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Abstract. We initiate the investigation of the projective variety E(r, g) of

elementary subalgebras of dimension r of a (p-restricted) Lie algebra g for
some r ≥ 1 and demonstrate that this variety encodes considerable information

about the representations of g. For various choices of g and r, we identify

the geometric structure of E(r, g). We show that special classes of (restricted)
representations of g lead to algebraic vector bundles on E(r, g). For g = Lie(G)

the Lie algebra of an algebraic group G, rational representations of G enable

us to realize familiar algebraic vector bundles on G-orbits of E(r, g).
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0. Introduction

We say that a Lie subalgebra ε ⊂ g of a p-restricted Lie algebra g over a field
k of characteristic p is elementary if it is abelian with trivial p-restriction. Thus,
if ε has dimension r, then ε ' g⊕ra where ga is the one-dimensional Lie algebra
of the additive group Ga. This paper is dedicated to the study of the projective
variety E(r, g) of elementary subalgebras of g for some positive integer r and its
relationship to the representation theory of g.

For r = 1, E(1, g) is the projectivization of the p-nilpotent cone Np(g); more
generally, E(r, g) is the orbit space under the evident GLr-action on the variety
of r-tuples of commuting, linearly independent, p-nilpotent elements of g. Our
investigation of E(r, g) and its close connections with the representation theory of
g can be traced back through the work of many authors to the fundamental papers
of Daniel Quillen who established the important geometric role that elementary
abelian p-subgroups play in the cohomology theory of finite groups [Q72].
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We have been led to the investigation of E(r, g) through considerations of co-
homology and modular representations of finite group schemes. Recall that the
structure of a restricted representation of g on a k vector space is equivalent to the
structure of a module for the restricted enveloping algebra u(g) of g (a cocommuta-
tive Hopf algebra over k of dimension pdim(g)). A key precursor of this present work
is the identification of the spectrum of the cohomology algebra H∗(u(g), k) with the
p-nilpotent cone Np(g) achieved in [FP83], [Jan86], [AJ84], [SFB2]. It is inter-
esting to observe that the theory of cohomological support varieties for restricted
g-representations (i.e., u(g)-modules) as considered first in [FP86] has evolved into
the more geometric study of π-points as introduced by the second and third au-
thors in [FP07]. This latter work closed a historical loop, relating cohomological
considerations to earlier work on cyclic shifted subgroups as investigated by Everett
Dade [D78] and the first author [C83].

For r > 1 and g the Lie algebra of an algebraic group G, E(r, g) is closely
related to the spectrum of cohomology of the r-th Frobenius kernel G(r) of G (see
[SFB1] for classical simple groups G; [M02], [S12] for more general types). Work of
Alexander Premet concerning the variety of commuting, nilpotent pairs in g [P03]
gives considerable information about E(2, g). Much less is known for larger r’s,
although work in progress indicates the usefulness of considering the representation
theory of g when investigating the topology of E(r, g).

Although we postpone consideration of Lie algebras over fields of characteristic
0, we remark that much of the formalism of Sections 1, 3, 5, and 6 and many of
the examples in Sections 2 and 6 are valid (and often easier) in characteristic 0.
On the other hand, some of our results and examples, particularly in Section 4 and
Section 7, require that k be of positive characteristic.

We consider numerous examples of restricted Lie algebras g in Section 1, and
give some explicit computations of E(r, g). Influenced by the role of maximal ele-
mentary abelian p-subgroups in the study of the cohomology of finite groups, we
are especially interested in examples of E(r, g) considered in Section 2 for which r
is maximal among the dimensions of elementary subalgebras of g. For simple Lie
algebras over a field of characteristic 0, Anatoly Malcev determined this maximal
dimension [Mal45] which is itself an interesting invariant of g. Our computations
verify that E(n2, gl2n) is isomorphic to the Grassmann variety of n planes in an 2n-

dimensional k-vector space and E
(

(n+1)n
2 , sp2n

)
is isomorphic to the Lagrangian

Grassmannian of isotropic n-planes in a 2n-dimensional symplectic vector space.
More generally, some computations are possible even for “non-classical” restricted
Lie algebras not arising from algebraic groups.

We offer several explicit motivations for considering E(r, g) in addition to the
fact that these projective varieties are of intrinsic interest. These motivations are
pursued in Sections 3 through 7 where (restricted) representations of g come to the
fore.

