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Abstract. We prove that the projectivity of an arbitrary (possibly infinite
dimensional) module for a Frobenius kernel can be detected by restrictions to
one-parameter subgroups. Building upon this result, we introduce the sup-
port cone of such a module, extending the construction of support variety
for a finite dimensional module, and show that such support cones satisfy
most of the familiar properties of support varieties. We also verify that our
representation-theoretic definition of support cones admits an interpretation
in terms of Rickard idempotent modules associated to thick subcategories of
the stable category of finite dimensional modules.

0. Introduction

The representation theory of finite dimensional Lie algebras is not only a subject
of interest in its own right but reflects significant aspects of the representation
theory of algebraic groups. There has been considerable interest in the study of
geometric aspects of the finite dimensional representation theory of the restricted
enveloping algebra of the Lie algebra of an algebraic group G over a field k of
positive characteristic (e.g. [14],[15],[16],[21]), which can be viewed equivalently as
the representation theory of the infinitesimal group scheme G(1). The cohomological
approach, initiated by D. Quillen in his work in representation theory of finite
groups ([24]), involves the action of the (even dimensional) cohomology algebra
H∗(A, k) on Ext∗A(M,M) for a module M of a given cocommutative Hopf algebra
A, whereas the local approach involves the representation-theoretic behavior of M
restricted to a certain class of Hopf sub-algebras. In the modular representation
theory of finite groups these two approaches were shown to be closely related with
the Avrunin-Scott’s proof ([3]) of Carlson’s conjecture.

In [27],[28] both cohomological and local approaches were extended to the rep-
resentation theory of Frobenius kernels G(r), infinitesimal approximations of the
algebraic group G. The geometric objects associated to a finite dimensional G(r)-
module, resulting from these two approaches, were shown to be homeomorphic.
At the same time, constructions of infinite dimensional representations of finite
groups have been introduced and methods have been developed to extend the ear-
lier geometric approach for finite dimensional representations to infinite dimensional
representations of finite groups ([6],[7],[25]).

Following much earlier work for finite dimensional modules, we seek to associate
to a possibly infinite dimensional module M of a Frobenius kernel G(r) a geometric
object (its “support cone”) V (G(r))M which reflects some key properties of M .
One criterion for such support cones is that they extend the existing construction
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of support varieties for finite dimensional modules. A second criterion is that these
geometric objects satisfy the same properties for all modules that support varieties
satisfy for finite dimensional modules. Whereas for finite dimensional modules
one can define support varieties either in terms of cohomology or in terms of local
representation behavior, in the infinite dimensional context these constructions give
quite different objects. We find that the local representation theory approach leads
to a much better generalization.

A fundamental property of finite dimensional modules is that projectivity can be
detected locally on a family of “small” subgroups: elementary abelian subgroups
for finite groups ([8]), cyclic [p]- nilpotent Lie subalgebras for Lie algebras ([15]) and
one-parameter subgroups (i.e. subgroups of the form Ga(r)) for arbitrary infinites-
imal group schemes ([28]). The original proof of this local criterion for projectivity
by Chouinard [8] is valid for arbitrary, not necessarily finite dimensional, modules
of finite groups. However, the existing proof of such a criterion for infinitesimal
group schemes is a consequence of the cohomological description of the support
variety and only applies to the finite dimensional case (cf. [28, 7.6]). Section 1
is dedicated to proving a local criterion for projectivity for arbitrary modules for
Frobenius kernels (cf. Th. 1.6), building upon a result of C. Bendel for infinitesimal
unipotent group schemes ([4]).

With this local criterion for projectivity in mind, we formulate in section 2 our
definition of the support cone for an arbitrary G(r)-module. We use a representation-
theoretic construction introduced in [28], which is parallel to Carlson’s rank va-
rieties for elementary abelian p-groups ([9]). The support cone is determined
upon restriction of the module to a family of “subgroups”, isomorphic to Ga(1).
A combination of the local criterion for projectivity of the first section and a
generalization of Dade’s lemma [12] for infinite dimensional modules proved in
[7] ensures that these support cones satisfy the key property of support vari-
eties for finite dimensional modules: V (G(r))M = 0 if and only if M is projec-
tive. Another important property of support varieties for finite dimensional mod-
ules inherited by support cones is good behavior with respect to tensor products:
V (G(r))M⊗N = V (G(r))M ∩ V (G(r))N . Theorem 2.6 verifies that these and other
familiar properties of support varieties for finite dimensional modules are satisfied
by support cones.

In section 3, we provide a different description of support cones using Rickard
idempotent modules ([25]) which are infinite dimensional modules associated to
certain thick subcategories of finite dimensional modules. In this manner, our ap-
proach to “supports” agrees with that of [7] for arbitrary modules for a finite group.
We apply this description to show that any conical subset of V (G(r)) can be realized
as the support cone of some G(r)-module. We further show that the complexity of
an infinite dimensional module M as defined in [6] equals the “dimension” of the
support cone of M . As a final remark we give an example of the failure of the tensor
product property for a natural cohomological formulation of “support” for infinite
dimension modules, thereby indicating a fundamental problem with extending the
cohomological approach to infinite dimensional modules.

Throughout the paper k will denote an algebraically closed field of positive char-
acteristic p.

The author is in great debt to Eric Friedlander without whom this paper would
have never been written. We thank Andrei Suslin for very useful discussions on the
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The author gratefully acknowledges the hospitality of the University of Heidel-
berg during the preparation of this paper.

1. Local projectivity test for Frobenius kernels

Let Gr be an infinitesimal finite group scheme of height r which is a closed
normal subgroup of a smooth algebraic group G and let M be a Gr-module, not
necessarily finite dimensional over k. The case of the most interest for us is when
Gr is the rth Frobenius kernel of G, denoted G(r), which is defined to be the kernel
of the rth power of the Frobenius map F r : G → G(r) (cf. [20]). We shall call a
Gr-module M locally projective if it satisfies the hypothesis of Theorem 1.6 : for
any field extension K/k and any one-parameter subgroup Ga(r) ⊗ K → Gr ⊗ K,
the restriction of M ⊗K to Ga(r) ⊗K is projective.

The purpose of this section is to prove a local criterion for projectivity: M is
projective if and only if it is locally projective, which is the content of Theorem 1.6.
This projectivity detection result was proved in [4] for unipotent infinitesimal group
schemes.

First we prove that induction from Gr to G preserves local projectivity. This
enables us to use Suslin-Friedlander-Bendel spectral sequence ([28]), which is an ex-
tension to G(r)-modules of the spectral sequence introduced in [2], to pass from the
known case of a unipotent infinitesimal group scheme to Gr. As a remark at the end
of the section we show that the proof can be much simplified using the Anderson-
Jantzen spectral sequence in the case when the module under consideration has the
structure of a rational G-module.

Proposition 1.4 deals with understanding of the composition of induction and re-
striction functors: ResG

H ◦IndG
Gr

for a subgroup scheme H ⊂ G. Roughly speaking,
we are looking for some analogue of the double coset formula in the representation
theory of finite groups. We only analyze this composition in the case when the
action of H on the affine variety G/Gr via the left regular representation is trivial
which leads to the requirement for Gr to be normal in G.

Fix a Borel subgroup B ⊂ G and let T and U be the corresponding torus and
unipotent subgroup. We shall use the following notation: Br = B∩Gr, Ur = U∩Gr

and Tr = T ∩Gr.

Recall that a finite dimensional Artin algebra A is called quasi-Frobenius if it
is self-injective. By a theorem of Faith-Walker ([17]) this is equivalent to the fact
that any projective A-module is injective and vice versa.

For any finite group scheme H, k[H]# is a quasi-Frobenius algebra (cf., for exam-
ple, [20] or [22]). The equivalence of categories of H-modules and k[H]#-modules
together with the preceding remark imply that projective H-modules coincide with
injective ones.

Lemma 1.1. Let A be a quasi-Frobenius algebra and M be an A-module. If M
admits a finite injective resolution, then M is injective.
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Proof. Assume that M is not injective and let

M −→ I0 −→ I1 −→ . . . −→ In −→ 0

be an injective resolution of M of minimal length. By our assumption n > 0.
Since A is quasi-Frobenius and In is injective, it is also projective. Then the last

map δn : In−1 → In in the injective resolution above splits and In−1 = Jn−1
⊕

In

for some injective module Jn−1. Then

M −→ I0 −→ I1 −→ . . . −→ In−2 −→ Jn−1 −→ 0

is an injective resolution of M of smaller length than the original one. Thus, M is
injective.

¤

We shall denote by Ω−nM the −n-th Heller operator of M . Precisely, if
M → I0 → I1 → . . . is the minimal injective resolution of M , then Ω−nM =
coker(In−2 → In−1) for n > 1 and Ω−1M = coker(M → I0).

Lemma 1.2. Let A be a quasi-Frobenius algebra and M be an A-module. If there
exists an integer n0 such that ExtnA(S,M) = 0 for all n > n0 and any simple
A-module S, then M is projective.

Proof. For any simple A-module S and n > n0, we have an isomorphism

HomA(S,Ω−nM) ∼= Extn
A(S, M)

(cf. [5, v.1;2.5.4]). The latter is 0 for all n > n0. Therefore, Ω−nM = 0 for all
n > n0 (since any non-trivial module has a simple submodule). This implies that
the minimal injective resolution of M is finite. The statement now follows from
Lemma 1.1. ¤

We will need the following algebraic lemma to finish the proof of Proposition 1.4.

Lemma 1.3. Let A be a regular ring of finite Krull dimension d and J• be a cochain
complex of flat A-modules such that J• ⊗A k(µ) is acyclic in positive degrees for
any prime ideal µ ⊂ A. Then Hn(J•) = 0 for all n > d.

