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Abstract. We study the notion of essential dimension for a linear representation of
a finite group. In characteristic zero we relate it to the canonical dimension of certain
products of Weil transfers of generalized Severi-Brauer varieties. We then proceed to
compute the canonical dimension of a broad class of varieties of this type, extending
earlier results of the first author. As a consequence, we prove analogues of classical
theorems of R. Brauer and O. Schilling about the Schur index, where the Schur index of
a representation is replaced by its essential dimension. In the last section we show that
in the modular setting ed(ρ) can be arbitrary large (under a mild assumption on G).
Here G is fixed, and ρ is allowed to range over the finite-dimensional representations of
G. The appendix gives a constructive version of this result.

1. Introduction

Let K/k be a field extension, G be a finite group of exponent e, and ρ : G→ GLn(K)
be a non-modular representation of G whose character takes values in k. (Here “non-
modular” means that char(k) does not divide |G|.) A theorem of Brauer says that if k
contains a primitive eth root of unity ζe then ρ is defined over k, i.e., ρ is K-equivalent
to a representation ρ′ : G→ GLn(k); see, e.g. [34, §12.3]. If ζe 6∈ k, we would like to know
“how far” ρ is from being defined over k. In the case, where ρ is absolutely irreducible,
a classical answer to this question is given by the Schur index of ρ, which is the smallest
degree of a finite field extension l/k such that ρ is defined over l. Some background
material on the Schur index and further references can be found in Section 2.

In this paper we introduce and study another numerical invariant, the essential dimen-
sion ed(ρ), which measures “how far” ρ is from being defined over k in a different way.
Here ρ is not assumed to be irreducible; for the definition of ed(ρ), see Section 6. In
Section 8 we show that the maximal value of ed(ρ), as ρ ranges over representations with
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a fixed character χ : G→ k, which we denote by ed(χ), can be expressed as the canonical
dimension of a certain product of Weil transfers of generalized Severi-Brauer varieties.
We use this to show that ed(ρ) 6 |G|/4 for any n, k, and K/k in Section 9 and to prove
a variant of a classical theorem of Brauer in Section 10. In Section 11 we compute the
canonical dimension of a broad class of Weil transfers of generalized Severi-Brauer va-
rieties, extending earlier results of the first author from [20] and [22]. This leads to a
formula for the essential p-dimension of an irreducible character in terms of its decompo-
sition into absolutely irreducible components; see Corollary 12.3. As an application we
prove a variant of a classical theorem of Schilling in Section 13.

In Section 14 we show that in the modular setting ed(ρ) can be arbitrary large (under
a mild assumption on G). Here G is assumed to be fixed, and ρ is allowed to range over
the finite-dimensional representations of G. The appendix proves a constructive version
of this result.

2. Notation and representation-theoretic preliminaries

Throughout this paper G will denote a finite group of exponent e, k a field, k an
algebraic closure of k, K and F field extensions of k, ζd a primitive dth root of unity, ρ
a finite-dimensional representation of G, and χ a character of G. In this section we will
assume that char(k) does not divide the order of G.

2a. Characters and character values. A function χ : G→ k is said to be a character
of G, if χ is the character of some representation ρ : G→ GLn(K) for some field extension
K/k.

If χ : G→ k is a character, and F/k is a field, we set

F (χ) := F (χ(g) | g ∈ G) ⊂ F (ζe).

Since F (ζe) is an abelian extension of F , so is F (χ). Moreover, F (χ) is stable under
automorphisms F (ζe)/F .

Two characters, χ, χ′ : G → k are said to be conjugate over F if there exists an F -
isomorphism of fields σ : F (χ)→ F (χ′) such that σ ◦ χ = χ′.

Lemma 2.1. (a) Let χ, χ′ : G→ k be characters and F/k be a field extension. Then

(a) every automorphism h ∈ Gal(F (χ)/F ) leaves k(χ) invariant.

(b) If χ and χ′ are conjugate over F then they are conjugate over k.

(c) Suppose k is algebraically closed in F . Then the converse to part (b) also holds.
That is, if χ, χ′ are conjugate over k then they are conjugate over F .

Proof. (a) It is enough to show that h(χ(g)) ∈ k(χ) for every g ∈ G. Since the sequence
of Galois groups

1→ Gal(F (ζe)/F (χ))→ Gal(F (ζe)/F )→ Gal(F (χ)/F )→ 1

is exact, h can be lifted to an element of Gal(F (ζe)/F ). By abuse of notation, we will
continue to denote this element of Gal(F (ζe)/F ) by h. The eigenvalues of ρ(g) are of the
form ζ i1e , . . . , ζ

in
e for some integers i1, . . . , in. The automorphism h sends ζe to another

primitive eth root of unity ζje for some integer j. Then

h(χ(g)) = h(ζ i1e + · · ·+ ζ ine ) = ζji1e + · · ·+ ζjine = χ(gj) ∈ k(χ) ,
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as desired.

(b) is an immediate consequence of (a).

(c) If k is algebraically closed in F , then the homomorphism

Gal(F (χ)/F )→ Gal(k(χ)/k)

given by σ 7→ σ |k(χ) is surjective; see [28, Theorem VI.1.12]. �

2b. The envelope of a representation. If ρ : G → GLn(F ) is a representation over
some field F/k, we define the k-envelope Envk(ρ) as the k-linear span of ρ(G) in Mn(F ).
Note that Envk(ρ) is a k-subalgebra of Mn(F ).

Lemma 2.2. For any integer s > 1, the k-algebras Envk(s·ρ) and Envk(ρ) are isomorphic.

Proof. The diagonal embedding Mn(F ) ↪→ Mn(F ) × · · · × Mn(F ) (s times) induces an
isomorphism between Envk(ρ) and Envk(s · ρ). �

Lemma 2.3. Assume the character χ of ρ : G → GLn(F ) is k-valued. Then the natural
homomorphism Envk(ρ)⊗k F → EnvF (ρ) is an isomorphism of F -algebras.

Proof. It suffices to show that if ρ(g1), . . . , ρ(gr) are linearly dependent over F for some
elements g1, . . . , gr ∈ G, then they are linearly dependent over k. Indeed, suppose

a1ρ(g1) + · · ·+ arρ(gr) = 0

in Mn(F ) for some a1, . . . , ar ∈ F , such that ai 6= 0 for some i. Then

tr((a1ρ(g1) + · · ·+ arρ(gr)) · ρ(g)) = 0

for every g ∈ G, which simplifies to

a1χ(g1g) + · · ·+ arχ(grg) = 0.

The homogeneous linear system

x1χ(g1g) + · · ·+ xrχ(grg) = 0

in variables x1, . . . , xr has coefficients in k and a non-trivial solution in F . Hence, it has
a non-trivial solution b1, . . . , br in k, and we get that

tr((b1ρ(g1) + · · ·+ brρ(gr)) · ρ(g)) = 0

for every g ∈ G.
Note that Envk(ρ) is, by definition, a homomorphic image of the group ring k[G]. Hence,

Envk(ρ) is semisimple and consequently, the trace form in Envk(ρ) is non-degenerate. It
follows that the elements ρ(g1), . . . , ρ(gr) are linearly dependent over k, as desired. �

2c. The Schur index. Suppose K/k is a field extension, and ρ1 : G → GLn(K) is an
absolutely irreducible representation with character χ1 : G → K. By taking F = K in
Lemma 2.3, one easily deduces that Envk(χ1)(ρ1) is a central simple algebra of degree n
over k(χ1). The index of this algebra is called the Schur index of ρ1. We will denote it by
mk(ρ1).

In the sequel we will need the following properties of the Schur index.
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Lemma 2.4. Let K be a field, G be a finite group such that char(K) does not divide |G|,
and ρ : G→ GLn(K) be an irreducible representation. Denote the character of ρ by χ.

(a) Over the algebraic closure K, ρ decomposes as

(2.5) ρK ' m(ρ1 ⊕ · · · ⊕ ρr),
where ρ1, . . . , ρr are pairwise non-isomorphic irreducible representations of G defined over
K, and m is their common Schur index mK(ρ1) = · · · = mK(ρr).

(b) For i = 1, . . . , r and ρi as in (a), let χi : G → K be the character of ρi . Then
K(χ1) = · · · = K(χr) is an abelian extension of K of degree r. Moreover, Gal(K(χ1)/K)
transitively permutes χ1, . . . , χr.

(c) Conversely, every irreducible representation ρ1 : G → GL1(K) occurs as an irre-
ducible component of a unique K-irreducible representation ρ : G→ GLn(K), as in (2.5).

(d) The center Z of EnvK(ρ) is K-isomorphic to K(χ1) = K(χ2) = · · · = K(χr).
EnvK(ρ) is a central simple algebra over Z of index m.

(e) The multiplicity of ρ1 in any representation of G defined over K is a multiple of
mK(ρ1). Consequently, mK(ρ1) divides mk(ρ1) for any field extension K/k.

(f) m divides dim(ρ1) = · · · = dim(ρr).

Proof. See [14, Theorem 74.5] for parts (a)-(d), and [13, Corollary 74.8] for parts (e) and
(f). �

Corollary 2.6. Let K/k be a field extension, ρ : G→ GLn(K) be a representation, whose
character takes values in k, and

ρ = d1ρ1 ⊕ · · · ⊕ drρr
be the irreducible decomposition of ρ over the algebraic closure K. Then the following
conditions are equivalent.

(1) ρ can be realized over k, i.e., ρ is K-equivalent to a representation ρ′ : G→ GLn(k).

(2) The Schur index mk(ρi) divides di for every i = 1, . . . , r.

Proof. Each ρi : G → GLni(K) is K-equivalent to some ρ′i : G → GLni(k). Let ρ′ :=
d1ρ
′
1⊕· · ·⊕drρ′r : G→ GLn(k). Since ρ and ρ′ have the same character, ρ can be realized

over k if and only if ρ′ can be realized over k. Hence, we may replace ρ by ρ′ and thus
assume that K = k from now on.

Denote the character of ρ by χ and the character of ρi by χi. Since χ takes values in
k, di = dj whenever χi and χj are conjugate over k.

(1) =⇒ (2). Suppose ρ can be realized over k. Decomposing ρ as a direct sum of
k-irreducibles, we see that it suffices to prove (2) in the case where ρ is k-irreducible. In
this case (2) holds by Lemma 2.4(a).