• The varieties E(r, g) are the natural ambient varieties in which to define gen-
eralized support varieties for restricted representations of g (as in [FP10]).

• Coherent sheaves on E(r, g) are naturally associated to arbitrary (restricted)
representations of g.
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• For certain representations of g with “constant properties”, the associated
coherent sheaves are algebraic vector bundles on E(r, g). The classes of such special
representations merit further study. They generalize modules of constant Jordan
type and constant rank introduced in [CFP08], [FP10] and investigated in a recent
series of papers by several authors (see, for example, [Ba11], [B10], [Ben2], [BP12],
[CF09], [CFS11], [F09], and others).

• Since E(r, g) is a projective variety with interesting geometry, the explicit
construction of algebraic vector bundles on E(r, g) from representations of g should
offer intriguing new examples.

• Calculations postponed to a forthcoming paper demonstrate how the inves-
tigation of the Zariski topology on E(r, g) can be informed by the representation
theory of g.

The isomorphism type of the restriction ε∗M of a u(g)-module M to an elemen-
tary subalgebra ε of dimension 1 is given by its Jordan type, a partition of the
dimension of M . On the other hand, the classification of indecomposable mod-
ules of an elementary subalgebra of dimension r > 1 is a wild problem (except
in the special case in which r = 2 = p), so that the isomorphism types of ε∗M
for ε ∈ E(r, g) do not form convenient invariants of a u(g)-module M . Following
the approach undertaken in [CFP12], we consider the dimensions of the radicals

and socles of such restrictions, dim Radj(ε∗M) and dim Socj(ε∗M), for ε ∈ E(r, g)
and any j with 1 ≤ j ≤ (p − 1)r. As we establish in Section 3, these dimensions
give upper/lower semi-continuous functions on E(r, g). In particular, they lead to
“generalized rank varieties” refining those introduced in [FP10]. We achieve some
computations of these generalized rank varieties E(r, g)M for u(g)-modules M which
are either Lζ modules or induced modules.

One outgrowth of the authors’ interpretation of cohomological support varieties
in terms of π-points (as in [FP07]) is the identification of the interesting classes of
modules of constant Jordan type and constant j-rank for 1 ≤ j < p (see [CFP08]).
As already seen in [CFP12], this has a natural analogue in the context of elementary
subalgebras of dimension r > 1. In Section 4, we give examples of u(g)-modules
of constant (r, j)-radical rank and of constant (r, j)-socle rank, typically adapting
constructions for modules of constant Jordan type. We anticipate that the inves-
tigation of such modules which are not equipped with large groups of symmetries
may provide algebraic vector bundles with interesting properties.

In Section 5, we consider locally closed subvarieties X ⊂ E(r, g). We associate
to any u(g)-module M various coherent sheaves on X: for each 1 ≤ j ≤ (p − 1)r,
we construct image and kernel sheaves Imj,X(M) and Kerj,X(M). These coherent
sheaves are presented in terms of local data in Theorem 5.8 and shown in Theorem
5.18 to be equivalent to sheaves arising from equivariant descent. The fibers of
these sheaves are related in Proposition 5.10 to the radicals and socles of ε∗M for
ε ∈ E(r, g). We use the notation Imj(M) and Kerj(M) to denote Imj,X(M) and
Kerj,X(M) in the special case in which X = E(r, g). If M has constant (r, j)-radical
rank for some j, then Imj(M) is an algebraic vector bundle on E(r, g); similarly, if
M has constant (r, j)-socle rank, then Kerj(M)) is an algebraic vector bundle.

If X = G · ε ⊂ E(r, g) is a G-orbit and M a rational G-module, these coherent
sheaves are G-equivariant algebraic vector bundles on X. For such a G-orbit X,
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we identify the vector bundle Imj,X(M) (respectively, Kerj,X(M)) in Theorem
6.5 as the vector bundle obtained by inducing to G the representation of H =
StabG(ε) ⊂ G on Radj(ε∗M) (respectively, Socj(ε∗M)). Using this identification
and the examples discussed in earlier sections, we realize many familiar vector
bundles as image and kernel bundles associated to rational G-modules.

The last Section 7 is devoted to the vector bundles which arise from the semi-
direct product of an algebraic group H with a vector group associated to a ra-
tional representation W of H. We consider image and kernel bundles for (non-
rational) representations of gW,H = Lie(W o H). Many of the examples of our
recent paper [CFP12] are reinterpreted and extended using this construction. As
we show in Theorem 7.9 and its corollary, all homogeneous bundles on H-orbits
inside Grass(r,W ) ⊂ E(r, gW,H) are realized as image bundles in this manner.