Proof. We proceed by induction on d = dim A.
First note that J• has zero cohomology in degrees greater than m if and only if

J•µ has zero cohomology in degrees greater than m for all prime ideals µ. Indeed,
the only if part follows from the exactness of localization. To prove the opposite
direction assume that J• is not acyclic. Let [α] ∈ Hn(J•) be a non-zero cycle.
Since J• is a complex of A-modules, Hn(J•) also has a structure of an A-module.
Let µ be a prime ideal in A containing AnnA[α]. Then [α]µ = [αµ] is a non-zero
cycle in Hn(J•)µ = Hn(J•µ) or, equivalently, Hn(J•µ) 6= 0.

In view of the preceding remark it suffices to prove the assertion of the lemma
for local rings.

Let d = 1.
In this case A is a discrete valuation ring. Denote by π a generator of the maximal
ideal of A, and by K the fraction field of A. Consider the short exact sequence

0 → A → A → A/πA → 0
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and tensor it with J• over A. Since J• is flat we get an exact sequence of cochain
complexes:

0 → J• → J• → J•/πJ• → 0

and, therefore, a long exact sequence in cohomology:

· · · → Hn−1(J•/πJ•) → Hn(J•) → Hn(J•) → Hn(J•/πJ•) → . . . .

Note that J•/πJ• = J• ⊗A A/πA is acyclic in degrees higher than 0 by the as-
sumption of the lemma. Therefore, multiplication by π induces an isomorphism on
Hn(J•) for all n > 1, which implies that the action of A on Hn(J•) extends to an
action of K = Frac(A). Thus, Hn(J•) = Hn(J•)⊗A K = Hn(J• ⊗A K) = 0.

d− 1 ⇒ d
Denote by M the maximal ideal of A. Let t ∈ M but t 6∈ M2. To apply the
induction hypothesis to J•/tJ• as a module over A/tA we have to check:

(i) J•/tJ• is flat.
This holds since tensoring preserves flatness (cf. [13, 6.6a]).

(ii) “local acyclicity”.
Let µ ∈ Spec (A/tA). Denote by π∗ the map induced on spectra Spec A/tA →
Spec A and let ν = π∗(µ). We have

J•/tJ• ⊗A/tA k(µ) = J• ⊗A A/tA⊗A/tA k(µ) = J• ⊗A k(ν)

which implies that J•/tJ• is acyclic in positive degrees.
(iii) dim A/tA ≤ dim A− 1.

This allows us to conclude that Hn(J•/tJ•) = 0 for n > d − 1. Combining this
observation with a long exact sequence in cohomology:

· · · → Hn−1(J•/tJ•) → Hn(J•) → Hn(J•) → Hn(J•/tJ•) → . . . ,

we get that multiplication by t induces an isomorphism on Hn(J•) for n > d.
Let S = {t ∈ A : multiplication by t induces an isomorphism on Hn(J•) for n >

d}. Then S is a multiplicative system in A which contains M\M2. Therefore,
dim S−1A < dim A and we can apply induction hypothesis to S−1A.

Let [a] ∈ Hn(J•), n > d. S−1[a] ∈ S−1Hn(J•) = Hn(S−1J•) = 0. So there
exists t ∈ S such that t[a] = 0. Since multiplication by any element in S induces an
isomorphism on cohomology we conclude that [a] = 0 and, therefore, Hn(J•) = 0
for n > d ¤

Proposition 1.4. Let M be a locally projective Gr-module. Then IndG
Gr

(M) is
locally projective as a Gr-module.

Proof. We shall follow closely the proof of Theorem 4.1 of [28].
Let H ⊗K → Gr ⊗K be any one-parameter subgroup. We need to show that

IndG
Gr

(M)⊗K restricted to H⊗K is projective. By extending scalars from k to K
and by taking further the image of H in G we can assume that H is a k-subgroup
scheme of G.

All invariants throughout the proof will be taken with respect to the action
via the left regular representation of various subgroup schemes of G on k[G] unless
specified otherwise. To distinguish between right and left regular representations we
shall use subscripts “l” or “r”. Normality of Gr in G implies that k[G]Gr

r = k[G]Gr

l ,
so in this particular case we will just write k[G]Gr .
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Let M → I• be the standard Gr-injective resolution of M : Im = M⊗k[Gr]⊗m+1,
where Gr acts on Im via the right regular representation on the last tensor factor.
Then IndG

Gr
(M) → IndG

Gr
(I•) is an injective resolution of IndG

Gr
(M) as an H-

module. (IndG
Gr

is exact since Gr is a finite group scheme (cf. [20, I.5.13b)]) and
ResG

H takes injectives to injectives because any injective G-module is a direct sum-
mand of k[G]⊗ <trivial G-module> and injectivity of k[G] ↓H itself is equivalent
to the exactness of IndG

H (cf. [20, I.4.12]).)
If we set J• = (IndG

Gr
(I•))H , then H∗(J•) = H∗(H, IndG

Gr
(M)). Note that

J• has a natural structure of a complex of k[G/Gr]-modules. Indeed, for any map
M1⊗M2 → M3 of Gr-modules, we get a G-module map IndG

Gr
(M1)⊗IndG

Gr
(M2) →

IndG
Gr

(M3). By taking M1 = k and M2 = M3 = In, we get a natural structure of
an IndG

Gr
k = k[G/Gr]-module on IndG

Gr
In compatible with the action of G. Since

k[G/Gr] ∼= k[G]Gr is H-invariant, J• is a k[G/Gr]-subcomplex of IndG
Gr

(I•).
We point out next that all Jn are flat k[G/Gr]-modules. Indeed,

Jn = (IndG
Gr

(In))H = IndG
Gr

(Q⊗ k[Gr]))H = Q⊗ (IndG
Gr

(k[Gr]))H ∼= Q⊗ k[G]Hl
where Q = M ⊗ k[Gr]⊗n is a vector space with trivial Gr-action. We have an
extension of rings k[G/Gr] ∼= k[Gr\G] → k[H\G] → k[G] where the composition
and the second extension are faithfully flat since they correspond to a quotient by a
finite group scheme acting freely (cf. [20, I.5.7]). Consequently, the first extension
k[G]Gr

l
∼= k[Gr\G] → k[H\G] ∼= k[G]Hl is flat, which implies that Jn = Q⊗ k[G]H

is flat over k[G]Gr .
For any point g ∈ G we are going to establish the following isomorphism:

J• ⊗k[G]Gr k(g) ∼= (I• ⊗ k(g))g−1(H⊗k(g))g. (∗)
First note that there is a natural isomorphism (IndG⊗k(g)

Gr⊗k(g)(N ⊗ k(g)))H⊗k(g) ∼=
(IndG

Gr
(N))H ⊗ k(g). Furthermore, J• ⊗ k(g) ⊗k(g)[G/Gr] k(g) ∼= J• ⊗k[G/Gr ] k(g).

Thus, it suffices to prove (∗) for a k-rational point g and then proceed by extension
of scalars.

For a k-rational point g ∈ G denote by g its image under the projection G →
G/Gr. For any Gr-module N we have a natural homomorphism

εg : IndG
Gr

(N) → N

given by evaluation at g, i.e. εg(n⊗f) = f(g)n. The restriction of εg to (IndG
Gr

(N))H

lands in Ng−1Hg. As it was noted above, (IndG
Gr

(N))H has a natural structure of
a k[G]Gr - module. If we make N into a k[G]Gr -module via evaluation at g, then εg

becomes a homomorphism of k[G]Gr -modules. Tensoring the left hand side with k
over k[G]Gr , we get a natural map of k-vector spaces:

εg : (IndG
Gr

(N))H ⊗k[G]Gr k → Ng−1Hg.

When N = k[Gr] this is an isomorphism as one sees from the following Cartesian
square:

g−1Hg\Gr

x→gx

²²

// Spec k

g

²²
H\G // Gr\G
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Hence, εg is an isomorphism for any injective Gr-module. This implies the
isomorphism of complexes (∗).

Computing cohomology of both sides of (∗) we get that H∗(J• ⊗k[G]Gr k(g)) =
H∗(g−1(H⊗k(g))g, M⊗k(g)) and the latter is trivial for ∗ > 0, since g−1(H⊗k(g))g
is again a one-parameter subgroup of Gr ⊗ k(g) and M is locally projective. We
conclude that J• ⊗k[G]Gr k(g) is acyclic in positive degrees for any point g ∈ G.

We have J•⊗k[G]Gr k(g) = J•⊗k[G]Gr k(g)⊗k(g) k(g) and the extension of scalars
k(g) → k(g) gives an injective map on cohomology. Therefore, J• ⊗k[G]Gr k(g) is
also acyclic in positive degrees. Since the projection G → G/Gr is a bijection
on points, we get that for any point x ∈ G/Gr the complex J• ⊗k[G]Gr k(x) is
acyclic in positive degrees. Since Gr is a closed normal subgroup of G, G/Gr is a
smooth affine scheme and hence k[G/Gr] is a regular ring. Lemma 1.3 now implies
that J• is acyclic in all sufficiently large degrees. Hence, H∗(H, IndG

Gr
(M)) = 0

in all sufficiently large degrees. Since k is the only simple H-module, we get that
IndG

Gr
(M) is injective by applying Lemma 1.2. ¤

To prove Theorem 1.6 we are going to exploit one more construction introduced
in [28, §3] which we briefly discuss below.