(2) =⇒ (1). If a representation ρ satisfies condition (2), then ρ is a direct sum of
representations of the form λ = mk(χ1)(ρ1 ⊕ · · · ⊕ ρs), where ρ1, . . . , ρs are absolutely
irreducible representations of G and the characters χ1, . . . , χs of ρ1, . . . , ρs are transitively
permuted by Gal(k/k). By Lemma 2.4(c), every representation of this form is defined
over k. �
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3. Preliminaries on essential and canonical dimension

3a. Essential dimension. Let F : Fieldsk → Sets be a covariant functor, where
Fieldsk is the category of field extensions of k and Sets is the category of sets. We
think of the functor F as specifying the type of algebraic objects under consideration,
F(K) as the set of algebraic objects of this type defined over K, and the morphism
F(i) : F(K)→ F(L) associated to a field extension

(3.1) k ⊂ K
i
↪→ L

as “base change”. For notational simplicity, we will write αL ∈ F(L) instead of F(i)(α).
Given a field extension L/K, as in (3.1), an object α ∈ F(L) is said to descend to K

if it lies in the image of F(i). The essential dimension ed(α) is defined as the minimal
transcendence degree of K/k, where α descends to K. The essential dimension ed(F) of
the functor F is the supremum of ed(α) taken over all α ∈ F(K) and all K.

Usually ed(α) < ∞ for every α ∈ F(K) and every K/k; see [8, Remark 2.7]. On the
other hand, ed(F) =∞ in many cases of interest; for example, see Theorem 14.1.

The essential dimension edp(α) of α at a prime integer p is defined as the minimal value
of ed(αL′), as L′ ranges over all finite field extensions L′/L such that p does not divide
the degree [L′ : L]. The essential dimension edp(F) is then defined as the supremum of
edp(α) as K ranges over all field extensions of k and α ranges over F(K).

For generalities on essential dimension, see [3, 8, 30, 32].

3b. Canonical dimension. An interesting example of a covariant functor Fieldsk →
Sets is the “detection functor” DX associated to an algebraic k-variety X. For a field
extension K/k, we define

DX(K) :=

{
a one-element set, if X has a K-point, and

∅, otherwise.

If k ⊂ K
i
↪→ L then 0 6 |DX(K)| 6 |DX(L)| 6 1. Thus there is a unique morphism of

sets DX(K)→ DX(L), which we define to be DX(i).
The essential dimension (respectively, the essential p-dimension) of the functor DX is

called the canonical dimension of X (respectively, the canonical p-dimension of X) and
is denoted by cd(X) (respectively, cdp(X)). If X is smooth and projective, then cd(X)
(respectively, cdp(X)) equals the minimal dimension of the image of a rational self-map
X 99K X (respectively, of a correspondence X  X of degree prime to p). In particular,

(3.2) 0 6 cdp(X) 6 cd(X) 6 dim(X)

for any prime p. If cd(X) = dim(X), we say that X is incompressible. If cdp(X) =
dim(X), we say that X is p-incompressible. For details on the notion of canonical dimen-
sion for algebraic varieties, we refer the reader to [30, §4].

We will say that smooth projective varieties X and Y defined over K are equivalent if
there exist rational maps X 99K Y and Y 99K X. Similarly, we will say that X and Y are
p-equivalent for a prime integer p, if there exist correspondences X  Y and Y  X of
degree prime to p.
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Lemma 3.3. (a) If X and Y are equivalent, then cd(X) = cd(Y ).

(b) If X and Y are p-equivalent for some prime p, then cdp(X) = cdp(Y ).

Proof. (a) Let K/k be a field extension. By Nishimura’s lemma, X has a K-point if and
only if so does Y ; see [33, Proposition A.6]. Thus the detection functors DX and DY are
isomorphic, and cd(X) = ed(DX) = ed(DY ) = cd(Y ).

For a proof of part (b) see [26, Lemma 3.6 and Remark 3.7]. �

4. Balanced algebras

Let Z/k be a Galois field extension, and A be a central simple algebra over Z. Given
α ∈ Gal(Z/k), we will denote the “conjugate” Z-algebra A ⊗Z Z, where the tensor
product is taken via α : Z → Z, by αA. We will say that A is balanced over k if αA is
Brauer-equivalent to a tensor power of A for every α ∈ Gal(Z/k).

Note that A is balanced, if the Brauer class of A descends to k : αA is then isomorphic
to A for any α. In this section we will consider another family of balanced algebras.

Let K/k be a field extension, ρ : G → GLn(K) be an irreducible representation whose
character χ is k-valued. Recall from Lemma 2.4 that Envk(ρ) is a central simple algebra
over Z ' k(χ1) = · · · = k(χr).

Proposition 4.1. Envk(ρ) is balanced over k.

Proof. Recall from [37, p. 14] that a cyclotomic algebra B/Z is a central simple algebra
of the form

B =
⊕

g∈Gal(Z(ζ)/Z)

Z(ζ)ug ,

where ζ is a root of unity, Z(ζ) is a maximal subfield of B, and the basis elements ug are
subject to the relations

ugx = g(x)ug and uguh = β(g, h)ugh for every x ∈ Z(ζ) and g, h ∈ Gal(Z(ζ)/Z).

Here β : Gal(Z(ζ)/Z)× Gal(Z(ζ)/Z) → Z(ζ)∗ is a 2-cocycle whose values are powers of
ζ. Following the notational conventions in [37], we will write B := (β, Z(ζ)/Z).

By the Brauer-Witt Theorem [37, Corollary 3.11], Envk(ρ) is Brauer-equivalent to
some cyclotomic algebra B/Z, as above. Thus it suffices to show that every cyclotomic
algebra is balanced over k, i.e., αB is Brauer-equivalent to a power of B over Z for every
α ∈ Gal(Z/k).

By Lemma 2.4(d), Z is k-isomorphic to k(χ1), which is, by definition a subfield of k(ζe),
where e is the exponent of G. Thus there is a root of unity ε such that

Z(ζ) ⊂ k(ζ, ζe) = k(ε)

and both ζ and ζe are powers of ε. Note that k(ε)/k is an abelian extension, and the
sequence of Galois groups

1→ Gal(k(ε)/Z)→ Gal(k(ε)/k)→ Gal(Z/k)→ 1

is exact. In particular, every α ∈ Gal(Z/k) can be lifted to an element of Gal(k(ε)/k),
which we will continue to denote by α. Then α(ε) = εt for some integer t. Since ζ is a
power of ε, and each β(g, h) is a power of ζ, we have

(4.2) α(β(g, h)) = β(g, h)t for every g, h ∈ Gal(Z(ζ)/k).



AN INVARIANT FOR REPRESENTATIONS OF FINITE GROUPS 7

We claim that αB is Brauer-equivalent to B⊗t over Z. Indeed, since

B = (β, Z(ζ)/Z),

we have αB = (α(β), Z(ζ)/Z). By (4.2), αB = (α(β), Z(ζ)/Z) = (βt, Z(ζ)/Z), and
(βt, Z(ζ)/Z) is Brauer-equivalent to B⊗t, as desired. �

5. Generalized Severi-Brauer varieties and Weil transfers

Suppose Z/k is a finite Galois field extension and A is a central simple algebra over Z.
For 1 6 m 6 deg(A), we will denote by SB(A,m) the generalized Severi-Brauer variety (or
equivalently, the twisted Grassmannian) of (m− 1)-dimensional subspaces in SB(A). The
Weil transfer RZ/k(SB(A,m)) is a smooth projective absolutely irreducible k-variety of
dimension [Z : k] ·m · (deg(A)−m). For generalities on SB(A,m), see [5]. For generalities
on the Weil transfer, see [17].

Proposition 5.1. Let Z, k and A be as above, X := RZ/k(SB(A,m)) for some 1 6 m 6
deg(A), and K/k be a field extension.

(a) Write KZ := K ⊗k Z as a direct product K1 × · · · × Ks, where K1/Z, . . . ,Ks/Z
are field extensions. Then X has a K-point if and only if the index of the central simple
algebra AKi := A⊗Z Ki divides m for every i = 1, . . . , s.

(b) Assume that m divides ind(A), A is balanced and K = k(X) is the function field
of X. Then KZ = K ⊗k Z is a field, and A⊗k K ' A⊗Z KZ is a central simple algebra
over KZ of index m.

Proof. First note that A⊗k K ' A⊗Z KZ .

(a) By the definition of the Weil transfer, X = RZ/k(SB(A,m)) has a K-point if and
only if SB(A,m) has a KZ-point or equivalently, if and only if SB(A,m) has a Ki-point
for every i = 1, . . . , s. On the other hand, by [5, Proposition 3], SB(A,m) has a Ki-point
if and only if the index of AKi divides m.

(b) Since X is absolutely irreducible, KZ is Z-isomorphic to the function field of the
Z-variety

XZ := X ×Spec(k) Spec(Z) =
∏

α∈Gal(Z/k)

SB(αA,m) ,

see [6, §2.8]. Set F := Z(SB(A,m)). By [35, Corollary 1],

ind(A⊗Z F ) = m.

Since A is balanced, i.e., each algebra αA is a power of A, ind(αA ⊗Z F ) divides m for
every α ∈ Gal(Z/k). By [5, Proposition 3], each SB(αA,m)F is rational over F . Thus the
natural projection of Z-varieties

XZ =
∏

α∈Gal(Z/k)

SB(αA,m)→ SB(A,m)

induces a purely transcendental extension of function fields F ↪→ KZ . Consequently,

ind(A⊗Z KZ) = ind(A⊗Z F ) = m,

as claimed. �
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6. The essential dimension of a representation

Let us now fix a finite group G and an arbitrary field k, and consider the covariant
functor

RepG,k : Fieldsk → Sets

defined by RepG,k(K) := {K-isomorphism classes of representations G → GLn(K)} for
every field K/k. Here n > 1 is allowed to vary.

The essential dimension ed(ρ) of a representation ρ : G→ GLn(K) is defined by viewing
ρ as an object in RepG,k(K), as in Section 3. That is, ed(ρ) is the smallest transcendence
degree of an intermediate field k ⊂ K0 ⊂ K such that ρ is K-equivalent to a representation
ρ′ : G → GLn(K0). To illustrate this notion, we include an example, where ed(ρ) is
positive, and three elementary lemmas.

Example 6.1. Let H = (−1,−1) be the algebra of Hamiltonian quaternions over k =
R, i.e., the 4-dimensional R-algebra given by two generators i, j, subject to relations,
i2 = j2 = −1 and ij = −ji. The multiplicative subgroup G = {±1,±i,±j,±ij} of H∗
is the quaternion group of order 8. Let K = R(SB(H)), where SB(H) denotes the Severi-
Brauer variety of H. The representation ρ : G ↪→ H ↪→ H ⊗R K ' M2(K) is easily seen
to be absolutely irreducible. We claim that ed(ρ) = 1. Indeed, trdegR(F ) = 1, for any
intermediate extension R ⊂ F ⊂ K, unless F = R. On the other hand, ρ cannot descend
to R, because EnvR(ρ) = H, and thus mR(ρ) = ind(H) = 2 by Lemma 2.4(e). �

Lemma 6.2. Let G be a finite group, K/k be a field, ρi : G→ GLni(K) be representations
of G over K (for i = 1, . . . , s) and ρ ' a1ρ1⊕· · ·⊕asρs, where a1, . . . , as > 1 are integers.
Then ed(ρ) 6 ed(ρ1) + · · ·+ ed(ρs).