Throughout, k is an algebraically closed field of characteristic p > 0. All Lie
algebras g considered in this paper are assumed to be finite dimensional over k and
p-restricted; a Lie subalgebra h ⊂ g is assumed to be closed under p-restriction.
Without explicit mention to the contrary, all u(g)-modules are finite dimensional.

We wish to thank Steve Mitchell and Monty McGovern for very useful discussions
pertaining to the material in Section 2, and Burt Totaro for providing a reference
necessary for simplifying our geometric assumptions in Section 6.

1. The subvariety E(r, g) ⊂ Grass(r, g)

We begin by formulating the definition of E(r, g) of the variety of elementary
subalgebras of g and establishing the existence of a natural closed embedding of
E(r, g) into the projective variety Grass(r, g) of r-planes of the underlying vector
space of g. Once these preliminaries are complete, we introduce various examples
which reappear frequently.

Let V be an n-dimensional vector space and r < n a positive integer. We
consider the projective variety Grass(r, V ) of r-planes of V . We choose a basis
for V, {v1, . . . , vn}; a change of basis has the effect of changing the Plücker em-
bedding (1.1.2) by a linear automorphism of P(Λr(V )). We represent a choice
of basis {u1, . . . , ur} for an r-plane U ⊂ V by an n × r-matrix (ai,j), where
uj =

∑n
i=1 ai,jvi. Let Mo

n,r ⊂ Mn,r denote the open subvariety of the affine space
Mn,r ' Anr consisting of those n × r matrices of rank r and set p : Mo

n,r →
Grass(r, V ) equal to the map sending a rank r matrix (ai,j) to the r-plane spanned
by {

∑n
i=1 ai,1vi, . . . ,

∑n
i=1 ai,rvi}.

We summarize a few useful, well known facts about Grass(r, V ). Note that there
is a natural (left) action of GLr on Mn,r via multiplication by the inverse on the
right.

Proposition 1.1. For any subset Σ ⊂ {1, . . . , n} of cardinality r, set UΣ ⊂
Grass(r, V ) to be the subset of those r-planes U ⊂ V with a representing n × r
matrix AU whose r × r minor indexed by Σ (denoted by pΣ(AU )) is non-zero.

• p : Mo
n,r → Grass(r, V ) is a principal GLr-torsor, locally trivial in the

Zariski topology.
• Sending an r-plane U ∈ UΣ to the unique n × r-matrix AΣ

U whose Σ-
submatrix (i.e., the r × r-submatrix whose rows are those of AΣ

U indexed
by elements of Σ) is the identity determines a section of p over UΣ:

(1.1.1) sΣ : UΣ →Mo
r,n
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• The Plücker embedding

(1.1.2) p : Grass(r, V ) ↪→ P(Λr(V)), U 7→ [pΣ(AU )]

sending U ∈ UΣ to the
(
n
r

)
-tuple of r×r-minors of AΣ

U is a closed immersion
of algebraic varieties.
• UΣ ⊂ Grass(r, V ) is a Zariski open subset, the complement of the zero locus

of pΣ, and is isomorphic to Ar(n−r).

Elementary subalgebras as defined below play the central role in what follows.

Definition 1.2. An elementary subalgebra ε ⊂ g of dimension r is a Lie subalgebra
of dimension r which is commutative and has p-restriction equal to 0. We define

E(r, g) = {ε ⊂ g : ε elementary subalgebra of dimension r}

We denote by Np(g) ⊂ g the closed subvariety of p-nilpotent elements (i.e., x ∈ g

with x[p] = 0), by N r
p (g) ⊂ (Np(g))×r the variety of r-tuples of p-nilpotent, pairwise

commuting elements of g, and by N r
p (g)o ⊂ N r

p (g) the open subvariety of linearly
independent r-tuples of p-nilpotent, pairwise commuting elements of g.

Proposition 1.3. Let g be a Lie algebra of dimension n. Forgetting the Lie algebra
structure of g and viewing g as a vector space, we consider the projective variety
Grass(r, g) of r-planes of g for some r, 1 ≤ r ≤ n. There exists a natural cartesian
square

(1.3.1) N r
p (g)o

��

� � // Mn,r(g)o

p

��
E(r, g) �

� // Grass(r, g)

whose vertical maps are GLr-torsors locally trivial for the Zariski topology and
whose horizontal maps are closed immersions. In particular, E(r, g) has a natural
structure as a projective algebraic variety.