Let H be an affine k-group scheme, H ′ be a closed subgroup scheme, and X be the
quotient scheme H/H ′ with the quotient map p : H → X. There is an equivalence
of categories between the category of quasi-coherent sheaves M on X and the
category of rational H ′-modules M provided with the structure of a left k[H]-
module such that the multiplication k[H]⊗M → M is a homomorphism of rational
H ′-modules, where H ′ acts on k[H] via the right regular representation, given by
the functor M 7→ Γ(H, p∗M). Moreover, the sheaf cohomology H∗

Zar(X,M) is
naturally isomorphic to the rational cohomology H∗(H ′,Γ(H, p∗M)).

Let G′ = G/Gr and B′ = B/Br. Since B′ is a Borel subgroup of G′,
G′/B′ is a projective variety. We are going to show that cohomology groups
Hn(Br, IndG

Gr
(M)) belong to the aforementioned category of rational B′-modules

with the compatible structure of a left k[G′]-module. Once this is done we can
associate to Hn(Br, IndG

Gr
(M)) a quasi-coherent sheaf on X, denoted Hq(Br,M),

with the property

Hp(B/Br, H
q(Br, IndG

Gr
(M))) ∼= Hp(X,Hq(Br,M)). (∗∗)

Lemma 1.5. For any Gr-module M and any n ≥ 0, the cohomology group
Hn(Br, IndG

Gr
(M)) has the natural structures of a rational B/Br-module and a left

k[G/Gr]-module such that the action of k[G/Gr] on M is a B/Br-homomorphism.

Proof. Let M → I• be the standard Gr-injective resolution of M . The cohomology
groups Hn(Br, IndG

Gr
(M)) can be computed via the complex J• = (IndG

Gr
(I•))Br ,

which has the natural structures of B/Br and k[G/Gr]-modules. The action of
k[G/Gr] is given explicitly via

k[G/Gr]⊗ (IndG
Gr

(I•))Br → (IndG
Gr

(I•))Br

φ⊗ (f ⊗ s) −→ φf ⊗ s

which one easily checks to be a homomorphism of B/Br-modules, where B/Br

acts on k[G/Gr] via the left regular representation (since this is how the standard
G-action on IndG

Gr
(N) = (k[G]⊗N)Gr is defined).
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To get the compatibility with B/Br acting on k[G/Gr] via the right regular rep-
resentation we have to change the structure of k[G/Gr] on J• via the automorphism
of G/Gr: G/Gr

σ→ G/Gr, σ(x) = x−1. ¤

Theorem 1.6. Let Gr be an infinitesimal k-group scheme of height r, which is a
closed normal subgroup scheme of a smooth affine group scheme G. Let M be a
Gr-module such that for any field extension K/k and any non-trivial one-parameter
subgroup Ga(r)⊗K → Gr ⊗K the restriction of M ⊗K to Ga(r)⊗K is projective.
Then M is projective as a Gr-module.

Proof. Let X be the quotient scheme (G/Gr)/(B/Br). Consider the Hochschild-
Serre spectral sequence

Ep,q
2 = Hp(B/Br,H

q(Br, IndG
Gr

(M))) =⇒ Hp+q(B, IndG
Gr

(M)).

By Theorem 3.6 in [28], which is an extension to not necessarily reductive alge-
braic groups of a fundamental theorem of [11],

Hn(B, IndG
Gr

(M)) ∼= Hn(G, IndG
Gr

(M)),

and by Shapiro’s lemma

Hn(G, IndG
Gr

(M)) ∼= Hn(Gr,M).

Since M is locally projective, Proposition 1.4 implies that IndG
Gr

(M) is also locally
projective as a Gr-module and thus as a Ur-module. Now, by a theorem of C.
Bendel ([4]), which applies to unipotent infinitesimal group schemes, IndG

Gr
(M) is

projective as a Ur-module. We have a short exact sequence of group schemes: 1 →
Ur → Br → Tr → 1, where Tr is diagonalizable and hence cohomologically trivial.
Applying the Serre spectral sequence, we get an isomorphism: H∗(Br, IndG

Gr
(M)) ∼=

H∗(Ur, IndG
Gr

(M))Tr and the latter is 0 in positive degrees, since IndG
Gr

(M) is
a projective Ur-module. Thus, Hq(Br, IndG

Gr
(M)) = 0 for q > 0, so that the

Hochschild-Serre spectral sequence above collapses and we get an isomorphism

Hp(B/Br, H
0(Br, IndG

Gr
(M))) ∼= Hp(Gr,M).

Combining this with the isomorphism (∗∗) one gets:

Hp(X(r),H0(Br, M)) ∼= Hp(Gr,M).

Let x = dim X. Since X is a projective variety, its cohomology groups with
coefficients in any quasi-coherent sheaf are trivial in degrees higher than x (cf. [18,
III.2.7]). Thus, Hp(Gr,M) = 0 for p > x. Applying the same argument to M⊗N#,
we get Extp

Gr
(N, M) = 0 for all p > x and all finite-dimensional modules N . By

Lemma 1.2, M is projective.
¤

By applying the preceding theorem to the special case of a Frobenius kernel, we
get the following result:

Corollary 1.7. Let G(r) be the r-th Frobenius kernel of a smooth algebraic group
G and let M be a G(r)-module such that for any field extension K/k and any non-
trivial one-parameter subgroup Ga(r) ⊗K → G(r) ⊗K the restriction of M ⊗K to
Ga(r) ⊗K is projective. Then M is projective as a G(r)-module.
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Remark 1.8. Let G be a semi-simple simply connected algebraic group. Assume all
the hypotheses of Corollary 1.7 and also assume that the G(r)-structure on M comes
from a structure of a rational G-module. In this case we do not need to consider
induced modules and can significantly simplify the proof of our local criterion for
projectivity. Indeed, for a rational G-module M , we have the following spectral
sequence ([2]):

Hp(G(r)/B(r),L(Hq(B(r),M))) =⇒ Hp+q(G(r),M),

where L(Hq(B(r),M)) is the sheaf on G(r)/B(r) associated to Hq(Br,M) consid-
ered as a B(r)-module (cf. [20, I.5]).

Local projectivity of M implies that M is a projective B(r)-module which makes
the spectral sequence collapse. Thus, we get an isomorphism:

Hp(G(r)/B(r),L(H0(B(r),M))) ∼= Hp(G(r),M).

Since G(r)/B(r) is a projective variety, Hp(G(r)/B(r),L(H0(B(r),M))) = 0 for
p > dim G(r)/B(r). Thus, Hp(G(r),M) = 0 for p > dim G(r)/B(r). Applying the
same argument to M ⊗ S#, we get that

Extp
G(r)

(S,M) = 0

for any simple G-module and any p > dim G(r)/B(r). Due to the assumptions
made on G we know that all simple G(r)-modules come from restricting simple
G-modules corresponding to restricted dominant weights (cf. [20, II.3]). Thus, we
have vanishing of Ext-groups in all sufficiently large degrees for all simple G(r)-
modules. By Lemma 1.2, M is projective as a G(r)-module.

2. Support cones for Frobenius kernels

In this section G will denote an arbitrary infinitesimal k-group scheme of height
r unless specified otherwise. We shall start with a brief summary of a few results
about support varieties for finite dimensional modules and establishing notation
which will be used through the rest of the paper.

In what follows p will be assumed to be greater than 2 to simplify notation
although everything still holds for p = 2 if we change Hev(G, k) to H∗(G, k).

We shall denote by |G| the cohomological support scheme of G, SpecHev(G, k).
For a finite dimensional G-module M the cohomological support variety of M (de-
noted |G|M ) is the Zariski closed subset of Spec Hev(G, k) defined by the ideal
AnnHev(G,k)(Ext∗G(M, M)). In [27],[28] these cohomological objects were given a
representation-theoretic interpretation which is analogous to Quillen’s stratification
theorem and Carslon’s rank varieties for finite groups. Namely, consider the functor

V (G) : (comm k-alg) → (sets)

defined by setting

V (G)(A) = HomGr/A(Ga(r) ⊗k A, G⊗k A).

This functor is representable by an affine scheme of finite type over k, which we will
still denote V (G). V (G) is a cone or, which amounts to the same thing, the coordi-
nate algebra k[V (G)] is graded connected. We shall specify further the correspon-
dence between one-parameter subgroups of G (i.e. group scheme homomorphisms
Ga(r) ⊗K → G⊗K) and points of V (G).
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Let s ∈ Vr(G) be a point. This point defines a canonical k(s)-point of V (G) and
hence an associated group scheme homomorphism over k(s):

νs : Ga(r) ⊗k k(s) → G⊗k k(s).

Note that if K/k is a field extension and ν : Ga(r)⊗k K → G⊗k K is a group scheme
homomorphism, then this data defines a point s ∈ Vr(G) and a field embedding
k(s) ↪→ K such that ν is obtained from νs by extending scalars from k(s) to K.

There is a natural homomorphism of graded commutative k-algebras

ψ : Hev(G, k) → k[V (G)]

which induces a homeomorphism of schemes

Ψ : V (G) → |G|
([27, 1.14]; [28, 5.2]). Furthermore, restricted to V (G)M , the “representation-
theoretic” support variety of a finite dimensional G-module M , defined as in 2.1
below, Ψ is a homeomorphism onto |G|M ([28, 6.8]).

Looking for a good definition of a “support” for an infinite dimensional module
it seems natural to establish the following criteria:

1. Restricted to the finite dimensional case our new construction should give the
standard support variety for finite dimensional modules.

2. Standard properties of support varieties for finite dimensional modules should
remain valid as properties of “supports” for all G-modules.

The natural extension of the cohomological definition of support variety does not
satisfy the “tensor product property” for infinite dimensional modules. We will give
an example of this failure as we look at Rickard idempotent modules in the next sec-
tion. On the other hand, our extension of the representation-theoretic construction
is not necessarily a closed subset of V (G). This particular feature, though, shows
that, extended to infinite dimensional modules, V (G)M gives a “finer” invariant
than |G|M . As it will be shown in the next section any conical subset of V (G) can
be realized as V (G)M for some G-module M .

