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Let R be a commutative Noetherian ring, and consider the derived category of
ModR, T = D(R). The compact objects of T form the bounded derived category
of perfect complex over R, T c = Dperf(R). For a complex M in D(R), and a prime
p ∈ SpecR, we can consider the localization Mp of M at p and the specialization
M⊗L

Rk(p) at p, invariants which provide “local information” about the complex M
at the point p. One invariant we can use this local information for is the support.

Definition 1.
suppM = {p ∈ SpecR |M ⊗L

R k() 6∼= 0}

This geometric invariant is faithful in the sense that it detects vanishing of the
object M ; it also behaves nicely with respect to the standard operations in D(R):
completing triangles, shifts, direct sums and tensor products.

One result in commutative algebra which motivates some of our considerations
in modular representation theory is Neeman’s classification of colocalising subcat-
egories in D(R) [16]: namely, there is one-to-one correspondence{

Colocalising
subcategories of D(R)

}
∼

{
subsets of
SpecR

}
Combined with Neeman’s classification of localizing subcategories, this gives

one-to-one correspondence{
Colocalising

subcategories of D(R)

}
∼

{
Localising

subcategories of D(R)

}
given by taking a subcategory C to C⊥

Finally, restricted to Dperf(R) this gives one-to-one correspondence between the
thick subcategories of Dperf(R) and specialization closed subsets of SpecR. The
latter can be expressed in the language of triangular geometry introduced by P.
Balmer [1]:

(1) SpecBal D
perf(R) ∼= SpecR

where the left hand side is the Balmer spectrum of the tensor triangulated category
Dperf(R).

We see that for schemes the notion of a “point” can be realized on the level of
categories: namely, a scheme theoretic point SpecK → SpecR corresponds to a
ring map R → K which gives rise to a triangulated functor which is the special-
ization: Dperf R → Dperf K. Finally, applying the Balmer spectrum, we get back
the original point SpecK → SpecR. Hence, the category Dperf K together with
the triangulated functor Dperf R → Dperf K “realizes” the point on the spectrum
on the categorical level. It is this construction that we would like to mimic in
modular representation theory.
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Now let k be an algebraically closed field of positive characteristic, and let G be
a finite group scheme defined over k. The coordinate algebra of G, k[G], is a finite
dimensional commutative Hopf algebra. We denote its linear dual, Homk(k[G], k),
by kG. This is a finite dimensional cocommutative Hopf algebra whose category
of modules is equivalent to the category of rational representations of G over k.
Hence, we may identify representations of G with kG-modules; for the rest of
this note we shall refer to representations of G as G-modules. Examples of finite
group schemes include finite groups, restricted Lie algebras and Frobenius kernels
of algebraic groups.

The tensor triangulated category associated to G is the stable module category
StModG. Recall that the objects of StModG are G-modules, whereas the Hom-
sets are defined as follows:

Hom(M,N) :=
HomG(M,N)

PHomG(M,N)

with PHomG(M,N) being the subset of all G-maps between M and N which factor
through a projective G-module. The category StModG is a compactly generated
tensor triangulated category with the compact objects being the finite dimensional
G-modules. This subcategory is denoted stmodG.

Let R = H∗(G, k) be the cohomology algebra of G. It is finitely generated as a
k-algebra by a celebrated theorem of Friedlander and Suslin [15]. We have R acting
on Hom∗(M,N) =

⊕
n∈Z

Homn(M,N) via Yoneda product. The question motivated

by the classical construction in commutative algebra is then the following:

Let M be a G-module, and p ∈ ProjR be a homogenenous prime ideal strictly
contained in the irrelevant ideal. How can we “specialize” or “localize” M at p?

We give two answers to this question: one involves a representation theoretic
construction and the notion of a π-point and the other uses the local cohomology
functors introduced by Benson, Iyengar and Krause.

Definition 2 ([13], [14]). A π-point of G, defined over a field extension K of k,
is a flat map of K-algebras

α : K[t]/(tp)→ KGK

which factors through the group algebra of a unipotent abelian subgroup scheme C
of GK .

Given a π-point α : K[t]/(tp) → KGK , we can construct a point p = Ψ(α) ∈
ProjR as follows. Let H∗(α) be the map on cohomology induced by α:

H∗(α) : H∗(G, k)
−⊗kK // H∗(G,K)

α∗
// H∗(K[t]/tp,K) ,

and define Ψ(α) :=
√
KerH∗(α). This determines a surjective correspondence:

Theorem 3 ([13], [14]). For any p ∈ ProjR there exists a π-point α of G such
that

Ψ(α) = p.
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In this way, we can “realize” points on ProjR as π-points. This, in turn, gives
a way to specialize G-modules at prime ideals on SpecR and to define supports
(and cosupports).