Proof. Suppose ρi descends to an intermediate field k ⊂ Ki ⊂ K, where trdegk(Ki) =
ed(ρi). Let K0 be the subfield of K generated by K1, . . . , Ks. Then ρ descends to K0 and
ed(ρ) 6 trdegk(K0) 6 trdegk(K1) + · · ·+ trdegk(Ks) = ed(ρ1) + · · ·+ ed(ρs). �

Lemma 6.3. Let k ⊂ K be fields, G be a finite group, and ρ : G → GLn(K) be a
representation. Let k′ := k(χ) ⊂ K, where χ is the character of ρ. Then the essential
dimension of ρ is the same, whether we consider it as an object on RepK,k or RepK,k′.

Proof. If ρ descends to an intermediate field k ⊂ F ⊂ K, then F automatically contains
k′. Moreover, trdegk(F ) = trdegk′(F ). The rest is immediate from the definition. �

Lemma 6.4. Assume that char(k) does not divide |G| and the Schur index mk(λ) equals
1 for every absolutely irreducible representation λ of G. Then ed(ρ) = 0 for any repre-
sentation ρ : G→ GLn(L) over any field L/k. In other words, ed(RepG,k) = 0.

Proof. Let χ be the character of ρ and k′ := k(χ). By Lemma 2.4(e), mk′(λ) = 1 for
every absolutely irreducible representation λ : G→ GLn(K) of G. By Lemma 6.3 we may
replace k by k′ = k(χ) and thus assume that χ is k-valued. Corollary 2.6 now tells us
that ρ descends to k. �

Remark 6.5. The condition of Lemma 6.4 is always satisfied if char(k) > 0; see [14,
Theorem 74.9]. This tells us that for non-modular representations the notion of essential
dimension is only of interest when char(k) = 0. The situation is drastically different in
the modular setting; see Section 14.
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7. Irreducible characters

In view of Remark 6.5, we will now assume that char(k) = 0. In this setting there is a
tight connection between representations and characters.

Lemma 7.1. Suppose F1/k, F2/k are field extensions, and

ρ1 : G→ GLn(F1), ρ2 : G→ GLn(F2)

are representations of a finite group G, with the same character χ : G → k. Then the
k-algebras Envk(ρ1) and Envk(ρ2) are isomorphic.

Proof. Let F/k be a field containing both F1 and F2. Then ρ1 and ρ2 are equivalent over
F , because they have the same character. Thus Envk(ρ1) and Envk(ρ2) are conjugate
inside Mn(F ). �

Given a representation ρ : G→ GLn(F ), with a k-valued character χ : G→ k, Lemma 7.1
tells us that, up to isomorphism, the k-algebra Envk(ρ) depends only on χ and not on
the specific choice of F and ρ. Thus we may denote this algebra by Envk(χ).

If ρ is absolutely irreducible (and the character χ is not necessarily k-valued), it is
common to write mk(χ) for the index of Envk(χ)(χ) instead of mk(ρ).

Let χ : G→ k be a character of G. Write

(7.2) χ =
r∑
i=1

miχi ,

where χ1, . . . , χr : G→ k are absolutely irreducible and distinct and m1, . . . ,mr are pos-
itive integers. Since χ is k-valued, mi = mj whenever χi and χj are conjugate over
k.

Lemma 7.3. Let χ =
∑r

i=1miχi : G → k be a character of G, as in (7.2). Then the
following are equivalent.

(a) χ is the character of a K-irreducible representation ρ : G→ GLn(K) for some field
extension K/k.

(b) χ1, . . . , χr form a single Gal(k(χ1)/k)-orbit and m1 = · · · = mr divides mk(χ1) =
· · · = mk(χr).

Proof. (a) =⇒ (b): By Lemma 2.4(a) and (b), χ = m(χ1 + · · · + χr), where χ1, . . . , χr
are absolutely irreducible characters transitively permuted by Gal(K(χ1)/K), and m =
mK(χ1) = · · · = mK(χr). By Lemma 2.1(b), χ1, . . . , χr are also transitively permuted by
Gal(k(χ1)/k). Moreover, by Lemma 2.4(e), m divides mk(χ1) = · · · = mk(χr).

(b) =⇒ (a): Let K be the function field of the Weil transfer variety RZ/k(SB(A,m)),
where A is the underlying division algebra, Z is the center of Envk(χ), and

m := m1 = · · · = mr .

Since the variety RZ/k(SB(A,m)) is absolutely irreducible, k is algebraically closed in K.
Lemma 2.1(c) now tells us that χ1, . . . , χr are conjugate over K. By Lemma 2.4(c) there
exists an irreducible K-representation ρ whose character is mK(χ1)(χ1 + · · · + χr). It
remains to show that mK(χ1) = m. Indeed,

mK(χ1) = ind(EnvK(χ)) = ind(Envk(χ)⊗k K) = m.
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Here the first equality follows from Lemma 2.4(d), the second from Lemma 2.3, and the
third from Proposition 5.1(b). �

We will say that a character χ : G→ k is irreducible over k if it satisfies the equivalent
conditions of Lemma 7.3.

8. The essential dimension of a character

In this section we will assume that char(k) = 0 and consider subfunctors

Repχ : Fieldsk → Sets

of RepG,k given by

K 7→ {K-isomorphism classes of representations ρ : G→ GLn(K) with character χ}
for every field K/k. Here χ : G→ k is a fixed character and n = χ(1G). The assumption
that χ takes values in k is natural in view of Lemma 6.3, and the assumption that
char(k) = 0 in view of Remark 6.5. Since any two K-representations with the same
character are equivalent, Repχ(K) is either empty or has exactly one element. We will
say that χ can be realized over K/k if Repχ(K) 6= ∅. In particular, Repχ and Repχ′ are
isomorphic if and only if χ and χ′ can be realized over the same fields K/k.

Definition 8.1. Let χ : G → k be a character of a finite group G and p be a prime
integer. We will refer to the essential dimension of Repχ as the essential dimension of χ
and will denote this number by ed(χ). Similarly for the essential p-dimension:

ed(χ) := ed(Repχ) and edp(χ) := edp(Repχ).

We will say that characters χ and λ of G, are disjoint if they have no common absolutely
irreducible components.

Lemma 8.2. (a) If the characters χ, λ : G→ k are disjoint then Repχ+λ ' Repχ×Repλ.

(b) Suppose a character χ : G → k decomposes as
∑s

i=1 miχi, as in (7.2). Set χ′ :=∑s
i=1m

′
iχi, where m′i is the greatest common divisor of mi and mk(χi). Then Repχ '

Repχ′.

Proof. Let K be a field extension of k.

(a) By Corollary 2.6, χ + λ can be realized over K if and only if both χ and λ can be
realized over K.

(b) By Corollary 2.6

(i) χ can be realized over K if and only if

(ii) mK(χi) divides mi, for every i = 1, . . . , s.

By Lemma 2.4(e), mK(χi) divides mk(χi). Thus (ii) is equivalent to

(iii) mK(χi) divides m′i, for every i = 1, . . . , s.

Applying Corollary 2.6 one more time, we see that (iii) is equivalent to

(iv) χ′ can be realized over K.

In summary, χ can be realized over K if and only if χ′ can be realized over K, as
desired. �
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Remark 8.3. Note that the character χ′ in Lemma 8.2(b) is a sum of pairwise disjoint
k-irreducible characters (see the discussion of k-irreducible characters at the end of Sec-
tion 7). In other words, we can replace any character χ : G → k by a sum of pairwise
disjoint k-irreducible characters without changing the functor Repχ.

As we observed above, Repχ(K) has at most one element for every field K/k. In
other words, Repχ is a detection functor in the sense of [24] or [30, Section 4a]. We
saw in Section 3b that to every algebraic variety X defined over k, we can associate the
detection functor DX , where DX(K) is either empty or has exactly one element, depending
on whether or not X has a K-point. Given a character χ : G → k, it is thus natural to
ask if there exists a smooth projective k-variety Xχ such that the functors Repχ and DXχ
are isomorphic. The rest of this section will be devoted to showing that this is, indeed,
always the case. We begin by defining Xχ.

Definition 8.4. (a) Let G be a finite group and χ := m(χ1 + · · · + χr) : G → k be
an irreducible character of G, where χ1, . . . , χr are Gal(k(χ1)/k)-conjugate absolutely
irreducible characters, and m > 1 divides mk(χ1) = · · · = mk(χr). We define the k-
variety Xχ as the Weil transfer RZ/k(SB(Aχ,m)), where Z is the center and Aχ is the
underlying division algebra of Envk(χ).

(b) More generally, suppose χ := λ1 + · · · + λs, where λ1, . . . , λs : G → k are pairwise
disjoint and irreducible over k. Then we define Xχ := Xλ1 ×k · · · ×k Xλr , where each Xλi

is a Weil transfer of a generalized Severi-Brauer variety, as in part (a).

Theorem 8.5. Let G be a finite group and χ := λ1 + · · ·+ λs be a character, where

λ1, . . . , λs : G→ k

are pairwise disjoint and irreducible over k. Let Xχ be the k-variety, as in Definition 8.4.
Then the functors Repχ and DXχ are isomorphic. Consequently ed(χ) = cd(Xχ) and
edp(χ) = cdp(Xχ) for any prime p.

Proof. In view of Lemma 8.2(a) we may assume that χ is irreducible over k, i.e., s = 1
and χ = λ1. Write χ := m(χ1 + · · · + χr), where χ1, . . . , χr : G → k are the absolutely
irreducible components of χ. Let K/k be a field extension. By Corollary 2.6 the following
conditions are equivalent:

(i) Repχ(K) 6= ∅, i.e., χ can be realized over K,

(ii) mK(χj) divides m for j = 1, . . . , r.

Note that while the characters χ1, . . . , χr are conjugate over k, they may not be conjugate
over K. Denote the orbits of the Gal(K/K)-action on χ1, . . . , χr by O1, . . . ,Ot, and set
µi :=

∑
χj∈Oi χj, so that χ = m(µ1 + · · ·+ µt).