Getting more sets as support cones also emphasizes the difference between finite
and infinite dimensional case. The category of all modules is “richer” with respect
to this invariant than the category of finite dimensional modules.

For these reasons we choose as our definition of “support” of an arbitrary G-
module module M the representation-theoretic construction appearing below.

Let v0, . . . vpr−1 be the basis of k[Ga(r)]# = (k[T ]/T pr

)# dual to the standard
basis of k[T ]/T pr

. Denote vpi by ui. Then the algebra k[Ga(r)]# coincides with
k[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1).

Definition 2.1. Let G be an infinitesimal k-group scheme of height r and let M
be a rational G-module. The support cone of M is the following subset of V (G):

V (G)M = {s ∈ V (G) : M ⊗k k(s) is not projective as a module for the subalgebra

k(s)[ur−1]/(up
r−1) ⊂ k(s)[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1) = k(s)[Ga(r)]#}.

We remark that by a “subset” of an affine scheme X = SpecA we would mean
simply a set of prime ideals in A. We shall often use the same notation for a point
in X and the corresponding prime ideal in A.

Let Er be an elementary abelian p-group of rank r (i.e. Er = (Z/p)r). If we
view Er as a commutative Lie algebra with trivial restriction, then its representation
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theory is equivalent to the representation theory of the infinitesimal group scheme
G×r

a(1). ¿From this point of view our definition of support cone in the special case
of G×r

a(1) agrees with the extension to infinite dimensional Er-modules of the notion
of rank variety given in [7].

We begin the study of support cones with a reformulation of the Theorem 5.2
in [7] from groups to algebras which enables us to apply the theorem to the rep-
resentations of Ga(r), thanks to the fact that kEr

∼= k[Ga(r)]#. This theorem is a
generalization of Dade’s lemma ([12]) for finite dimensional modules of elementary
abelian p-groups to the infinite dimensional case.

Theorem 2.2. Let A = k[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1) and M be an A-module.

M is projective if and only if for any field extension K/k and any element z =
c0u0+· · ·+cr−1ur−1, where c0, . . . , cr−1 ∈ K, the restriction of M⊗K to K[z]/(zp)
is projective.

The necessity of considering field extensions is what makes the statement of
the theorem different from the classical Dade’s lemma and is essential for infinite
dimensional modules. It is possible to construct a Ga(r)-module M (as we shall
see in the next section) whose support cone V (Ga(r))M is non-zero but does not
have any k-rational points other than 0. For these reasons we work with the scheme
V (G) (i.e. prime ideal spectrum of k[V (G)]), as opposed to the variety of k-rational
points (i.e. maximal ideal spectrum), which is sufficient in the finite dimensional
case.

Note that any group scheme homomorphism Ga(s) → G, s ≤ r, can be extended
canonically to a one-parameter subgroup of height r, Ga(r) → G, via the projection
pr,s : Ga(r) → Ga(s) given by the natural embedding of coordinate algebras

k[Ga(s)] = k[T1]/(T ps

1 )
T1→T pr−s

// k[T ]/(T pr

) = k[Ga(r)].

Conversely, any one-parameter subgroup Ga(r) → G can be decomposed as

Ga(r)
pr,s−→ Ga(s) ↪→ G

for some s ≤ r.

Corollary 2.3. Let M be a Ga(r)-module. M is projective if and only if
V (Ga(r))M = 0.

Proof. The category of Ga(r)-modules is equivalent to the category of k[Ga(r)]# =
k[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1)-modules. To apply Theorem 2.2 we have to show

that V (Ga(r))M = 0 is equivalent to the assumption of the theorem. Let z = c0u0 +
· · · + cr−1ur−1, where c0, . . . , cr−1 ∈ K, K is an extension of k, which we assume
to be perfect (we can always extend scalars further). Consider an endomorphism
α of Ga(r) ⊗K defined on the level of coordinate algebras via the formula:

K[Ga(r)] // K[Ga(r)]

K[T ]/(T pr

)
T→Pr−1

0 cp−i

i T pr−1−i

// K[T ]/(T pr

)
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Dual to this map is an endomorphism of K[Ga(r)]# = K[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1),

which takes ur−1 to c0u0 + · · ·+cr−1ur−1. By definition of V (Ga(r)), α corresponds
to a point there defined over K.

Since V (Ga(r))M is assumed to be 0, the restriction of M⊗K to K[ur−1]/(up
r−1) ⊂

K[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1) = K[Ga(r)]# is projective, where M ⊗K is consid-

ered as a K[Ga(r)]#-module via the pull-back of α. By the construction of α
this is equivalent to M ⊗K being projective when restricted to the subalgebra of
K[Ga(r)]# = K[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1) generated by z = c0u0+· · ·+cr−1ur−1.

Thus we proved that for any z as above M ⊗ K is projective when restricted to
K[z]/(zp) ⊂ K[Ga(r)]#. Now we can apply Theorem 2.2 to conclude that M is
projective.

To prove the “only if” part it suffices to show that for any one-parameter sub-
group Ga(r)

α→ Ga(r), k[Ga(r)]# is projective over k[ur−1]/(up
r−1), where the module

structure on k[Ga(r)]# is given via the composition k[ur−1]/(up
r−1) ⊂ k[Ga(r)]#

α∗→
k[Ga(r)]#. Decompose α as Ga(r)

pr,s→ Ga(s) ↪→ Ga(r). Since Ga(s) is a finite
group scheme, k[Ga(r)]# is injective (and hence projective) as a Ga(s)-module (cf.

[20, I.5.13b)]). The composition k[ur−1]/(up
r−1) ⊂ k[Ga(r)]#

(pr,s)∗→ k[Ga(s)]# =
k[u0, . . . , us−1]/(up

0, . . . , u
p
s−1) takes ur−1 to us−1, which clearly implies that k[Ga(s)]#

(and, therefore, k[Ga(r)]#) is free as a k[ur−1]/(up
r−1)-module.

¤
We shall call an affine k-scheme X = Spec A conical if A is a graded connected

k-algebra. The data of a (non-negative) grading on A is equivalent to a right
monoid action of A1 on X, where the monoid structure on A1 is just the usual
multiplication. (The correspondence is given in the following way: the canonical k-
algebra homomorphism A → A[T ] defined by the grading on A induces a morphism
of schemes X × A1 → X which defines a monoid action of A1. Conversely, given
an action we get a homomorphism A → A[T ] which defines a non-negative grading
on A).

Definition 2.4. (conical subset) Let X = Spec A be a conical affine scheme, where
the conical structure is given by the map ρ : X × A1 → X. Denote by πX :
X × A1 → X the canonical projection onto X. A subset W of X is said to be
conical if it is stable under the action of A1 on X and if for any point s ∈ X we
have πX(ρ−1(s)) ⊂ X.

Note that if W is a closed subset, then it is conical if and only if it is defined by
a graded ideal, or, equivalently, if it corresponds to a homogeneous subvariety. In
fact, in this familiar case or even in the more general case of a subset closed under
specialization, the second condition is redundant and implied by the first.

Next we give an example of a conical set which we find to be more illuminating.
Since A is connected we can give a precise meaning to the 0-point: this is the point
corresponding to the augmentation ideal in A and it belongs to any conical subset.

Example 2.5. Let s ∈ X be a point corresponding to a graded prime ideal µs ⊂ A.
Denote πX(ρ−1(s)) ⊂ X by L(s). Then L(s) ∪ 0 is the minimal conical subset
containing s: by our definition of “conical”, s ∈ W implies L(s) ⊂ W for any
conical subset W . We give a description of L(s) in terms of prime ideals:

L(s) = {µ ∈ Spec A : µ is not homogeneous, µs ⊂ µ and ht(µ) = ht(µs) + 1} ∪ {s}
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To justify this claim we make three simple observations. Denote the action of A1

on X by •.
First, the action of A1 cannot increase the height of the ideal and can lower it

at most by one.
Second, since any set of the form {homogeneous ideal} ∪ 0 is stable under the

action, L(s) does not contain any homogeneous ideals other than µs.
Third, let p be any point in X, c be the generic point of A1, and s be the point

corresponding to the maximal homogeneous ideal contained in the ideal µp. Assume
also that µs is strictly contained in µp (i.e. µp is not homogeneous), in which case
ht(µs) = ht(µp)− 1. Then p • c = s which implies that p ∈ L(s).

To see that p • c = s we note that if µp is the kernel of the map A → k(p), then
the kernel of the induced map

A

Pn
0 ai→

Pn
0 aiT

i

// A[T ] // k(p)(T )

is the maximal homogeneous ideal contained in µp, i.e. µs.

Next we describe how to give an action of A1 on V (G) and, therefore, define a
grading on k[V (G)]. All proofs can be found in [27].

We have a natural morphism of schemes defined by taking composition of mor-
phisms

V (G)× V (Ga(r)) → V (G).

Taking G to be Ga(r) we see that V (Ga(r)) has a natural structure of a monoid
scheme over k. Restricting the action to a submonoid of V (Ga(r)) consisting of
homomorphisms of Ga(r) given by linear maps of coordinate algebras, we get a
right monoid action of A1 on V (G), which, consequently, defines a grading on
k[V (G)]. Moreover, k[V (G)] becomes a graded connected k-algebra with respect to
this grading which makes V (G) into a conical k-scheme.

The following theorem establishes the list of properties satisfied by support cones.
The most difficult one is 2.6.3, the detection of projectivity “on” support cones,
which follows from the local projectivity detection theorem of section 1 and Corol-
lary 2.3.