If G is a linear algebraic group with g = Lie(G), then E(r, g) ↪→ Grass(r, g) is
a G-stable embedding.

Proof. The horizontal maps of (1.3.1) are the evident inclusions, the left vertical
map is the restriction of p. Clearly, (1.3.1) is cartesian; in particular, N r

p (g)o ⊂Mo
n,r

is stable under the action of GLr.
To prove that E(r, g) ⊂ Grassr(g) is closed, it suffices to verify for each Σ that

(E(r, g) ∩ UΣ) ⊂ UΣ is a closed embedding. The restriction of (1.3.1) above UΣ

takes the form

(1.3.2) N r
p (g)o ∩ p−1(UΣ)

��

// p−1(UΣ)

p

��

∼ // UΣ ×GLr

pr

��
E(r, g) ∩ UΣ

// UΣ UΣ

Consequently, to prove that E(r, g) ⊂ Grassr(g) is closed and that N r
p (g)o →

E(r, g) is a GLr-torsor which is locally trivial for the Zariski topology it suffices to
prove that N r

p (g)o ⊂Mo
n,r is closed.

It is clear that N r
p (g) ⊂ Mn,r is a closed subvariety since it is defined by the

vanishing of the Lie bracket and the p-operator (−)[p] both of which can be expressed
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as polynomial equations on the matrix coefficients. Hence, N r
p (g)o = N r

p (g)∩Mo
n,r

is closed in Mo
n,r.

If g = Lie(G), then the (diagonal) adjoint action of G on n×r-matrices g⊕r sends
a matrix whose columns pair-wise commute and which satisfies the condition that
(−)[p] vanishes on these columns to another matrix satisfying the same conditions
(since Ad : G → Aut(g) preserves both the Lie bracket and the pth-power). Thus,
E(r, g) is G-stable. �

Remark 1.4. Let V be a k-vector space of dimension n. Consider V ≡ SpecS∗(V #) '
G×na , the vector group on the (based) vector space V . Then Lie(V) ' g⊕na and we
have an isomorphism of algebras

u(LieV) ' u(g⊕na ) ' k[t1, . . . , tn]/(tp1, . . . , t
p
n).

Let E = (Z/p)×n be an elementary abelian p-group of rank n and choose an em-
bedding of V into the radical Rad(kE) of the group algebra of E such that the
composition with the projection to Rad(kE)/Rad2(kE) is an isomorphism. This
choice determines an isomorphism

u(Lie(V))
∼→ kE.

With this identification, the investigations of [CFP12] will be seen to be a special
case of considerations of this paper.

Example 1.5. For any (finite dimensional, p-restricted) Lie algebra,

E(1, g) ' Proj k[Np(g)]

as shown in [SFB2], where k[Np(g)] is the (graded) coordinate algebra of the p-null
cone of g. If G is reductive with g = Lie(G) and if p is good for G, then Np(g) is
irreducible and equals the G-orbit G·u of the nilpotent radical of a specific parabolic
subalgebra p ⊂ g (see [NPV02, 6.3.1]).

Example 1.6. Let G be a connected reductive algebraic group, let g = LieG,
and assume that p is good for G. As shown by A. Premet in [P03], N 2

p (g)
is equidimensional with irreducible components enumerated by the distinguished
nilpotent orbits of g; in particular, N 2

p (gln) is irreducible. This easily implies that
E(2, g) is an equidimensional variety, irreducible in the special case g = gln. Since
dimE(2, g) = dimN 2

p (g) − dim GL2, dimE(2, g) = dim[G,G] − 4. In particular,

E(2, gln) has dimension n2 − 5 for p > n.

Example 1.7. Let u3 ⊂ gl3 denote the Lie subalgebra of strictly upper triangular
matrices and take r = 2. Then a 2-dimensional elementary Lie subalgebra ε ⊂ u3 is
spanned by E1,3 and another element X ∈ u3 not a scalar multiple of E1,3. We can
further normalize the basis of ε by subtracting a multiple of E1,3 from X, so that
X = a1,2E1,2 +a2,3E2,3. Thus, 2-dimensional elementary Lie subalgebras ε ⊂ u are
in parametrized by points 〈a1,2, a2,3〉 ∈ P1, so that E(2, u3) ' P1.