Denote the center of the central simple algebra Envk(χ) by Z. Write KZ := K ⊗k Z
as a direct product K1 × · · · × Ks, where K1/Z, . . . ,Ks/Z are field extensions, as in
Proposition 5.1. By Lemma 2.3,
(8.6)
EnvK(χ) ' Envk(χ)⊗kK ' Envk(χ)⊗ZKZ ' (EnvK(χ)⊗ZK1)×· · ·×(EnvK(χ)⊗ZKs) ,
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where ' denotes isomorphism of K-algebras. On the other hand, since µ1, . . . , µt are
K-valued characters,

(8.7) EnvK(χ) ' EnvK(mµ1)× · · · × EnvK(mµt) .

Suppose χj ∈ Oi. Then by Lemma 2.2 EnvK(mµi) ' EnvK(µi) ' EnvK(mK(χj)µi),
and by Lemma 2.4(d), EnvK(mK(χj)µi) is a central simple algebra of index mK(χj).
Comparing (8.6) and (8.7), we conclude that s = t, and after renumbering K1, . . . , Ks,
we may assume that EnvK(mµi) ' EnvK(χ)⊗Z Ki. Thus (ii) is equivalent to

(iii) the index of EnvK(χ)⊗Z Ki divides m for every i = 1, . . . , s.

By Proposition 5.1(a), (iii) is equivalent to

(iv) Xχ has a K-point, i.e., DXχ(K) 6= ∅.
The equivalence of (i) and (iv) shows that the functors Repχ and DXχ are isomorphic.
Now

ed(χ)
def
= ed(Repχ) = ed(DXχ)

def
= cd(Xχ)

and similarly for the essential dimension at p. �

Remark 8.8. Theorem 8.5 can, in fact, be applied to an arbitrary k-valued character
χ : G → k. Indeed, the character χ′ of Lemma 8.2(b) is a sum of pairwise disjoint
k-irreducible characters; see Remark 8.3. Thus Repχ ' Repχ′ by Lemma 8.2, and
Repχ′ ' DXχ′ by Theorem 8.5.

9. Upper bounds

If G is generated by r elements g1, . . . , gr, then any representation ρ : G → GLn(K)
defined over a field K/k descends to the subfield K0 generated over k by the rn2 matrix
entries of ρ(g1), . . . , ρ(gr). Thus

ed(ρ) 6 trdegk(K0) 6 rn2 .

In this section we will improve on this naive upper bound, under the assumption that
char(k) = 0.

Our starting point is the following inequality, which is an immediate corollary of The-
orem 8.5 and the inequality (3.2).

Corollary 9.1. Let G be a finite group and χ = m(χ1 + · · ·+χr) : G→ k be an irreducible
character over k, as in Section 7. Then ed(χ) 6 dim(Xχ) = rm(mk(χ1)−m). �

We are now in a position to prove the main result of this section.

Proposition 9.2. Let G be a finite group, k be a field of characteristic 0, and K/k be a
field extension. Let ρ : G→ GLn(K) be a representation of G. Then

(a) ed(ρ) 6
n2

4
.

(b) ed(ρ) 6
∑

λb
mk(λ)2

4
c 6 |G|

4
. Here the sum is taken over the distinct absolutely

irreducible K-subrepresentations λ of ρ, and bxc denotes the integer part of x.



AN INVARIANT FOR REPRESENTATIONS OF FINITE GROUPS 13

(c) ed(Repχ) 6
χ(1)2

4
and ed(RepG,k) 6

∑
λb
mk(λ)2

4
c 6 |G|

4
for any base field k and

any k-valued character χ : G → k. Here RepG,k is the functor defined at the beginning
of Section 6, and the sum is taken over all absolutely irreducible representations λ of G
defined over k.

Proof. (a) Suppose ρ ' ρ1⊕ρ2 over K, where dim(ρ1) = n1, dim(ρ2) = n2 and n = n1+n2.
If we can prove the inequality of part (a) for ρ1 and ρ2, then by Lemma 6.2,

ed(ρ) 6 ed(ρ1) + ed(ρ2) 6
n2

1

4
+
n2

2

4
6
n2

4

so that the desired inequality holds for ρ. Thus we may assume without loss of generality
that ρ is K-irreducible.

By Lemma 6.3 we may also assume that the character χ of ρ is k-valued. By Lemma 7.3,
χ is an irreducible character over k. Write χ = m(χ1 + · · · + χr), where m > 1 divides
mk(χ1) = · · · = mk(χr). By Corollary 9.1

(9.3) ed(ρ) 6 rm(mk(χ1)−m) 6 r
mk(χ1)2

4
.

Now recall that by Lemma 2.4(d), Envk(ρ) is a central simple algebra of index mk(χ1)
over a field Z such that [Z : k] = r. Thus

(9.4) rmk(χ1)2 6 r dimZ(Envk(ρ)) = dimk(Envk(ρ)) = dimK(EnvK(ρ)) 6 n2 .

Here the equality dimk(Envk(ρ)) = dimK(EnvK(ρ)) follows from Lemma 2.3, and the
inequality dimK(EnvK(ρ)) 6 n2 follows from the fact that EnvK(ρ) is a K-subalgebra of
Mn(K). Combining (9.3) and (9.4), we obtain ed(ρ) 6 n2/4.

(b) Decompose ρ as a direct sum a1ρ1 ⊕ · · · ⊕ asρs, where ρ1, . . . , ρs are pairwise non-
isomorphic K-irreducibles. Over K, we can further decompose each ρi as

(9.5) ρi ' mi(ρi1 ⊕ · · · ⊕ ρiri) ,

where the ρi1, . . . , ρiri are pairwise non-isomorphicK-irreducibles. In fact, by Lemma 2.4(c),
no two irreducible representations ρij can be isomorphic over K, as i ranges from 1 to s
and j ranges from 1 to ri.

Now let us sharpen (9.3) a bit. Since m(mk(χi1)−m) 6
mk(χi1)2

4
and m(mk(χi1)−m)

is an integer, we conclude that

ed(ρi) 6 rib
mk(χi1)2

4
c =

ri∑
i=1

bmk(χij)
2

4
c .

Here the last equality follows from the fact that the characters χi1, . . . , χiri of ρi1, . . . , ρiri
are conjugate over k, and consequently, mk(ρi1) = · · · = mk(ρiri). Now by Lemma 6.2,

ed(ρ) 6
s∑
i=1

ed(ρi) 6
s∑
i=1

ri∑
j=1

bmk(χij)
2

4
c .

This proves the first inequality in part (b).
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To prove the second inequality, note that by Lemma 2.4(f), mk(χij) 6 dim(ρij). More-
over,

∑
λ dim(λ)2 = |G|, where the sum is taken over the distinct absolutely irreducible

representations λ of G; see, e.g., [34, Corollary 2(a), Section 2.4]. Thus
s∑
i=1

ri∑
j=1

bmk(χij)
2

4
c 6

s∑
i=1

ri∑
j=1

mk(χij)
2

4
6

s∑
i=1

ri∑
j=1

dim(ρij)
2

4
6
|G|
4
.

This completes the proof of part (b). Part (c) is an immediate consequence of (a) and
(b). �

Remark 9.6. Note that absolutely irreducible representations λ of Schur index 1 do not

contribute anything to the sum
∑

λb
mk(λ)2

4
c in part (b) and (c). In particular, in the

case, where every absolutely irreducible representation of G has Schur index 1, we recover
Lemma 6.4 from Proposition 9.2 (under the assumption that char(k) = 0).

Another interesting example is obtained by setting G = Q8, the quaternion group of
order 8 and k = Q or R. In this case G has five absolutely irreducible representations
whose Schur indices are 1, 1, 1, 1 and 2; see [14, Example, p. 740]. Thus Proposition 9.2
yields

ed(RepQ8,k) 6 b
12

4
c+ b1

2

4
c+ b1

2

4
c+ b1

2

4
c+ b2

2

4
c = 1 .

Example 6.1 shows that this upper bound is sharp, i.e., ed(RepQ8,k) = 1.

10. A variant of a theorem of Brauer

A theorem of R. Brauer [7] asserts for every integer l > 1 there exists a number field
k, a finite group G and a k-valued absolutely irreducible character χ such that the Schur
index mk(χ) = l. For an alternative proofs of Brauer’s theorem, see [4] or [36].

In this section we will prove an analogous statement with the Schur index replaced by
the essential dimension. Note however, that the analogy is not perfect. Our character χ
will be reducible and Q-valued for every l > 2, while Brauer’s theorem will fail if we insist
that k should be the same for all l, or that χ should be real-valued. (These assertions
follow from the Benard-Schacher theorem [37, Theorem 6.8]; see also [14, Section 74C].)

Proposition 10.1. For every integer l > 0 there exists a finite group G, and a character
χ : G→ Q such that edQ(χ) = l.

Proof. The proposition is obvious for l = 0; just take χ to be the trivial character, for any
group G. We may thus assume that l > 1. Choose l distinct prime integers p1, . . . , pl ≡ 3
(mod 4), and let Ai be the quaternion algebra (−1, pi) over Q.

Lemma 10.2. The classes of A1, . . . , Al in Br(Q) are linearly independent over Z/2Z.

Proof. Assume the contrary. Then after renumbering A1, . . . , Al, we may assume that
A1 ⊗k · · · ⊗k As is split over Q for some s > 1. Since [(a, c)]⊗ [(b, c)] = [(ab, c)] in Br(Q),
we see that the quaternion algebra (−1, p1 . . . ps) is split over Q. Equivalently, p1 . . . ps
is a norm in Q(

√
−1)/k (see, e.g., [27, Theorem 2.7]), i.e., p1 . . . ps can be written as a

sum of two rational squares. Now recall that by a classical theorem of Fermat, a positive
integer n can be written as a sum of two rational squares if and only if it can be written
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as a sum of two integer squares if and only if every prime p which is ≡ 3 (mod 4) occurs
to an even power in the prime decomposition of n. In our case n = p1 . . . ps does not
satisfy this condition. Hence, p1 . . . ps cannot be written as a sum of two rational squares,
a contradiction. �

We now return to the proof of Proposition 10.1. By a theorem of M. Benard [1]
there exist finite groups G1, . . . , Gl, number fields F1, . . . , Fl, and 2-dimensional absolutely
irreducible representations ρi : Gi → GL2(Fi) such that Ai := Envk(ρi). (In fact, since
Q(
√
−1) splits every Ai, we may take F1 = · · · = Fl = Q(

√
−1).) We will view each ρi as

a representation of G = G1 × · · · ×Gl via the natural projection G→ Gi. Let χi be the
character of ρi and χ := χ1 + · · ·+ χr : G→ Q. By Theorem 8.5

ed(χ) = cd(Xχ) ,

where Xχ := Xχ1×k · · ·×kXχl , and Xχi is the 1-dimensional Severi-Brauer variety SB(Ai)
over Q. Since the Brauer classes of A1, . . . , Al in Br(Q) are linearly independent over
Z/2Z, [25, Theorem 2.1] tells us that cd(Xχ) = l, as desired. (For an alternative proof of
[25, Theorem 2.1], see [23, Corollary 4.1 and Remark 4.2].) �

Remark 10.3. Proposition 10.1 implies that there exists a field K/Q and a linear rep-
resentation ρ : G→ GL2l(K) such that edQ(ρ) = l. Note however, that ρ is not the same
as ρ1 × · · · × ρl : G → GL2l(Q(

√
−1)), even though ρ and ρ1 × · · · × ρl have the same

character. Indeed, since each ρi is defined over Q(
√
−1), edQ(ρ1 × · · · × ρl) = 0. Under

the isomorphism of functors Repχ ' DXχ of Theorem 8.5, ρ1 × · · · × ρl corresponds to a

Q(
√
−1)-point of Xχ, while ρ corresponds to the generic point.