Theorem 2.6. Let G be an infinitesimal k-group scheme of height r which is a
closed normal subgroup of a smooth algebraic group and let M and N be G-modules.
Support cones satisfy the following properties:

0. For a finite dimensional module M , V (G)M
∼= |G|M .

1. V (G)M is a conical subset of V (G).

2. “Naturality.” Let f : H → G be a homomorphism of infinitesimal group schemes
of height ≤ r. Denote by f∗ : V (H) → V (G) the associated morphism of schemes.
Then

f−1
∗ (V (G)M ) = V (H)M ,

where M is considered as an H-module via f .

3. V (G)M = 0 if and only if M is projective.

4. “Tensor product property.” V (G)(M⊗N) = V (G)M ∩ V (G)N .

5. V (G)(ML
N) = V (G)M ∪ V (G)N .
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6. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of G-modules. Then
for any permutation (ijk) of (123) we have

V (G)Mi
⊂ V (G)Mj

∪ V (G)Mk
.

Proof. Note that over the algebra K[u]/(up) projective=free which we shall use
without mention throughout the argument.

0. This is proved in [28], Cor.6.8.

1. The proof for finite dimensional modules given in [28], Prop.6.1, generalizes
immediately to our case but we shall include it here for the completeness of the
argument. Denote the action of A1 on V (G), V (G)× A1 → V (G), by •.

Let s ∈ V (G) and let νs : Ga(r)⊗k(s) → G⊗k(s) be the one-parameter subgroup
determined by s. By the definition of V (G)M , s ∈ V (G)M if and only if the
restriction of M ⊗ k(s) to k(s)[ur−1]/up

r−1 ⊂ k(s)[Ga(r)]# via νs is not projective.
Let c be a point in A1. We can extend the scalars to a field K/k such that both
s and c are defined over K. Let νs,K : Ga(r) ⊗K → G ⊗K be the one-parameter
subgroup which is obtained from νs by extending scalars from k(s) to K. If c = 0,
then the corresponding one-parameter subgroup is trivial and the restriction of the
pull-back of M via the trivial subgroup to K[ur−1]/up

r−1 is never projective. So,
in this case c • s ∈ V (G)M . Assume c 6= 0. To prove that V (G)M is conical we
have to show that s ∈ V (G)M if and only if c • s ∈ V (G)M . Considered as a
point in V (Ga(r)) defined over K, c determines a group scheme homomorphism
νc,K : Ga(r)⊗K → Ga(r)⊗K, given by the multiplication by c−1 on the coordinate
algebra K[Ga(r)]. By definition of the action of A1 on V (G), the group scheme
homomorphism νc•s,K : Ga(r) ⊗K → G⊗K is defined via the composition

Ga(r) ⊗K
νc,K−→ Ga(r) ⊗K

νs,K−→ G⊗K.

The homomorphism (νc,K)∗ : K[Ga(r)]# → K[Ga(r)]# restricted to K[ur−1]/up
r−1

is given by

K[ur−1]/up
r−1

ur−1→cpr−1
ur−1 // K[ur−1]/up

r−1

which is clearly a ring isomorphism. Consequently, M is not projective as a module
over the right hand side of the above isomorphism if and only if M is not projective
when restricted to the left hand side. The statement follows.

2. Follows immediately from the definition of V (G)M .

3. Note that V (G)M = 0 implies V (G⊗K)M⊗K = 0 for any field extension K/k.
Let Ga(r)⊗K → G⊗K be any non-trivial one-parameter subgroup. By naturality
VGa(r)⊗K(M ⊗ K) = 0, which is equivalent, in view of Cor. 2.3, to the fact that
the restriction of M ⊗ K to Ga(r) ⊗ K is projective. Applying Theorem 1.6, we
conclude that M is projective.

Now suppose that M is a projective G-module. Then M is a direct summand
of k[G]⊗ < trivial module >, and the support variety of k[G] is trivial, since it is
injective as a G-module.

4. The inclusion V (G)M⊗N ⊂ V (G)M ∩ V (G)N follows from the fact that ten-
sor product of a projective module with anything is projective. Indeed, let s ∈
V (G)M⊗N . By the definition of support cone, M ⊗N ⊗k(s) is not projective when
restricted to k(s)[ur−1]/up

r−1 ⊂ k(s)[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1) = k(s)[Ga(r)]#,
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where Ga(r) ⊗ k(s) → G ⊗ k(s) is the one-parameter subgroup of G ⊗ k(s) corre-
sponding to the point s ∈ V (G). In view of the remark above, neither M ⊗ k(s)
nor N ⊗ k(s) is projective and, therefore, s ∈ V (G)M ∩ V (G)N .

To prove the other inclusion we have to show that if both M⊗k(s) and N⊗k(s)
are not free as modules over k(s)[ur−1]/(up

r−1), then M ⊗ N ⊗ k(s) is not free.
Denote k(s)[ur−1]/(up

r−1) by A. Note that

M ⊗N ⊗ k(s) ∼= (M ⊗ k(s))⊗k(s) (N ⊗ k(s)).

Since any A-module is a direct sum of finite dimensional indecomposables (cf. [17]),
we can write M⊗k(s) =

⊕
I Mi and N⊗k(s) =

⊕
J Nj for some finite dimensional

A-modules Mi and Nj . Consequently,

(M ⊗ k(s))⊗k(s) (N ⊗ k(s)) =
⊕

I,J

(Mi ⊗k(s) Nj).

If both M ⊗ k(s) and N ⊗ k(s) are not free, then there exist i and j such that
Mi and Nj are not free A-modules. The tensor product of two finite dimensional
A-modules is free if and only if at least one of them is free, which implies that
Mi ⊗Nj is not free. Since over A projective=free, we get that M ⊗N ⊗ k(s) has a
direct summand, namely Mi⊗Nj , which is not projective. Therefore, M⊗N⊗k(s)
is not free.

5. The restriction of (M⊕N)⊗k(s) = (M⊗k(s))⊕(N⊗k(s)) to k(s)[ur−1]/(up
r−1)

is not free if and only if the restriction of either (M ⊗ k(s)) or (N ⊗ k(s)) is not.

6. This follows immediately from the fact that when two k(s)[ur−1]/(up
r−1)-

modules out of three in a short exact sequence are free, then the third module has
to be free.

¤

Unlike the situation with finite dimensional modules, the support cone V (G)M

for an infinite dimensional G-module M is typically not a closed subset of V (G)
and thus is not homeomorphic to V (AnnHev(G,k)(Ext∗G(M,M))). As the following
proposition shows, a much weaker relationship does hold.

In what follows we identify V (G) and Spec Hev(G, k) via the homeomorphism
Ψ mentioned in the beginning of this section.

Proposition 2.7. Let G be an infinitesimal k-group scheme of height r satisfying
the hypotheses of Theorem 1.6 and M be a G-module. Then

V (G)M ⊂ V (AnnHev(G,k)(Ext∗G(M, M))).

Proof. Let s ∈ V (G)M . Since both V (G)M and V (AnnHev(G,k)(Ext∗G(M, M))) are
conical (the latter corresponds to an annihilator of a graded module, i.e. is de-
fined by a graded ideal), they are completely determined by their homogeneous
ideals, so we can assume that the point s corresponds to a homogeneous prime
ideal. To simplify notation denote k(s) by K and M ⊗ K by MK . Then s cor-
responds to a one-parameter subgroup νs : Ga(r) ⊗ K → G ⊗ K such that MK

restricted to K[ur−1]/up
r−1 ⊂ K[Ga(r)]# via νs is not projective. We have an

equivalence of categories between the category of H-modules and K[H]#-modules
for any finite group scheme H. Hence, the composition of algebra homomorphisms
K[ur−1]/up

r−1 ⊂ K[Ga(r)]# → K[G]# induces a map on cohomology which, by
some abuse of notation, we denote ν∗s : Hev(G ⊗ K, K) → Hev(Ga(1) ⊗ K, K).
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(Note that this map does not correspond to any “real” map of group schemes, but
only to a map of coalgebras on the level of coordinate algebras.)
Ga(1) has representation theory equivalent to that of Z/p. Recall that

Hev(Ga(1) ⊗ K,K) ∼= K[x] where x is a generator in degree 2. Note that
Hev(Ga(1) ⊗ K, MK) = Ext∗Ga(1)⊗K(K, MK) is naturally a left module for the
algebra Ext∗Ga(1)⊗K(MK ,MK) via Yoneda composition. Furthermore, the ac-
tion of Hev(Ga(1) ⊗ K,K) on Ext∗Ga(1)⊗K(K, MK) factors through the action of

Ext∗Ga(1)⊗K(MK ,MK) via the natural map of algebras Hev(Ga(1) ⊗ K, K) ⊗MK→
Ext∗Ga(1)⊗K(MK ,MK). Since x induces a “periodicity” isomorphism on H∗(Ga(1)⊗
K, MK) (cf. [5, v.1,3.5]) and the latter is non-trivial in positive degrees due to the
fact that MK is not projective restricted to K[ur−1]/up

r−1, we conclude that the
map Hev(Ga(1) ⊗K, K) → Ext∗Ga(1)⊗K(MK ,MK) is injective.

