

Ωmlk

β′

=={{{{{{{{{
γ′

OO

ξl

aaCCCCCCCCC

The additivity of φW is evident. To show multiplicativity, we compare the dia-
gram

Ω(t+t′)nk

ζt

²²

β // Ωtnk

ζt

²²

α // k

k Ωt′nk
ζt′

oo β // k
exhibiting composition in EndC/CWζ

(k) with the diagram

k Ω(t+t′)nk
ζt+t′

oo

ζt

yysssssssss

αβ //

β

%%JJJ
JJJ

JJJ
J k

Ωt′nk

ζt′
aaCCCCCCCCC

Ωtnk

α

>>|||||||||

exhibiting composition of the corresponding elements in OH(Uζ).

Commutativity of the diagram (7.2.1) follows immediately from the definition of
the map φW .

¤

The commutativity of (7.2.1) immediately implies that the maps φW of Propo-
sition 7.2 determine a map of presheaves as stated in the following corollary.

Corollary 7.3. The map φ : ΘΠ(G) → Ψ∗GOH defined by

φ(U) = φπ(G)−U : ΘΠ(G)(U) = EndC/CΠ(G)−U
(k) → OH(U)

for any open U ⊂ Π(G) determines a homomorphism of presheaves of k-algebras
on Π(G).

Proposition 7.4. Let ζ ∈ H•(G, k) be a homogeneous cohomology class of degree
n > 0 with associated principal closed subset Wζ ⊂ Π(G). Let Uζ denote Π(G)−Wζ .
For any α ∈ Hnj(G, k), define

θWζ
(α/ζj) = (k

ζj

← Ωjnk
α→ k).

Then
θWζ

: OH(Uζ) → ΘΠ(G)(Uζ)
is an isomorphism, inverse to φWζ

.
In particular, ΘΠ(G)(Uζ) is a commutative k-algebra.

Proof. Observe that ζj is a C/CWζ
-isomorphism since the kernel of k

ζj

← Ωjnk is Lζj

which has support Wζ . Hence, θWζ
(α/ζj) ∈ EndC/CWζ

(k).
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To verify that θWζ
is well defined, we must verify that if ζm′ · β = ζm · α ∈

Hn(m′+j′)(G, k) = Hn(m+j)(G, k), then θWζ
(α/ζm+j) = θWζ

(β/ζm+j). This follows
immediately from the equivalence relation describing morphisms in C/CWζ

together
with the existence of the commutative diagram in stmod (G):

Ωnj′k
ζj′

wwnnnnnnnnnnnnnn
β

((PPPPPPPPPPPPPP

k Ωn(j+m)k

ζm

²²

ζj+m

oo ζmα //

ζm′
OO

k

Ωnjk

α

66nnnnnnnnnnnnnnnζj

hhPPPPPPPPPPPPPPP

It is immediate from the construction that θWζ
and φWζ

are mutually inverse.
Thus, both θWζ

and φWζ
are ring isomorphisms. ¤

Let ΦG : Proj H•(G, k) → Π(G) be the inverse to the homeomorphism ΨG

of Theorem 3.6. By the universal property of the associated sheaf, the map of
presheaves ΘΠ(G) → OH of Corollary 7.3 induces a map of sheaves on Π(G)

Φ#
G = φ̃ : Θ̃Π(G) → Ψ∗GOH ∼= ΦG∗OH.

In some sense, the following theorem is the ultimate generalization and refinement
of “Carlson’s Conjecture” which proposed the comparison of rank varieties and
cohomological support varieties for kE-modules, where k was assumed to be alge-
braically closed of characteristic p and E an elementary abelian p-group.

Theorem 7.5. Let G be a finite group scheme over a field k of positive character-
istic. There is an isomorphism of ringed spaces

(ΦG,Φ#
G) : (Proj H•(G, k),OProj H•(G,k))

∼ // (Π(G), Θ̃Π(G))
given by the homeomorphism ΦG : ProjH•(G, k) → Π(G) and sheaf isomorphism
Φ#

G : Θ̃Π(G) → ΦG∗OProj H•(G,k).

Proof. We only have to justify that φ̃ is an isomorphism of sheaves. As before,
let H = ProjH•(G, k). Let ζ ∈ Hn(G, k) where n is even if p > 2, and let Wζ =
Π(G)Lζ

. By Proposition 3.7, Φ−1
G (Wζ) = V (ζ). Thus,

{Uζ ; ζ ∈ H•(G, k)}, {H − V (ζ); ζ ∈ H•(G, k)}
give bases for the topologies on Π(G) andH respectively. Since φ(Uζ) : ΘΠ(G)(Uζ) →
(ΦG∗OH)(Uζ) = OH(Φ−1

G (Uζ)) is an isomorphism for any ζ by Proposition 7.4, we
conclude that Φ#

G = φ̃ : Θ̃Π(G) → ΦG∗OH induces an isomorphism on stalks and
thus is a sheaf isomorphism.

¤

Corollary 7.6. (of the proof.) The presheaf ΘΠ(G) and its associated sheaf Θ̃Π(G)

take the same values on the basic open sets of the form Π(G)−Wζ .
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