11. Computation of canonical p-dimension

This section aims to determine canonical p-dimension of a broad class of Weil transfers
of generalized Severi-Brauer varieties. Here p is a fixed prime integer. The base field k is
allowed to be of arbitrary characteristic.

Let Z/k be a finite Galois field extension (not necessarily abelian). We will work with
Chow motives with coefficients in a finite field of p elements; see [15, §64]. For a motive
M over Z, RZ/kM is the motive over k given by the Weil transfer of M introduced in [17].
Although the coefficient ring is assumed to be Z in [17], and the results obtained there
over Z do not formally imply similar results for other coefficients, the proofs go through
for an arbitrary coefficient ring.

For any finite separable field extension K/k and a motive M over K, the corestriction
of M is a well-defined motive over k; see [19].

Lemma 11.1. Let Z/k be an arbitrary finite Galois field extension and let M1, . . . ,Mm

be m > 1 motives over Z. Then the motive RZ/k(M1 ⊕ · · · ⊕Mm) decomposes in a direct
sum

RZ/k(M1 ⊕ · · · ⊕Mm) ' RZ/kM1 ⊕ · · · ⊕RZ/kMm ⊕N,
where N is a direct sum of corestrictions to k of motives over fields K with k ( K ⊂ Z.

Proof. For m = 1 the statement is void. For m = 2 use the same argument as in [20,
Proof of Lemma 2.1] or see below. For m > 3 argue by induction.
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For the reader’s convenience, we supply a proof for m = 2. First we recall that the
Weil transfer RZ/kX of a Z-variety X is characterized by the property that there exists
an isomorphism of Z-varieties (RZ/kX)Z '

∏
σ∈Gal(Z/k)

σX commuting with the action of

the Galois group. Here σX is the conjugate variety and Gal(Z/k) acts on the product∏
σX by permutation of the factors.
We start with the case where M1 and M2 are the motives of some smooth projective

Z-varieties X and Y . The Weil transfer RZ/k(M1⊕M2) is then the motive of the k-variety
RZ/k(X

∐
Y ). We have∏

σ(X
∐
Y ) =

∏
(σX

∐
σY ) = (

∏
σX)

∐
(
∏

σY )
∐

. . . ,

where the dots stand for a disjoint union of products none of which is stable under the
action of Gal(Z/k). It follows that RZ/k(X

∐
Y ) is a disjoint union of RZ/kX, RZ/kY ,

and corestrictions of some K-varieties with some k ( K ⊂ Z. This gives the required
motivic formula in the particular case under consideration.

In the general case, we have M1 = (X, [π]) and M2 = (Y, [τ ]) for some algebraic cycles
π and τ ([π] and [τ ] are their classes modulo rational equivalence). We recall that the
Weil transfer of the motive (X, [π]) is defined as (RZ/kX, [RZ/kπ]), where RZ/kπ is the
algebraic cycle determined by (RZ/kπ)Z =

∏
σπ. Computing RZ/k(M1⊕M2) this way, we

get the desired formula. �

Now recall from Section 3b that a k-variety X is called incompressible if cd(X) =
dim(X) and p-incompressible if cdp(X) = dim(X).

Theorem 11.2. Let p be a prime number, Z/k a finite Galois field extension of degree pr

for some r > 0, D a balanced central division Z-algebra of degree pn for some n > 0, and
X the generalized Severi-Brauer variety SB(D, pi) of D for some i = 0, 1, . . . , n. Then the
k-variety RZ/kX, given by the Weil transfer of X, is p-incompressible.

Note that in the case, where Z/k is a quadratic Galois extension, D is balanced if the
k-algebra given by the norm of D is Brauer-trivial; αD for α 6= 1 is then opposite to D.
In this special case Theorem 11.2 was proved in [20, Theorem 1.1].

Proof of Theorem 11.2. In the proof we will use Chow motives with coefficients in a finite
field of p elements. Therefore the Krull-Schmidt principle holds for direct summands of
motives of projective homogeneous varieties by [12] (see also [22]).

We will prove Theorem 11.2 by induction on r + n. The base case, where r + n = 0, is
trivial. Moreover, in the case where r = 0 (and n is arbitrary), we have Z = k and thus
RZ/kX = X is p-incompressible by [22, Theorem 4.3]. Thus we may assume that r > 1
from now on.

If i = n, then X = SpecZ, RZ/kX = Spec k, and the statement of Theorem 11.2 is
trivial. We will thus assume that i 6 n− 1 and, in particular, that n > 1.

Let k′ be the function field of the variety RZ/k SB(D, pn−1). Set Z ′ := k′ ⊗k Z. By
Proposition 5.1(b), the index of the central simple Z ′-algebra DZ′ = D⊗Z Z ′ = D⊗k k′ is
pn−1. Thus there exists a central division Z ′-algebra D′ such that the algebra of (p× p)-
matrices over D′ is isomorphic to DZ′ . Let X ′ = SB(D′, pi). By [16, Theorem 10.9 and
Corollary 10.19] (see also [11]), the motive of the variety XZ′ decomposes in a direct sum

M(XZ′) 'M(X ′)⊕M(X ′)(pi+n−1)⊕M(X ′)(2pi+n−1)⊕ · · ·⊕M(X ′)((p− 1)pi+n−1)⊕N,
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where N is a direct sum of shifts of motives of certain projective homogeneous Z ′-varieties
Y under the direct product of p copies of PGL1(D′) such that the index of D′Z′(Y ) divides

pi−1. (If i = 0, then N = 0.) It follows by [22, Theorems 3.8 and 4.3] that

M(XZ′) ' U(X ′)⊕ U(X ′)(pi+n−1)⊕ U(X ′)(2pi+n−1)⊕ · · · ⊕ U(X ′)((p− 1)pi+n−1)⊕N,
where U(X ′) is the upper motive of X ′ and N is now a direct sum of shifts of upper motives
of the varieties SB(D′, pj) with j < i. Therefore, by Lemma 11.1 and [17, Theorem 5.4],
the motive of the variety (RZ/kX)k′ ' RZ′/k′(XZ′) decomposes in a direct sum

(11.3) M(RZ/kX)k′ ' RZ′/k′U(X ′)⊕RZ′/k′U(X ′)(pr+i+n−1)⊕
RZ′/k′U(X ′)(2pr+i+n−1)⊕ · · · ⊕RZ′/k′U(X ′)((p− 1)pr+i+n−1)⊕N ⊕N ′,

where now N is a direct sum of shifts of RZ′/k′U(SB(D′, pj)) with j < i, and N ′ is a
direct sum of corestrictions of motives over fields K with k′ ( K ⊂ Z ′. By the induction
hypothesis, the variety RZ′/k′X

′ is p-incompressible. By [18, Theorem 5.1], this means
that no positive shift of the motive U(RZ′/k′X

′) is a direct summand of the motive of
RZ′/k′X

′. It follows by [19] that RZ′/k′U(X ′) is a direct sum of U(RZ′/k′X
′), of shifts

of U(RZ′/k′ SB(D′, pj)) with j < i, and of corestrictions of motives over fields K with
k′ ( K ⊂ Z ′. Therefore we may exchange RZ′/k′ with U in (11.3) and get a decomposition
of the form

(11.4) M(RZ/kX)k′ ' U(RZ′/k′X
′)⊕ U(RZ′/k′X

′)(pr+i+n−1)⊕
U(RZ′/k′X

′)(2pr+i+n−1)⊕ · · · ⊕ U(RZ′/k′X
′)((p− 1)pr+i+n−1)⊕N ⊕N ′,

where N is now a direct sum of shifts of some U(RZ′/k′ SB(D′, pj)) with j < i, and N ′ is
a direct sum of corestrictions of motives over fields K with k′ ( K ⊂ Z ′. Note that the
first p summands of decomposition (11.4) (that is, all but the last two) are shifts of an
indecomposable motive; moreover, no shift of this motive is isomorphic to a summand of
N or of N ′. Since the variety RZ′/k′X

′ is p-incompressible, we have

dimU(RZ′/k′X
′) = dimRZ′/k′X

′ = [Z ′ : k′] · dimX ′ = pr · pi(pn−1 − pi) .
(We refer the reader to [18, Theorem 5.1] for the definition of the dimension of the
upper motive, as well as its relationship to the dimension and p-incompressibility of the
corresponding variety). Note that the shifting number of the p-th summand in (11.4) plus
dimRZ′/kX

′ equals dimRZ/kX:

(p− 1)pr+i+n−1 + prpi(pn−1 − pi) = prpi(pn − pi).
We want to show that the variety RZ/kX is p-incompressible. In other words, we want

to show that dimU(RZ/kX) = dimRZ/kX. Let l be the number of shifts of U(RZ′/k′X
′)

contained in the complete decomposition of the motive U(RZ/kX)k′ . Clearly, 1 6 l 6 p
and it suffices to show that l = p because in this case the p-th summand of (11.4) is
contained in the complete decomposition of U(RZ/kX)k′ .

The complete motivic decomposition of RZ/kX contains several shifts of U(RZ/kX).
Let N be any of the remaining (indecomposable) summands. Then, by [19], N is either
a shift of the upper motive U(RZ/k SB(D, pj)) with some j < i or a corestriction to k of a
motive over a field K with k ( K ⊂ Z. It follows that the complete decomposition of Nk′
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does not contain any shift of U(RZ′/k′X
′). Therefore l divides p, that is, l = 1 or l = p,

and we only need to show that l 6= 1.
We claim that l > 1 provided that dimU(RZ/kX) > dimU(RZ′/k′X

′). Indeed, by [21,
Proposition 2.4], the complete decomposition of U(RZ/kX)k′ contains as a summand the
motive U(RZ′/k′X

′) shifted by the difference dimU(RZ/kX)−dimU(RZ′/k′X
′). Therefore,

in order to show that l 6= 1 it is enough to show that

dimU(RZ/kX) > dimU(RZ′/k′X
′).