In this case, u3 is the Lie algebra of the unipotent radical of the Borel subgroup
B3 ⊂ GL3 of upper triangular matrices. With respect to the action of B3 on
E(2, u3), E(2, u3) is the union of an open dense orbit consisting of regular nilpotent
elements of the form a1,2E1,2 + a2,3E2,3, with a1,2 6= 0 6= a2,3; and two closed
orbits. The open orbit is isomorphic to the 1-dimensional torus Gm ⊂ P1 and the
two closed orbits are single points {0}, {∞}.
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Remark 1.8. The action of B3 on ε ∈ E(2, u3) is implicitly taken to be the restric-
tion of the adjoint action of GL3 on gl3 (which has the property that B3 stabilizes
u3). In the examples that follow, we consistently use the adjoint action of an alge-
braic group G on E(r, g) where g = Lie(G).

Example 1.9. We consider the algebraic group G = GLn and some r, 1 ≤ r < n.
Let ur,n−r ⊂ gln denote the Lie subalgebra of n × n matrices (ai,j) with ai,j = 0
unless 1 ≤ i ≤ r, r + 1 ≤ j ≤ n. Then ur,n−r ⊂ gln is an elementary subalgebra
of dimension r(n − r). The argument given in [MP87, §5] applies in our situation
to show that ur,n−r is a maximal elementary subalgebra (that is, not contained in
any other elementary subalgebra).

Let X ⊂ E(r(n− r), gln) denote the GLn-orbit of ur,n−r. Let Pr be the standard
parabolic subgroup of GLn defined by the equations ai,j = 0 for i > r, j ≤ n − r.
Since Pr is the stabilizer of ur,n−r under the adjoint action of GLn, X = G·ur,n−r '
GLn /Pr ' Grassn,r. Since X is projective, it is a closed GLn-stable subvariety of
E(r(n− r), gln).

We next give examples of restricted Lie algebras which are not the Lie algebras
of algebraic groups.

Example 1.10. Let φ : gl2n → k be a semi-linear map (so that φ(av) = apφ(v)),
and consider the extension of p-restricted Lie algebras, split as an extension of Lie
algebras (see [FP83, 3.11]):

(1.10.1) 0→ k → g̃l2n → gl2n → 0, (b, x)[p] = (φ(x), x[p]).

Then E(n2 + 1, g̃l2n) can be identified with the subvariety of Grass2n,n consisting
of those elementary subalgebras ε ⊂ gl2n of dimension n2 such that the restriction
of φ to ε is 0 (or, equivalently, such that ε is contained in the kernel of φ).

In Section 7, we shall see that the following semi-direct product construction
leads to many of the examples of algebraic vector bundles obtained in [CFP12].

Example 1.11. (1). Consider the general linear group GLn and let V be the
defining representation. Let V be the vector group associated to V as in Remark 1.4.
We set

(1.11.1) G1,n
def Vo GLn, g1,n

def
LieG1,n

Any subspace ε ⊂ V of dimension r < n can be considered as an elementary
subalgebra of g1,n. Moreover, the G1,n-orbit of ε ∈ E(r, g1,n) can be identified with
the Grassmannian Grass(r, V ) of all r-planes in V .

(2). More generally, let H be an algebraic group, W be a rational representation
of H, and W be the vector group associated to W . Let G ≡ W o H, and let
h = LieH. A subspace ε ⊂ W of dimension r < dimW can be viewed as an
elementary subalgebra of h. Moreover, the G-orbit of ε ∈ E(r, h) can be identified
with the H-orbit of ε in Grassr(W ).

We conclude this section by giving a straightforward way to obtain additional
computations from known computations of E(r, g). The proof is immediate.

Proposition 1.12. Let g1, g2, . . . , gs be finite dimensional p-restricted Lie algebras
and let g = g1 ⊕ · · · ⊕ gs. Then there is a natural morphism of projective varieties

(1.12.1) E(r1, g1)× · · · × E(rs, gs) → E(r, g), r =
∑

ri,



8 JON F. CARLSON, ERIC M. FRIEDLANDER, AND JULIA PEVTSOVA

sending (ε1 ⊂ g1, . . . , εs ⊂ gs) to ε1 ⊕ · · · ⊕ εs ⊂ g. Moreover, if ri is the maximum
of the dimensions of the elementary subalgebras of gi for each i, 1 ≤ i ≤ s, then this
morphism is an isomorphism.