Thinking of Ext-groups in terms of extensions one sees easily that the following
diagram of algebra homomorphisms is commutative:

Hev(G, k)

⊗M

²²

⊗K // Hev(G⊗K, K)

⊗MK

²²

ν∗s // Hev(Ga(1) ⊗K, K)

⊗MK

²²
Ext∗G(M, M)

⊗K// Ext∗G⊗K(MK ,MK) // Ext∗Ga(1)⊗K(MK , MK)

where the right lower map is again restriction via νs. By the construction of the
homeomorphism Ψ : V (G) → Spec Hev(G, k) (cf. [27]), the point s ∈ V (G) cor-
responds to the homogeneous prime ideal µs ⊂ Hev(G, k) which is the kernel of
the map Hev(G, k) → Hev(Ga(1) ⊗K,K) appearing as the top row of the commu-
tative diagram above. Now, the commutativity of the diagram together with the
injectivity of the right vertical arrow imply that

Ker (Hev(G, k) → Ext∗G(M, M) → Ext∗Ga(1)⊗K(MK , MK)) =

Ker (Hev(G, k) → Hev(Ga(1)⊗K, K)).

Since Ker (Hev(G, k) → Ext∗G(M, M)) = AnnHev(G,k)(Ext∗G(M,M)) is contained
in the left hand side, and the right hand side equals µs, we conclude that
AnnHev(G,k)(Ext∗G(M, M)) ⊂ µs.

¤

The following result, which is immediately implied by the proposition above and
Theorem 2.6.3, will be used in the next section to show that the “tensor product
property” does not hold for the extension to infinite dimensional modules of the
cohomological definition of support variety.

Corollary 2.8. Let G be an infinitesimal group satisfying the hypotheses of Theo-
rem 1.6 and M be a G-module. If V (AnnHev(G,k)(Ext∗G(M,M))) ⊂ SpecHev(G, k)
is 0, then M is projective.

3. Support cones using Rickard idempotents

In this section we shall give a different description of support cones which is a
translation into our situation of the approach to the extension of support varieties
to infinite dimensional modules for finite groups taken in [7].
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Throughout this section G will denote an infinitesimal k-group scheme of height r
which satisfies the hypothesis of Theorem 2.6. In particular, it can be any Frobenius
kernel.

We shall denote by StMod(G) the stable category of all G-modules. Recall that
objects of StMod(G) are G-modules and maps are equivalence classes of G-module
homomorphisms where two maps are equivalent if their difference factors through
a projective G-module.

StMod(G) is a triangulated category due to the fact that projectives are in-
jectives. The shift operator in StMod(G) is given by the Heller operator Ω−1 :
StMod(G) → StMod(G) and distinguished triangles come from short exact se-
quences in Mod(G). We shall denote by stmod(G) the full triangulated subcat-
egory of StMod(G) whose objects are represented by finite dimensional modules.
This subcategory is equivalent to the usual stable module category of finite dimen-
sional G-modules (i.e. the category of finite dimensional G-modules whose maps
are equivalence classes of G-homomorphisms where two maps are equivalent if their
difference factors through a finite dimensional projective G-module). A full trian-
gulated subcategory C of stmod(G) (respectively StMod (G)) is called thick if it
is closed under taking direct summands (respectively taking direct summands and
arbitrary direct sums). It is called tensor-ideal if it is closed under taking tensor
products with any G-module. We shall use the notation Hom for HomStMod and
“∼=” for stable isomorphisms.

Two modules are stably isomorphic (i.e. isomorphic in StMod(G)) if and only if
they become isomorphic after adding projective summands to them. This implies
that support cones are well-defined in StMod(G).

Let C be a thick subcategory of stmod(G). Denote by ~C the full triangulated
subcategory of StMod(G) whose objects are filtered colimits of objects in C. (~C co-
incides with the smallest full triangulated subcategory of StMod(G) which contains
C and is closed under taking direct summands and arbitrary direct sums (cf. [25]).)

The following is a restatement of the existence of the simplest case of Bousfield
localization - “finite localization” - in our situation. The reader can find a detailed
discussion of Bousfield localization for any finite dimensional cocommutative Hopf
algebra in [26] or [19]. Alternatively, the proofs given in [25] apply without change
to prove Theorem 3.1 and Proposition 3.3.

Theorem 3.1. (Bousfield localization)
I. Let C be a thick subcategory of stmod(G). There exist exact functors EC ,FC :

StMod(G) → StMod(G) characterized by the following properties:
(i) For any M ∈ StMod(G), the modules EC(M) and FC(M) fit in a distinguished

triangle:

TC(M) : EC(M) → M → FC(M) → Ω−1EC(M).

(ii) EC(M) belongs to ~C and satisfies the following universal property: the map
εM : EC(M) → M , which occurs in the distinguished triangle TC(M), is the universal
map in StMod(G) from an object in ~C to M , i.e. for any C ∈ ~C , εm induces an
isomorphism

Hom(C, EC(M)) ' Hom(C,M).
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(iii) The map ηM : M → FC(M), which occurs in the distinguished triangle
TC(M), is the universal map in StMod(G) from M to a C-local object (where N is
called a C-local object iff Hom(M, N) = 0 for any M ∈ C)

II. Suppose C is also tensor-ideal. Then for any G-module M we have stable
isomorphisms: EC(M) ∼= EC(k)⊗M , FC(M) ∼= FC(k)⊗M .

Remark 3.2. In fact, the distinguished triangle TC(M) is uniquely determined up to
a stable isomorphism by the following properties: EC(M) ∈ ~C and FC(M) is C-local.

The modules EC(k) and FC(k) were introduced by J. Rickard ([25]) for finite
groups and are thereby called Rickard idempotent modules. We justify the name in
the following proposition:

Proposition 3.3. Let C be a tensor-ideal thick subcategory of stmod(G). Then

(i) there are stable isomorphisms:

EC(k)⊗ EC(k) ∼= EC(k) and FC(k)⊗FC(k) ∼= FC(k);

(ii) EC(k)⊗FC(k) is projective;

(iii) for a finite dimensional G-module M, the following are equivalent:
- M ∈ C
- M ⊗ EC(k) is stably isomorphic to M
- M ⊗FC(k) is projective.

Lemma 3.4. Let W be a subset in V (G) and let CW be the full subcategory of
stmod(G) consisting of finitely generated modules M whose variety V (G)M is con-
tained in W . Then CW is a tensor-ideal thick subcategory of stmod(G).

The statement of the lemma follows immediately from the standard properties
of support varieties and implies the existence of the Rickard idempotents associated
to the subcategory CW . In this special case we shall use the following notation:

E(W ) = ECW (k), F (W ) = FCW (k) and T (W ) = TCW (k)

Definition 3.5. Let W be a subset in an affine scheme X = Spec A. W is said
to be closed under specialization if for any two primes µ ⊂ ν ⊂ A, µ ∈ W implies
ν ∈ W .

Being closed under specialization is equivalent to the fact that for any s ∈ W
the Zariski closure of s, denoted s, is contained in W . For any U ⊂ X we denote
by Cs (U) the closure under specialization of U , i.e.

Cs (U) =
⋃

s∈U

s

Note that closure under specialization of a conical subset is again conical.
Let V be a closed conical subset of V (G). Denote by V ′ the subset of V consisting

of all points of V except for generic points of irreducible components of V . Define

κ(V )
def
= E(V )⊗ F (V ′).

As a tensor product of idempotent modules, κ(V ) is again idempotent, i.e. κ(V )⊗
κ(V ) ∼= κ(V ).
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Note that the generic point of an irreducible closed conical subvariety is a homo-
geneous prime ideal, so that there is a natural 1-1 correspondence between homo-
geneous prime ideals and closed irreducible conical subvarieties. For an irreducible
closed conical set V with the generic point s we shall use κ(s) to denote κ(V ). In
particular, for any point s ∈ V (G) corresponding to a homogeneous prime ideal,
κ(s) will substitute for κ(s) to simplify notation.

Theorem 3.6. Let W be a conical closed under specialization subset of V (G).
Then

V (G)E(W ) = W.

Before proving the theorem we state an immediate corollary:

Corollary 3.7. For any conical closed under specialization subset W of V (G) there
exists a G-module M whose support cone coincides with W .

The statement of the corollary is an extension of the “realization” theorem for
support varieties of finite dimensional modules (see [10] for finite groups, [15] for
restricted Lie algebras, [28] for arbitrary infinitesimal groups). There are many
different conical closed under specialization subsets with the same closure: for
example, any union of infinitely many lines through the origin in A2 is a conical
closed under specialization non-closed subset with the closure A2. The theorem,
thus, demonstrates that V (G)M is a “finer” invariant than one taking values in
closed subsets (e.g. V (AnnHev(G,k)(Ext∗G(M, M)))).

The proof of the theorem given below is adapted to our case from the proof of
the analogous result for elementary abelian groups in [7].

Proof. Let s be a point in W . Since W is conical closed under specialization, the
smallest closed conical subvariety of V (G) containing s is contained in W . Denote
this subvariety by Vs. By the “realization” theorem for finite dimensional modules
(cf. [28, 7.5]), there exists a finite dimensional G-module M such that V (G)M = Vs.
By the definition of CW , we have that M ∈ CW , which is equivalent to the fact that
M ⊗ E(W ) ∼= M in StMod(G) (cf. Prop. 3.3). The “tensor product property”
implies that Vs = V (G)M ⊂ V (G)E(W ). Since s ∈ Vs by the construction of Vs, the
inclusion W ⊂ V (G)E(W ) follows.