We already know the precise value of the dimension on the right, so we only need to
find a good enough lower bound on the dimension on the left. This will be given by
dimU((RZ/kX)k̃), where k̃/k is a degree p Galois field subextension of Z/k. We can
determine the latter dimension using the induction hypothesis.

Indeed, since RZ/kX ' Rk̃/kRZ/k̃X, the variety (RZ/kX)k̃ is isomorphic to

(RZ/kX)k̃ '
∏̃
α∈Γ̃

α̃RZ/k̃X ' RZ/k̃

∏̃
α∈Γ̃

αX,

where Γ is the Galois group of Z/k, Γ̃ is the Galois group of k̃/k, and α ∈ Γ is a
representative of α̃ ∈ Γ̃ (see [6, §2.8]). Since D is balanced, the product

∏
α̃∈Γ̃

αX is
equivalent to X. It follows that the varieties RZ/k̃

∏
α̃∈Γ̃

αX and RZ/k̃X are equivalent

and hence, by Lemma 3.3, have the same canonical p-dimension (i.e., the dimensions of
their upper motives coincide). The latter variety is p-incompressible by the induction
hypothesis. Consequently,

dimU(RZ/kX) > dimU((RZ/kX)k̃) = dimRZ/k̃X = pr−1 · pi(pn − pi).

The lower bound pr−1 · pi(pn− pi) on dimU(RZ/kX) thus obtained is good enough for our
purposes, because

pr−1 · pi(pn − pi) > pr · pi(pn−1 − pi) = dimU(RZ′/k′X
′).

This completes the proof of Theorem 11.2. �

The following example, due to A. Merkurjev, shows that Theorem 11.2 fails if D is not
assumed to be balanced.

Example 11.5. Let L be a field containing a primitive 4-th root of unity. Let Z be the
field Z := L(x, y, x′, y′) of rational functions over L in four variables x, y, x′, y′. Consider
the degree 4 cyclic central division Z-algebras C := (x, y)4 and C ′ := (x′, y′)4. Let k ⊂ Z
be the subfield Zα of the elements in Z fixed under the L-automorphism α of Z exchanging
x with x′ and y with y′. The field extension Z/k is then Galois of degree 2, and the algebra
C ′ is conjugate to C.

The index of the tensor product of Z-algebras C⊗C ′⊗2 is 8. Let D/Z be the underlying
(unbalanced!) division algebra of degree 8. Since the conjugate algebra αD is Brauer-
equivalent to C ′⊗C⊗2, the subgroup of the Brauer group Br(Z) generated by the classes
of D and αD coincides with the subgroup generated by the classes of C and αC = C ′.
Therefore the varieties X1 := RZ/k SB(D) and X2 := RZ/k SB(C) are equivalent. Thus, by
Lemma 3.3,

cd(X1) = cd(X2) 6 dim(X2) < dim(X1)
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and consequently, X1 is compressible (and in particular, 2-compressible).

Remark 11.6. Some generalizations of Theorem 11.2 can be found in [23].

12. Some consequences of Theorem 11.2

Theorem 11.2 makes it possible to determine the canonical p-dimension of the Weil
transfer in the situation, where the degrees of Z/k and of D are not necessarily p-powers.

Corollary 12.1. Let Z/k be a finite Galois field extension and D a balanced central
division Z-algebra. For any positive integer m dividing deg(D), one has

cdpRZ/k SB(D,m) = dimRZ/k′ SB(D′,m′) = [Z : k′] ·m′(degD′ −m′),

where m′ is the p-primary part of m (i.e., the highest power of p dividing m), D′ is the p-
primary component of D, and k′ = ZΓp, where Γp is a Sylow p-subgroup of Γ := Gal(Z/k)
(so that [Z : k′] is the p-primary part of [Z : k]).

Proof. Since the degree [k′ : k] is prime to p, we have

cdpRZ/k SB(D,m) = cdp(RZ/k SB(D,m))k′ ;

see [29, Proposition 1.5(2)]. The k′-variety RZ/k SB(D,m)k′ is isomorphic to a product

of RZ/k′ SB(D,m) with several varieties of the form RZ/k′ SB(D̃,m) where D̃ ranges over

a set of conjugates of D. Since D is balanced, these algebras D̃ are Brauer-equivalent
to powers of D. Thus the product is equivalent to the k′-variety RZ/k′ SB(D,m). We
conclude by Lemma 3.3 that cdpRZ/k SB(D,m) = cdpRZ/k′ SB(D,m). In the sequel we
will replace k by k′, so that the degree [Z : k] becomes a power of p.

We may now replace k by its p-special closure; see [15, Proposition 101.16]. This will
not change the value of cdp(X). In other words, we may assume that k is p-special. Under
this assumption the algebras D and D′ become Brauer-equivalent and consequently, the
k-varieties RZ/k SB(D,m) and RZ/k SB(D′,m′) become equivalent. By Lemma 3.3,

cdpRZ/k SB(D,m) = cdpRZ/k SB(D′,m′).

Since the Z-algebra D′ is balanced over k, Theorem 11.2 tells us that RZ/k SB(D′,m′) is
p-incompressible. That is,

cdpRZ/k SB(D′,m′) = dim(RZ/k SB(D′,m′)) = [Z : k] ·m′(degD′ −m′) ,

and the corollary follows. �

Remark 12.2. Corollary 12.1 can be used to compute the p-canonical dimension of
RZ/k SB(D, j) for any j = 1, . . . , deg(D), even if j does not divide deg(D). Indeed, let
m be the greatest common divisor of j and deg(D). Proposition 5.1(a) tells us that for
any field extension K/k, RZ/k SB(D, j) has a K-point if and only if RZ/k SB(D,m) has a
K-point. In other words, the detection functors for these two varieties are isomorphic.
Consequently,

cd(RZ/k SB(D, j)) = cd(RZ/k SB(D,m)) and cdp(RZ/k SB(D, j)) = cdp(RZ/k SB(D,m)),

and the value of cdp(RZ/k SB(D,m)) is given by Corollary 12.1.
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We now return to the setting of Sections 7–9. In particular, G is a finite group, and
the base field k is of characteristic 0.

Corollary 12.3. Let χ = m(χ1 + · · ·+ χr) : G→ k be an irreducible k-valued character,
where χ1, . . . , χr are absolutely irreducible and conjugate over k, and m divides mk(χ1) =
· · · = mk(χr), as in Section 7.

(a) edp(χ) = r′m′(mk(χ1)′ − m′). Here x′ denotes the p-primary part of x (i.e., the
highest power of p dividing x) for any integer x ≥ 1.

(b) If r and mk(χ1) are powers of p, then edp(χ) = ed(χ) = dim(Xχ) = rm(mk(χ1)−m).
Here Xχ is as in Definition 8.4.

Proof. (a) Let D be the underlying division algebra and Z/k be the center of Envk(χ).
By Theorem 8.5, edp(χ) = cdp(Xχ). By Proposition 4.1, D is balanced. The desired
conclusion now follows from Corollary 12.1.

(b) Here r′ = r, mk(χ1)′ = mk(χ) and thus m′ = m. By part (a),

dim(Xχ) = rm(mk(χ1)−m) = edp(χ) 6 ed(χ) .

On the other hand, by Corollary 9.1, ed(χ) 6 rm(mk(χ1)−m), and part (b) follows. �

Remark 12.4. While a priori edp(χ) depends on k, G, and χ, Corollary 12.3(a) shows
that, in fact, edp(χ) depends only on the integers r, m, and mk(χ1). (Here we are assuming
that χ is irreducible.) We do not know if the same is true of ed(χ).

13. A variant of a theorem of Schilling

Let G be a p-group and χ1 be an absolutely irreducible character of G. It is well known
that for any field k of characteristic 0, mk(χ1) = 1 if p is odd, and mk(χ1) = 1 or 2 if
p = 2. Following C. Curtis and I. Reiner, we will attribute this theorem to O. Schilling;
see [14, Theorem 74.15]. For further bibliographical references, see [37, Corollary 9.8].

In this section we will use Corollary 12.3 to prove the following analogous statement,
with the Schur index replaced by the essential dimension.

Proposition 13.1. Let k be a field of characteristic 0, G be a p-group, and χ : G→ k be
an irreducible character over k.

(a) If p is odd then ed(χ) = 0.

(b) If p = 2 then ed2(χ) = ed(χ) = 0 or 2l for some integer l > 0.

(c) Moreover, every l > 0 in part (b) can occur with k = Q, for suitable choices of G
and χ.

Proof. Write χ = m(χ1 + · · ·+χr), where χi : G→ k are absolutely irreducible characters
and m divides mk(χ1). If m = mk(χ1) then ed(χ) = 0 by Corollary 9.1.

(a) In particular, this will always be the case if p is odd. Indeed, by Schilling’s theorem,
mk(χ1) = 1 and thus m = 1. (Also cf. Lemma 6.4.)

(b) By Schilling’s theorem, mk(χ1) = 1 or 2, and by the above argument, we may
assume that m < mk(χ1). Thus the only case we need to consider is mk(χ1) = 2 and
m = 1. By Lemma 2.4(b), r = [k(χ1) : k]. Since k(χ1) ⊂ k(ζe), where the exponent e
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of G is a power of 2, we see that r divides [k(ζe) : k], which is, once again, a power of 2.
Thus we conclude that r is a power of 2. Corollary 12.3(b) now tells us that

(13.2) ed2(χ) = ed(χ) = rm(mk(χ)−m) = r · 1 · (2− 1) = r

is a power of 2, as claimed.

(c) Let s = 2l+2, and σ ∈ Gal(Q(ζs)/Q) be complex conjugation, and

F := Q(ζs)
σ = Q(ζs) ∩ R = Q(ζs + ζ−1

s ) .

Consider the quaternion algebra A = ((ζs−ζ−1
s )2,−1) over F , i.e., the F -algebra generated

by elements x and y, subject to the relations

x2 = (ζs − ζ−1
s )2, y2 = −1 and xy = −yx.

One readily checks that F (ζs− ζ−1
s ) = Q(ζs) is a maximal subfield of A, ζs and y generate

a multiplicative subgroup G of A of order 2s, which spans A as an F -vector space, and
the inclusion G ↪→ A× gives rise to an absolutely irreducible 2-dimensional representation

ρ1 : G ↪→ A× ↪→ GL2(Q(ζs)) .