For M a G-module, and p ∈ ProjR a homogenenous prime ideal, we consider
a π-point αp such that Ψ(αp) = p. Then the pull-back α∗p(K ⊗k M) which is a
K[t]/tp-module plays the role of a “specialization” of M at p.

Definition 4. The π-support of M is the subset of ProjH∗(G, k) defined by

π- supp(M) := {p ∈ ProjH∗(G, k) | α∗p(K ⊗kM) is not projective}.

The π-cosupport of M is the subset of ProjH∗(G, k) defined by

π- cosupp(M) := {p ∈ ProjH∗(G, k) | α∗p(Homk(K,M)) is not projective}.

It was proved in [13] that these invariants are well-defined (that is, independent
of the choice of αp corresponding to p.

The usefulness of π-support and π-cosupport is postulated in the following
theorem.

Theorem 5. i [Detection] Let M be a G-module. Then π- suppM = ∅ if
and only if M is a projective G-module.

ii [Tensor and Hom formulae] Let M and N be G-modules. Then there are
equalities

π- supp(M ⊗k N) = π- supp(M) ∩ π- supp(N),

π- cosupp(Homk(M,N)) = π- supp(M) ∩ π- cosupp(N).

The detection property is an ultimate generalization of the famous Dade’s
lemma [12]. It builds on the work of many authors, see [3], [2], [17], [18]. In
this generality it is proved in [7].

From the triangular geometry point of view, a π-point α gives rise to a restriction
functor

StModG→ StModK[t]/tp

which, once we apply Balmer’s Spec construction, realizes the corresponding point
Ψ(α) ∈ SpecH∗(G, k).

A different approach to localization is given by Benson-Iyngar-Krause local
cohomology functors. To any homogeneous prime ideal p ∈ ProjR one associates
a universal local cohomology module Γp (see [4]). Then the cohomological support
and cosupport are defined as follows:

Definition 6 ([4], [5]).

supp(M) := {p ∈ ProjH∗(G, k) | Γp(k)⊗kM is not projective}.

cosupp(M) := {p ∈ ProjH∗(G, k) | Homk(Γp(k),M) is not projective}.

One important property of universal local cohomology modules developed in
[7], [9] is that they satisfy the “reduction to closed points principle”:
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Theorem 7. Let p be a point on ProjH∗(G, k), and let d = dimH∗(G, k)/p.
There exists a field extension K/k of transcendence degree d, and a maximal ideal
m ∈ ProjH∗(GK ,K) lying over p, such that there is an isomorphism

Γp
∼= ResGK

G (ΓmK ⊗K//b)

Here, K//b is a Koszul object associated to the prime ideal p.
The point of this theorem is that it allows to reduce questions at prime ideal

p ∈ ProjR to closed point, that is, to maximal homogeneous prime ideals m ∈
SpecRK where they become more approachable.

Corollary 8. In the notation of the theorem, the restriction functor

Γm(StModGK)→ Γp(StModG)

is full and dense.

The Detection theorem 5 is the key step in identifying the two support theories:
the π- supp and the local cohomology support of Benson-Iyengar-Krause. That
unified support theory, combined with the powerful reduction to closed points
principle and one more new construction, that of a point module associated to a
π-point α, allows us to prove the ultimate analogue of Neeman’s classification for
finite groups schemes:

Theorem 9 ([8]). For any finite group scheme G, there is a one-to-one corre-
spondence {

Colocalizing Hom-closed
subcategories of StModG

}
∼

{
subsets of

ProjH∗(G, k)

}
given by cosupport.

This classification implies in the usual manner the classification for localising
tensor ideal subcategories in StModG and the tensor ideal subcategories in stmodG
but it will be misleading given the historical development of the subject to state
these classifications as corollaries.

Another application of the local techniques we develop, including the reduction
to closed points principle, is the local Serre duality for the category Γp(StModG).
In the theorem below, Ip is the universal injective cohomology object in StModG
introduced in [10], and δG is the one dimensional modular character of G which
in a sense measures how far kG is from being symmetric. The functor ΩdδG ⊗k −
plays the role of the local Serre functor in the sense of Bondal-Kapranov [11]

Theorem 10 ([9]). Let C = (Γp StModG)c be the category of compact objects in
Γp StModG, and let M,N ∈ C. There is a natural isomorphism:

HomR(Hom∗C(M,N), Ip) ' HomC(N,Ω
dδG ⊗M)

where d = dimR/p.
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