To prove the other inclusion, choose s /∈ W . By Theorem 3.1, E(W ) = lim−→i∈IMi,
where Mi are finite dimensional modules such that V (G)Mi ⊂ W for all i. Let
Ga(r)⊗k(s) → G⊗k(s) be the one-parameter subgroup corresponding to the point s.
Since s /∈ V (G)Mi for any i ∈ I, the restriction of Mi⊗k(s) to k(s)[ur−1]/(up

r−1) ⊂
k(s)[Ga(r)]# (see §2 for notation) is always projective. Then the restriction of
E(W ) ⊗ k(s) to the same subalgebra is projective as a filtered colimit of pro-
jective modules (we also use that restriction commutes with colimits). Thus,
E(W ) ↓k(s)[ur−1]/(up

r−1)
is projective, which implies that s /∈ V (G)E(W ). The state-

ment follows. ¤

Recall that for a non-zero point s ∈ V (G) corresponding to a graded prime ideal
µs ∈ k[V (G)], we denote by L(s) the minimal conical subset containing s with 0
removed. Alternatively, L(s) = {µ ∈ Spec k[V (G)] : µ is not homogeneous, µs ⊂
µ and ht(µ) = ht(µs)+1}∪{s} (cf. Ex. 2.5). Let s be the generic point of a closed
irreducible conical subset V of V (G). Let further V ′ = V \{s} and let Ṽ ′ be the
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maximal conical closed under specialization subset in V ′. It is easy to see that

Ṽ ′ = V ′\L(s).

The thick subcategory CV ′ ⊂ stmod(G), corresponding to V ′, coincides with the
thick subcategory CfV ′ and, therefore, we have stable isomorphisms:

E(V ′) ∼= E(Ṽ ′), F (V ′) ∼= F (Ṽ ′).

Applying the theorem above to E(Ṽ ′), we get

V (G)E(V ′) = Ṽ ′.

Thanks to our description of Ṽ ′, we can rewrite the last formula as

V (G)E(V ′) = V ′\L(s).

Now we can describe support cones of F and κ - modules. We shall denote by
W c the complement of any subset W of V (G).

Corollary 3.8. For a conical closed under specialization subset W of V (G) we
have

V (G)F (W ) = W c ∪ 0.

Furthermore, if V is an irreducible closed conical subset of V (G) and s is the
generic point of V , then

V (G)κ(V ) = L(s) ∪ 0.

Proof. The existence of the distinguished triangle T (W ) : E(W ) → k → F (W ) →
Ω−1E(W ) implies that

V (G) ⊂ V (G)E(W ) ∪ V (G)F (W )

(cf. Th. 2.6.6). Proposition 3.3.2 asserts that E(W )⊗F (W ) is projective and hence

V (G)E(W ) ∩ V (G)F (W ) = 0.

We conclude that V (G)F (W ) = W c ∪ 0.
The second statement follows immediately from the “tensor product property”

and the definition of κ(V ) as E(V )⊗ F (V ′).
¤

For a conical subset W in V (G) we denote by Proj W, the “projectivization”
of W , the set of points in W which correspond to homogeneous prime ideals of
k[V (G)] excluding the augmentation ideal. Proj W can be viewed as a subset of
the scheme Proj k[V (G)].

There is 1-1 correspondence between conical subsets of V (G) and their “pro-
jectivizations”, i.e. a conical subset is completely determined by its homogeneous
ideals. Therefore, the standard properties of support cones, described in Th. 2.6,
apply to their “projectivizations”.

In view of this remark the next theorem is a straightforward application of the
above corollary.

Theorem 3.9. Let M be a G-module. Then

Proj V (G)M = {s ∈ Proj k[V (G)] : M ⊗ κ(s) is not projective as a G-module}.
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Proof. Let s be a homogeneous prime ideal in k[V (G)] such that M ⊗ κ(s) is not
projective as a G-module. Then Proj V (G)M⊗κ(s) = Proj V (G)M ∩ProjV (G)κ(s) is
non-empty. Since Proj V (G)κ(s) = Proj (L(s)∪0) = {s} in view of the Corollary 3.8
above, we conclude that s ∈ ProjV (G)M .

Conversely, if s ∈ ProjV (G)M , then Proj V (G)M⊗κ(s) is non-empty, which im-
plies that M ⊗ κ(s) is not projective as a G-module. ¤

Remark 3.10. We can restate the previous theorem in terms of the affine sup-
port cones using the following notation: for any prime ideal µ ⊂ k[V (G)] de-
note by hom(µ) the maximal homogeneous prime ideal contained in µ. Note that
ht(hom(µ)) = ht(µ) − 1 unless µ itself is homogeneous. Any conical subset con-
taining µ contains hom(µ) and vice versa. Together with the theorem above this
observation implies the following description of V (G)M :

V (G)M = {s ∈ V (G) : M ⊗ κ(hom(s)) is not projective as a G-module}.
As another application of the Corollary 3.8, we can generalize our “realization”

statement to arbitrary conical sets. We shall utilize the notation hom(s) introduced
in the remark above.

Corollary 3.11. Any conical subset of V (G) can be realized as a support cone of
a G-module.

Proof. Let W be a conical subset of V (G). For any s ∈ W , W contains hom(s).
Furthermore, by the definition of conical subset, for any point s corresponding to
a homogeneous prime ideal, W contains the entire set L(s). We conclude that

W =
⋃

s∈Proj W

L(s) ∪ 0

and, therefore, W is the support cone of the module
⊕

s∈Proj W

κ(s). ¤

As an application of Theorem 3.9 we are going to show that V (G)IndG
H(M) ⊂

V (H)M for an arbitrary H-module M , where H is a subgroup scheme of G. Al-
though for finite dimensional modules this follows from the cohomological descrip-
tion of the support variety of M and Generalized Frobenius reciprocity, in the
infinite dimensional case this approach is not available due to the lack of the coho-
mological description.

We shall need the following general fact about Rickard idempotents. The proof
is merely a repetition of the one in [7].

Lemma 3.12. Let G be an infinitesimal group scheme, H be a closed subgroup
scheme of G and W be a subset of V (G). Let i∗ : V (H) ↪→ V (G) be the embedding of
schemes induced by the inclusion i : H ↪→ G. Then the following two distinguished
triangles in StMod(H) are stably isomorphic:

T (i−1
∗ (W )) : E(i−1

∗ (W )) → k → F (i−1
∗ (W )) → Ω−1E(i−1

∗ (W ))
and

T (W ) ↓H : E(W ) ↓H→ k → F (W ) ↓H→ Ω−1E(W ) ↓H .

Proof. We have to show that T (W ) ↓H satisfies universal properties of the distin-
guished triangle T (i−1

∗ (W )). Since E(W ) ∈ ~CW , Prop. 2.6.2 implies that E(W ) ↓H
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∈ ~Ci−1
∗ (W ). To check that F (W ) ↓H is Ci−1

∗ (W )-local we note that the fact that
V (G)IndG

H(M) ⊂ V (H)M for a finite dimensional H-module M (see, for example, [23,
2.3.1(b)]) implies that for any H-module M in Ci−1

∗ (W ), we have IndG
H(M) ∈ CW .

Recall that for any finite dimensional G-module N , V (G)N = V (G)N# , where N#

is the k-linear dual of N . Hence, an isomorphism CoindG
H(M) = (IndG

H(M#))#

(cf. [20, I.8.15]) implies that V (G)CoindG
H(M) ⊂ V (H)M for a finite dimensional

H-module M . Applying the fact that F (W ) is CW -local, we get

HomH(M, F (W ) ↓H) = HomG(CoindH
G (M), F (W )) = 0.

for any finite dimensional H-module M . Thus, F (W ) ↓H is Ci−1
∗ (W )-local. In view

of Remark 3.2, we conclude that T (i−1
∗ (W )) ∼= T (W ) ↓H .

¤

Corollary 3.13. Let G be an infinitesimal group scheme and H be a closed sub-
group scheme of G, both satisfying the hypotheses of Theorem 1.6. Let M be an
H-module. Then

V (G)IndG
H(M) ⊂ V (H)M .

Proof. The embedding of group schemes i : H ⊂ G induces a closed embedding of
affine schemes i∗ : V (H) ↪→ V (G) (cf. [28, 5.4]). We identify V (H) with its image
in V (G).

Let M = lim−→i∈IMi, where Mi are finite dimensional H-modules. Then

IndG
H(M) = lim−→i∈IIndG

H(Mi)

and, therefore,

V (G)IndG
H(M) ⊂

⋃

i∈I

V (G)IndG
H(Mi) ⊂ V (H).

The last inclusion holds because the assertion of the corollary is known for finite
dimensional modules (cf. [23, 2.3.1(b)]).

To prove the corollary it now suffices to check that for any point s ∈ V (G)IndH
G (M) ⊂

V (H), corresponding to a homogeneous prime ideal in k[V (G)], s is contained in
V (H)M . Let V be the Zariski closure of s. Since s ∈ V (H), and the latter is closed
in V (G), we have i−1

∗ (V ) = V ∩ V (H) = V . Lemma 3.12 implies that κ(i−1
∗ (V )) is

stably isomorphic to κ(V ) ↓H .
Applying Theorem 3.9 we get that IndH

G (M) ⊗ κ(V ) is not projective ( = not
injective), since s ∈ V (G)IndH

G (M). By the tensor identity,

IndH
G (M)⊗ κ(V ) ∼= IndG

H(M ⊗ κ(V ) ↓H).

Since induction takes injectives to injectives, we conclude that M ⊗ κ(V ) ↓H
∼=

M ⊗ κ(i−1
∗ (V )) is not injective. Since s is a point in V (H), it is still the generic

point of i−1
∗ (V ). Thus, M ⊗ κ(s) (where κ(s) is now constructed in StMod(H)) is

not projective which implies, using Theorem 3.9 once again, that s ∈ V (H)M .
¤

Proposition 3.14. Let W be a conical closed under specialization subset in V (G).
Then ~CW = {M ∈ StMod(G) : V (G)M ⊂ W}.
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Proof. Suppose M ∈ ~CW . We need to show that V (G)M ⊂ W . It suffices to check
this inclusion for the points corresponding to homogeneous prime ideals. By the
definition of ~CW , M is stably isomorphic to lim−→i∈IMi for some finite dimensional
modules Mi whose varieties are contained in W . Let s be a point in ProjV (G)
which does not belong to W . Then the restriction of Mi⊗k(s) to k(s)[ur−1]/up

r−1 ⊂
k(s)[Ga(r)]#, where Ga(r)⊗k(s) → G⊗k(s) is the one-parameter subgroup defined
by the point s, is projective for all i. Since restriction commutes with filtered
colimits, and a filtered colimit of projective modules is projective, we conclude
that M restricted to the same subalgebra k(s)[ur−1]/up

r−1 is projective. Thus,
s 6∈ V (G)M . The inclusion V (G)M ⊂ W follows.