Denote the character of ρ1 by χ1 : G → F . We claim that Q(χ1) = F . Indeed, since A
is an F -algebra, the trace of every element of A lies in F , and in particular, Q(χ1) ⊂ F .
On the other hand, χ1(ζs) = ζs + ζ−1

s generates F over Q. This proves the claim. Thus
χ1 has exactly

r = [F : Q] =
1

2
[Q(ζs) : Q] = 2l

conjugates χ1, . . . , χr over Q, and χ = χ1 + · · ·+ χr is an irreducible character over Q.
Note that since s = 2l+2 > 4, (ζs−ζ−1

s )2 < 0, A⊗FR is R-isomorphic to the Hamiltonian
quaternion algebra H = (−1,−1) and hence, is non-split. Thus ind(A) = 2. Since
A = EnvQ(ρ), Lemma 2.4(d) tells us that mQ(χ1) = 2. Applying Corollary 12.3(b), as
in (13.2), we conclude that ed2(χ) = ed(χ) = r = 2l, as desired. �

14. Essential dimension of modular representations

Let G be a finite group and RepG,k be the functor of representations defined at the
beginning of Section 6. In the non-modular setting (where char(k) does not divide |G|),
we know that

ed(RepG,k) is

{
0, if char(k) > 0, by Remark 6.5, and

6 |G|/4, if char(k) = 0, by Proposition 9.2.

We shall now see that essential dimension of representations behaves very differently in
the modular case.

Theorem 14.1. Let k be a field of characteristic p. Suppose a finite group G contains
an elementary abelian subgroup E ' (Z/pZ)2 of rank 2. Then ed(RepG,k) =∞.

It is clear from the definition of essential dimension that if k ⊂ k′ is a field extension
then ed(RepG,k) > ed(RepG,k′). Thus for the purpose of proving Theorem 14.1 we
may replace k by k′. In particular, we may assume without loss of generality that k is
algebraically closed.
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Following D. Quillen, we will assiciate to a finite group G the projective variety S :=
Proj(H•(G, k)), where the graded ring H•(G, k) is defined as the full cohomology ring
H∗(G, k), if p = 2, or as the direct sum of even-dimensional cohomology groupsHeven(G, k)
if p > 3. To every representation ρ : G → GLn(K) defined over a field K/k (or equiv-
alently, a finitely generated K[G]-module), we will denote the support variety of ρ by
Supp(ρ). Note that Supp(ρ) is a closed subvariety of S. For a detailed discussion of this
construction we refer the reader to [2, Chapter 5].

Let Z be a k-variety, and SubZ : Fieldsk → Sets be a covariant functor, given by

SubZ(K) := {closed subvarieties of ZK}.
Here subvarieties of ZK are required to be reduced but not necessarily irreducible. Closed
subvarieties X, Y ⊂ ZK represent the same element in SubZ(K) if X(K) = Y (K) in
Z(K). We will now consider the morphism of functors

Supp: RepG,k → SubS

which associates to a representation ρ : G→ GLn(K) its support variety Supp(ρ). A the-
orem of J. Carlson (Carlson’s realization theorem) asserts that this morphism of functors
is surjective; see [2, Corollary 5.9.2]. (Note that the usual statement of Carlson’s real-
ization theorem only says that Supp(k) : RepG,k(k) → SubS(k) is surjective; however,
the proof shows that, in fact, Supp: RepG,k(K) → SubS(K) is surjective for every field
K/k.) Thus ed(RepG,k) > ed(SubS); see [3, Lemma 1.9].

By a theorem of Quillen, the condition that G contains an elementary abelian subgroup
of rank > 2 is equivalent to dim(S) > 1; see [2, Theorem 5.3.8]. It now suffices to prove
the following proposition.

Proposition 14.2. Let Z be a projective variety of dimension d > 1 defined over an
infinite field k. Then ed(SubZ) =∞.

Proof. We claim that there exists a surjective morphism Z → Pd defined over k. Indeed,
embed Z into a projective space PN . If d = N , there is nothing to prove. If d < N ,
then there exists a linear subspace of dimension N − d − 1 defined over k which does
not intersect Z. Projecting Z from this subspace to a complementary linear subspace of
dimension d, we obtain a desired surjective morphism Z → Pd. This proves the claim.

The morphism Z → Pd induces a surjective morphism of functors SubZ → SubPd .
Using [3, Lemma 1.9] once again, we see that it suffices to show ed(SubPd) =∞. In other
words, we may assume without loss of generality that Z = Pd.

Let L/k be a field, a1, . . . , an ∈ L, and X[n] be the union of the points

(14.3) X1 = (1 : a1 : 0 : · · · : 0), . . . , Xn = (1 : an : 0 · · · : 0)

in Pd. We view X[n] as an element of SubPd(L).

Lemma 14.4. Suppose X[n] descends to a subvariety Y defined over a subfield K ⊂ L.
Then ai is algebraic over K for every i = 1, . . . , n.

Proof. Note that X[n] is a subvariety of the projective line P1 ⊂ Pd given by x3 = · · · =
xd+1 = 0, where x1, . . . , xd+1 are the projective coordinates in Pd. Since X[n] descends to
Y , we have Y (L) = X[n](L). Consequently, Y is a closed subvariety of P1. (Note that
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here we are viewing Y as a subvariety of Pd, not as a subscheme.) Thus for the purpose
of proving Lemma 14.4 we may replace Pd by P1, i.e., assume that d = 1.

By the definition of the functor SubP1 , X[n] descends to K if X[n] can be cut out
(set-theoretically) by homogeneous polynomials f1, . . . , fs ∈ K[x1, x2]. In other words,
the points X1 = (1 : a1), . . . , Xn = (1 : an) are the only non-trivial solutions, in the
algebraic closure L, of a system of homogeneous equations

f1(x1, x2) = · · · = fs(x1, x2) = 0

with coefficients in K. Since every solution of such a system can be found over K, we
have a1, . . . , an ∈ K. This completes the proof of Lemma 14.4. �

We now continue with the proof of Proposition 14.2. Taking a1, . . . , an to be indepen-
dent variables and L := k(a1, . . . , an), we see that trdegk(K) = trdegk(L) = n and thus
in this case ed(X[n]) = n. Therefore,

ed(SubPd,k) > sup
n>1

ed(X[n]) =∞ .

This completes the proof of Proposition 14.2 and thus of Theorem 14.1. �
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Appendix: Modular representations of high essential dimension

by Julia Pevtsova1 and Zinovy Reichstein

Let k be a field of characteristic p, G be a finite group containing a rank 2 elementary
abelian subgroup E ' (Z/pZ)2. Theorem 14.1 asserts that for every integer n there exists
a field extension Kn/k and a representation ρn : G → GLdn(Kn) such that edk(ρn) > n.
However, the proof of Theorem 14.1 in Section 14 does not tell us how to construct ρn or
what dn = dim(ρn) may be in terms of n. The purpose of this appendix is to prove the
following constructive version of Theorem 14.1.

Theorem A.5. Let k be a field of characteristic p, and G be a finite group. Suppose G
contains an elementary abelian subgroup E ' (Z/pZ)2 of rank 2, and let W := WG(E) =
NG(E)/CG(E) be the Weyl group of E in G. Set Kn := k(a1, . . . , an), where a1, . . . , an
are independent variables. Then for every integer n > 1 there exists a representation
ρn : G→ GLdn(Kn) of dimension dn = dim(ρn) 6 n|G||W |/p such that edk(ρn) = n.

1partially supported by the NSF grant DMS-0953011.
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The approach taken in the previous section is to use the support variety of a G-
representation ρ to bound ed(ρ) from below. Here we will first restrict ρ to E, then
use the support variety of ρ|E to bound ed(ρ) from below. Support varieties for E-
representations admit an alternative description as rank varieties, due to Carlson [9] (see
also [2, Section 5.8]). This makes them more amenable to explicit computations. In par-
ticular, in the course of proving Theorem A.5 we will construct an explicit representation
ρn with ed(ρn) > n and dim(ρn) 6 n|G||W |/p.

We begin by noting that H•(E, k) is a polynomial ring in two variables over k; hence,
Proj(H•(E, k)) = P1. For K/k a field extension, the support variety Supp(ρ) of a repre-
sentation ρ : E → GLn(K) is thus a K-subvariety of P1. The Weyl group W of E in G
naturally acts on E by conjugation; this induces a W -action on H•(E, k) and thus on P1.
If ρ can be lifted to a K-representation of G, then Supp(ρ) is easily seen to be invariant
under the action of W on P1

K .
Let SubP1,W : Fieldsk → Sets be a functor, given by

SubP1,W (K) := {closed W -invariant subvarieties of P1
K}.

Here subvarieties of P1
K are required to be reduced but not necessarily irreducible, as in

Section 14. Let

SuppE : RepG,k → SubP1,W

be the morphism of functors which associates to a representation ρ : G → GLn(K) the
support variety Supp(ρ|E) ⊂ P1

K . One can show that SuppE : RepG,k → SubP1,W is
surjective, but we will not do that here. For the purpose of proving Theorem 14.1 the
following variant of Carlson’s realization theorem [10] for W -invariant subvarieties of P1

will suffice.

Proposition A.6. Let K be an algebraically closed field extension of k. Let X1, . . . , Xm

be distinct K-points of P1 such that their union X = X1∪ . . . ∪Xm is W -invariant. Then
there exists a K[G]-module M such that dimK(M) = m|G|/p and SuppE(M) = X.

Let g1, g2 be group generators of E. For any point x = [x1 : x2] on P1
K , consider the

element

αx = x1(g1 − 1) + x2(g2 − 1) + 1

in the group algebra K[E]. Since αpx = 1, the element αx generates a cyclic subgroup of
K[E], commonly referred to as the “cyclic shifted subgroup” corresponding to the point
x (see [9, 2.11]). We denote by K[αx] the subalgebra of K[E] generated by αx. By
construction, K[αx] ' K[Z/pZ] ' K[t]/(tp).

Let k ⊂ K ⊂ L be field extensions, and M be a K[E]-module. An L-point x = [x1 : x2]
of P1 belongs to the rank variety SuppE(M) (defined over K) if and only if the restriction
(M ⊗K L)↓L[αx] is not a free L[αx]-module (see [2, II.5.8]). If M is finite-dimensional and

K is algebraically closed then it suffices to check the K-points x = [x1 : x2] ∈ P1
K to

determine the rank variety of M . We also note that by [9, Lemma 6.4] this description of
the rank variety is independent of the choice of generators of E.

The following lemma is a very special case of [31, Prop. 4.1]. For the reader’s conve-
nience we supply a direct proof.
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Lemma A.7. Let K be an algebraically closed field, and let x = [x1 : x2] ∈ P1 be a
K-point. Let M be a (finite dimensional) K[αx]-module. Then

SuppE(Ind
K[E]
K[αx] M) =

{
∅, if M is free

x, otherwise,

where Ind
K[E]
K[αx] M = K[E]⊗K[αx] M is the (tensor) induction of M from K[αx] to K[E].

Proof. Since rank varieties distribute over direct sums,

(A.8) SuppE(M1 ⊕M2) = SuppE(M1) ∪ SuppE(M2),

it suffices to prove the lemma for each of the p indecomposable K[αx]-modules.

If M is a free K[αx]-module, then the induced module Ind
K[E]
K[αx] M is free which implies

that the rank variety is empty. Hence, it suffices to prove the lemma for the remaining p−1
indecomposable K[αx]-modules. After a linear substitution of generators {g1 − 1, g2 − 1}
of the augmentation ideal of the group algebra K[E] we may assume that x = [1 : 0].
Call the new generators of the augmentation ideal s and t, so that K[E] ∼= K[s, t]/(sp, tp).
The list of representatives of isomorphism classes of non-free indecomposable K[s]/(sp)-
modules is {K,K[s]/(s2), . . . , K[s]/(sp−1)}. Hence, the lemma is reduced to the following
statement. Consider a truncated polynomial algebra K[s, t]/(sp, tp) acting on

Ind
K[E]
K[s]/(sp) K[s]/(sn) = K[s, t]/(sp, tp)⊗K[s]/sp K[s]/(sn) ∼= K[t, s]/(tp, sn) ,

1 6 n 6 p− 1, via the obvious projection map. Then the restriction of K[t, s]/(tp, sn) to
the subalgebra of K[s, t]/(sp, tp) generated by as+ bt is free if and only if b 6= 0. Indeed,

if b 6= 0, then K[t, s]/(tp, sn) ∼= K[as+ bt, s]/((as+ bt)p, sn) ∼=
n−1⊕
i=0

siK[as+ bt]/(as+ bt)p

is a free K[as + bt]/(as + bt)p-module. If b = 0, then (as)p−1 = (as + bt)p−1 annihilates
K[t, s]/(tp, sn) since n < p. Therefore, K[t, s]/(tp, sn) is not a free K[as + bt]/(as + bt)p-
module. �

Proof of Proposition A.6. We claim that M := IndGEMX has the desired properties, where

MX :=
m⊕
i=1

Ind
K[E]
K[αXi ]

K. Clearly, dim(MX) = mp and, thus,

dim(M) =
|G|
p2
· dim(MX) =

m|G|
p

.

It remains to show that SuppE(M) = X. We will use the double coset formula

ResGE IndGEMX =
⊕

g∈E\G/E

IndEE∩Eg ResE
g

E∩Eg gMX .

By (A.8) we only need to compute the variety for each summand in the double coset
formula. Since MX is a direct summand of ResGE IndGEMX , we have

X = SuppE(MX) ⊂ SuppE(IndGEMX) = SuppE(M) .

We need to prove the opposite inclusion, SuppE(IndEE∩Eg ResE
g

E∩Eg gMXi) ⊂ X, for each

MXi = Ind
K[E]
K[αXi ]

K. Consider three cases:



26 NIKITA A. KARPENKO AND ZINOVY REICHSTEIN

(a) E ∩ Eg = E, that is, g ∈ NG(E). Then the corresponding summand in the double
coset formula becomes gMX , the module MX twisted by g. We have SuppE(gMX) =
g SuppE(MX) = gX = X, since X is W -invariant.

(b) E ∩ Eg = ∅. Then the corresponding summand is induced from the trivial group
and, hence, is free and has empty rank variety.

(c) E ∩ Eg = 〈σ〉, a cyclic subgroup of E. Then σ ∈ Eg = gEg−1 and, hence,
g−1σg ∈ E. If g−1σg 6∈ 〈σ〉, then {σ, g−1σg} generate E which implies that g ∈ NG(E)
and contradicts the assumption E ∩ Eg 6= E. Therefore, g−1σg ∈ 〈σ〉. By Lemma A.7,

SuppE(Ind
K[E]
K〈σ〉 gMXi) contains at most one point: the point corresponding to the subgroup

〈σ〉. Moreover, this variety is non-empty only if gMXi is not free as 〈σ〉-module. By the
definition of the action on the twisted module gMXi , this happens if and only if MXi is not
free as 〈g−1σg〉-module. Since 〈g−1σg〉 = 〈σ〉, this is equivalent to the restriction of MXi

to 〈σ〉 not being free. Hence, SuppE(Ind
K[E]
K〈σ〉 gMXi) ⊂ SuppE(MXi) ⊂ X, as desired. �

Proof of Theorem A.5. For i = 1, . . . , n, let Xi = (1 : ai) be a Kn-point of P1, and Y [n]
be the union of the W -orbits of X1, . . . , Xn. We claim that ed(Y [n]) = n, where we view
Y [n] as an object in SubP1,W (Kn), where Kn be the algebraic closure of Kn.

Suppose Y [n] descends to a subfield k ⊂ F ⊂ Kn. Then by Lemma 14.4, a1, . . . , an
are algebraic over F . In other words, Kn/F is an algebraic extension or, equivalently,
trdegk(F ) = n. This shows that ed(Y [n]) = n, as claimed.

By Proposition A.6, there exists a representation ρn : G→ GLdn(Kn) with SuppE(ρn) =
Y [n]. Thus edk(ρn) > edk(Y [n]) > n. Moreover, since ρn is defined over Kn and
trdegk(Kn) = n, we have edk(ρn) 6 n. Thus edk(ρn) = n, as desired.

Finally, since Y [n] is a union of at most n · |W | Kn-points of P1, Proposition A.6 also
tells us that dn = dim(ρn) 6 n|W ||G|/p. �

Many natural questions about essential dimension of modular representations remain
open. We will conclude this appendix by stating some of these questions below. In what
follows we will assume that k is a field of characteristic p > 0, G is a finite group, and
E ' (Z/pZ)2 is a subgroup of G. We will allow K to vary over field extensions of k and
ρ to vary over finite-dimensional representation of G defined over K.

(1) Fix an integer d > 1. What is the maximal value of edk(ρ), where the maximum is
taken over all representations ρ of G of dimension 6 d?

(2) Let S := Proj(H•(G, k)), as in Section 14, and fix a closed subvariety X ⊂ S
defined over k. What is the maximal value of edk(ρ), where ρ is subject to the condition
Supp(ρ) = XK?

(3) Let W := WG(E) = NG(E)/CG(E) be the Weyl group of E in G and X be a
W -equivariant subvariety of P1 := Proj(H•(E, k)) defined over k. What is the maximal
value of edk(ρ), where ρ is subject to the condition SuppE(ρ) = XK?

(4) What are the maximal values of edk(ρ)−edk(Supp(ρ)) and edk(ρ)−edk(SuppE(ρ))?
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[6] Borel, A., and Serre, J.-P. Théorèmes de finitude en cohomologie galoisienne. Comment. Math.

Helv. 39 (1964), 111–164.
[7] Brauer, R. Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substi-

tutionen. Math. Z. 31, 1 (1930), 733–747.
[8] Brosnan, P., Reichstein, Z., and Vistoli, A. Essential dimension of moduli of curves and

other algebraic stacks. J. Eur. Math. Soc. (JEMS) 13, 4 (2011), 1079–1112. With an appendix by
Najmuddin Fakhruddin.

[9] Carlson, J. F. The varieties and the cohomology ring of a module. J. Algebra 85, 1 (1983), 104–143.
[10] Carlson, J. F. The variety of an indecomposable module is connected. Invent. Math. 77, 2 (1984),

291–299.
[11] Chernousov, V., Gille, S., and Merkurjev, A. Motivic decomposition of isotropic projective

homogeneous varieties. Duke Math. J. 126, 1 (2005), 137–159.
[12] Chernousov, V., and Merkurjev, A. Motivic decomposition of projective homogeneous varieties

and the Krull-Schmidt theorem. Transform. Groups 11, 3 (2006), 371–386.
[13] Curtis, C. W., and Reiner, I. Methods of representation theory. Vol. I. John Wiley & Sons, Inc.,

New York, 1981. With applications to finite groups and orders, Pure and Applied Mathematics, A
Wiley-Interscience Publication.

[14] Curtis, C. W., and Reiner, I. Methods of representation theory. Vol. II. Pure and Applied
Mathematics (New York). John Wiley & Sons, Inc., New York, 1987. With applications to finite
groups and orders, A Wiley-Interscience Publication.

[15] Elman, R., Karpenko, N., and Merkurjev, A. The algebraic and geometric theory of quadratic
forms, vol. 56 of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2008.

[16] Karpenko, N. A. Cohomology of relative cellular spaces and of isotropic flag varieties. Algebra i
Analiz 12, 1 (2000), 3–69.

[17] Karpenko, N. A. Weil transfer of algebraic cycles. Indag. Math. (N.S.) 11, 1 (2000), 73–86.
[18] Karpenko, N. A. Canonical dimension. In Proceedings of the International Congress of Mathe-

maticians. Volume II (New Delhi, 2010), Hindustan Book Agency, pp. 146–161.
[19] Karpenko, N. A. Upper motives of outer algebraic groups. In Quadratic forms, linear algebraic

groups, and cohomology, vol. 18 of Dev. Math. Springer, New York, 2010, pp. 249–258.
[20] Karpenko, N. A. Incompressibility of quadratic Weil transfer of generalized Severi-Brauer varieties.

J. Inst. Math. Jussieu 11, 1 (2012), 119–131.
[21] Karpenko, N. A. Sufficiently generic orthogonal Grassmannians. J. Algebra 372 (2012), 365–375.
[22] Karpenko, N. A. Upper motives of algebraic groups and incompressibility of Severi-Brauer vari-

eties. J. Reine Angew. Math. 677 (2013), 179–198.
[23] Karpenko, N. A. Incompressibility of products of Weil transfers of generalized Severi-Brauer

varieties. Linear Algebraic Groups and Related Structures preprint server 564, 2014.
[24] Karpenko, N. A., and Merkurjev, A. S. Canonical p-dimension of algebraic groups. Adv. Math.

205, 2 (2006), 410–433.
[25] Karpenko, N. A., and Merkurjev, A. S. Essential dimension of finite p-groups. Invent. Math.

172, 3 (2008), 491–508.

[26] Karpenko, N. A., and Merkurjev, A. S. On standard norm varieties. Ann. Sci. Éc. Norm.
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