Next assume that V (G)M ⊂ W . By the “tensor product property” and Corol-
lary 3.8, M ⊗ F (W ) is projective. This implies, by tensoring the distinguished
triangle T (W ) with M , that M ⊗E(W ) ∼= M in StMod(G). Let M ∼= lim−→i∈IMi for
some finite dimensional modules Mi and E(W ) ∼= lim−→j∈JNj for some finite dimen-
sional modules Nj , whose support varieties V (G)Nj are contained in W (the latter
being possible by Theorem 3.1.I.(ii)). Then M ∼= M⊗E(W ) ∼= lim−→(i,j)∈I×JMi⊗Nj

and the variety of Mi ⊗Nj , V (G)Mi⊗Nj
, is contained in V (G)Nj

which, in turn, is
contained in W for all pairs (i, j) ∈ I × J . Thus, M ∈ ~CW .

¤

The following corollary is an immediate application of the proposition above to
the closure under specialization of V (G)M , Cs (V (G)M ).

Corollary 3.15. For any G-module M there exists a filtered system of finite di-
mensional G-modules {Mi}i∈I such that

(i) M ∼= lim−→i∈IMi

(ii) V (G)Mi ⊂ Cs (V (G)M ).

Recall that complexity of a finite dimensional module M is defined to be the
growth of the minimal projective resolution of M . It is proved to be equal to the
dimension of the support variety of M ([1]). In [6] the following extension of the
definition of complexity for infinite dimensional modules is given:

Definition 3.16. An arbitrary G-module M is said to have complexity c, denoted
c(M), if it can be realized as a filtered colimit of finite dimensional modules of
complexity c but not lower.

For a subset W of V (G) we define the subset dimension of W as follows:

s. dim(W )
def
= max

s∈W
dim(s).

Note that s. dim(W ) = s. dim(Cs (W )). In particular, for a closed subvariety V , its
“subset dimension” coincides with the usual Krull dimension.

Using the notion of “subset dimension” we can formulate an alternative de-
scription of the complexity of an infinite dimensional module similar to the one
mentioned above for the finite dimensional case:

Corollary 3.17. c(M) = s. dim(V (G)M )

Proof. Let d = s. dim(V (G)M ). The inequality c(M) ≤ d follows immediately from
Corollary 3.15.
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Suppose c(M) < d. By our definition of subset dimension there exists a point
s ∈ V (G)M such that dim(s) = d. Let Ga(r)⊗k(s) → G⊗k(s) be the one-parameter
subgroup corresponding to s. According to our definition of complexity, we can
realize M as lim−→i∈IMi for some finite dimensional modules Mi whose varieties
have dimension no greater than c(M). Then, clearly, s /∈ V (G)Mi

, which implies
that Mi ⊗ k(s) restricted to k(s)[ur−1]/up

r−1 ⊂ k(s)[Ga(r)]# is projective for any
i ∈ I. Hence, the restriction of M ⊗ k(s) to the same subalgebra is also projective
as a filtered colimit of projective modules. By the definition of a support cone,
s /∈ V (G)M . The inequality in question follows. ¤

To conclude, we give as promised an example of the failure of the “tensor product
property” for the extension of the cohomological definition of the “support”, for
which we employ the construction of Rickard idempotents in a special case of a
hypersurface defined by a single homogeneous element.

Example 3.18. Let ξ ∈ Hn(G, k), where n is a positive even integer. Assume
further that ξ is not nilpotent. Denote by < ξ > the ideal generated by ξ and by
V (< ξ >) the variety of this ideal, i.e. V (< ξ >) = {µ ∈ Spec Hev(G, k) : ξ ∈ µ}.
Let Fξ be the filtered colimit of the sequence

k → Ω−nk → Ω−2nk → . . .

where each map corresponds to ξ via the natural isomorphism

Hn(G, k) ∼= Hom(Ω−rnk, Ω−(r+1)nk).

Fξ is well-defined up to a stable isomorphism and comes equipped with a natural
map from k, k → Fξ. Complete this map to a distinguished triangle in StMod(G):

Eξ → k → Fξ → Ω−1Eξ.

It can be shown (cf. [25]) that this distinguished triangle is stably isomorphic to a
distinguished triangle defined by the thick subcategory CV (<ξ>). Thus, V (G)Eξ

=
V (< ξ >) and V (G)Fξ

= V (< ξ >)c ∪ 0. In particular, Eξ is not projective.
The cohomology of Fξ can be computed as the filtered colimit of the sequence

H∗(G, k) → H∗(G, Ω−nk) → H∗(G, Ω−2nk) → . . .

which is equivalent to

H∗(G, k)
× ξ−→ H∗+n(G, k)

× ξ−→ H∗+2n(G, k)
× ξ−→ . . .

The direct limit of this sequence is isomorphic to H∗(G, k)[1/ξ]. The inclusion
AnnHev(G,k)(Ext∗G(Fξ, Fξ)) ⊂ AnnHev(G,k)(Ext∗G(k, Fξ)) =

AnnHev(G,k)(H∗(G, k)[1/ξ]) = 0
implies that |G|Fξ

= V (AnnHev(G,k)(Ext∗G(Fξ, Fξ))) = |G|.
Since Fξ ⊗ Eξ is projective, the “tensor product property” for “cohomological

supports”, if valid, would imply that

0 = |G|Fξ⊗Eξ
= |G|Fξ

∩ |G|Eξ
= |G| ∩ |G|Eξ

= |G|Eξ

which, in view of Proposition 2.7, contradicts the fact that Eξ is not projective.



INFINITE DIMENSIONAL MODULES FOR FROBENIUS KERNELS 25

References

[1] J.L. Alperin, L. Evens, Representations, resolutions, and Quillen’s dimension theorem, J.
Pure & Applied Algebra 22 (1981) 1-9.

[2] H. Andersen, J. Jantzen, Cohomology of induced representations for algebraic groups, Math.
Ann. 269 (1985) 487-525.

[3] G. Avrunin, L. Scott, Quillen stratification for modules, Inventiones Math. 66 (1982) 277-286.
[4] C. Bendel, Projectivity of modules for infinitesimal unipotent group schemes, Proc. Amer.

Math. Soc. 129 (2001) no.3, 671-676.
[5] D.J. Benson, Representations and cohomology, Volume I and II, Cambridge University Press,

(1991).
[6] D.J. Benson, J.F. Carlson, J. Rickard, Complexity and varieties for infinitely generated mod-

ules I, Math. Proc. Camb. Phil. Soc. 118 (1995) no.2, 223-243.
[7] D.J. Benson, J.F. Carlson, J. Rickard, Complexity and varieties for infinitely generated mod-

ules II, Math. Proc. Camb. Phil. Soc. 120 (1996) 597-615.
[8] L. Chouinard, Projectivity and relative projectivity over group rings, J. Pure & Applied

Algebra 7 (1976) 287-302.
[9] J. Carlson, The varieties and cohomology ring of a module, J. of Algebra 85 (1983) 104-143.

[10] J. Carlson, The variety of indecomposable module is connected, Invent. Math. 77 (1984)
291-299.

[11] E. Cline, B. Parshall, L. Scott, W. van der Kallen, Rational and Generic Cohomology, In-
ventiones Math. 39 (1977) 142-163.

[12] E. C. Dade, Endo-permutation modules over p-groups, II, Ann. of Math. 108 (1978) 317-346.
[13] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, (1995)

Springer-Verlag, New York.
[14] E. Friedlander, B. Parshall, On the cohomology of algebraic and related finite groups, Invent.

Math. 74 (1983) no. 1, 85-117.
[15] E. Friedlander, B. Parshall, Geometry of p-unipotent Lie Algebras, J. Algebra 109 (1987)

25-45.
[16] E. Friedlander, B. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86

(1986) 553-562.
[17] C.G. Faith, E.A. Walker, Direct sum representations of injective modules, J. of Algebra 5

(1967) 203-221.
[18] R. Hartshorne, Algebraic geometry, Springer-Verlag, New-York, (1977)
[19] M. Hovey, J. Palmieri, N. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math.

Soc. 128 (1997) no 610, x+114.
[20] J.C. Jantzen, Representations of Algebraic groups, Academic press, (1987).
[21] J.C. Jantzen, Kohomologie von p-Lie Algebren und nilpotente Elemente, Abh. Math. Sem.

Univ. Hamburg 56 (1986) 191-219.
[22] R.G. Larson, M.E. Sweedler An associative orthogonal bilinear form for Hopf algebras, Amer.

J. Math. 91 (1967) 75-94.
[23] D.K. Nakano, B.J. Parshall, D.C. Vella Support varieties for algebraic groups, to appear in

J. Reine Angew. Math.
[24] D. Quillen The spectrum of an equivariant cohomology ring: I, II, Ann. Math. 94 (1971)

549-572, 573-602.
[25] J. Rickard, Idempotent modules in the stable category, J. London Math. Society (2), 56 (1997)

no. 1, 149-170.
[26] J. Rickard, Bousfield localization for representation theorists, Trends. Math. (2000) 273-283,
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