Corollary 1.13. In the special case of Proposition 1.12 in which each gi ' sl2,
r1 = · · · = rs = 1, (1.12.1) specializes to

(P1)×r ' E(r, sl⊕r2 ).

Proof. This follows from the fact that E(1, sl2) = Proj k[N (sl2)] ' P1 (see, for
example, [FP11]). �

2. Elementary subalgebras of maximal dimension

In this section, we explicitly determine E(r, g) for several families of p-restricted
Lie algebras g and r the maximal dimension of an elementary subalgebra of g. In
Proposition 2.3 we establish that E(n, g) for an extraspecial Lie algebra of dimension
2n − 1 is the Lagrangian Grassmannian LGn−1,n−1. In Theorem 2.13, we get a
similar answer for the variety of elementary subalgebras of maximal dimension for
sp2n. Similarly, in Theorems 2.9 and 2.10 we identify these varieties for sln with
Grassmannians corresponding to maximal parabolics. In the last example of this
section we extend the calculation for the special linear Lie algebra to its maximal
parabolic. As an immediate application, we compute that E(r, g1,n) where g1,n is as
defined in Example 1.11(1) is the disjoint union of two Grassmannians of different
dimension for r = n(n+ 1)/2. We also establish some general - and well-known to
the experts - results on cominuscule parabolics that will be used in Section 6.

As the study of maximal abelian subalgebras in complex semi-simple Lie alge-
bras has a long history we feel that we owe the reader a few comments connecting
some of the existing literature to our own investigations in the modular case. The
dimensions of maximal abelian subalgebras of a complex simple Lie algebra are
known thanks to the classical work of Malcev [Mal45]. It appears that the general
linear case was first considered by Schur at the turn of last century [Sch05]. De-
termination of the varieties of abelian subalgebras of maximal dimension also has
a large footprint in the literature although we were unable to find a reference that
would pin down precisely the calculation of E(r, g). The work that possibly comes
closest to our interests is the one of Barry [B79] who considered a similar problem
in the context of Chevalley groups. It was pointed out to us by S. Mitchell that
the idea of the proof of Theorems 2.9, 2.10, and 2.13 is very similar to the one used
in [B79] for the Chevalley group case (and also present in [MP87] for the general
linear group case).

Definition 2.1. We call a restricted Lie algebra g extraspecial if the center z of g
is one-dimensional and g/z is an elementary Lie algebra.

Lemma 2.2. Let g be an extraspecial Lie algebra.

(1) The dimension of g is odd.
(2) There exists a basis

(2.2.1) {x1, . . . xn−1, y1, . . . yn−1, yn}
of g such that yn generates the one-dimensional center z of g and the fol-
lowing equations are satisfied for any i, j, 1 ≤ i, j ≤ n− 1:
(a) [xi, xj ] = [yi, yj ] = 0,
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(b) [xi, yj ] = δi,jyn.

Proof. Let ϕ : g→ g/z = W be the natural quotient map. Because W is commuta-
tive, the commutator algebra [g, g] is in z. Because g is not commutative, we have
that [g, g] = z.

Let yn be a generator of z, and fix the corresponding linear isomorphism z ' k.
Now we define a skew-symmetric bilinear form B(−,−) : W × W → z ' k by
B(x, y) = [σ(x), σ(y)], where σ : W → g is a k-linear right splitting of ϕ. It is
easy to check that this form is well defined (does not depend on the choice of the
splitting σ) and that it is bilinear and skew-symmetric. In addition, the form is
nondegenerate as otherwise the center of g would have dimension greater than one.
Hence, B defines a symplectic form on W . Therefore, W is even-dimensional and
can be written as W = X ⊕ Y , where X and Y are maximal isotropic subspace
with respect to the form B, and the pairing X×Y → k given by (x, y) 7→ B(x, y) is
nondegenerate. Moreover, we can find elements x1, . . . , xn−1, y1, . . . , yn1

of g such
that ϕ(x1), . . . , ϕ(xn−1) is a basis of X, ϕ(y1), . . . , ϕ(yn−1) is a basis of Y , and the
matrix for the bilinear form B with respect to these bases of X, Y has the standard
form

B =

(
0 In−1

−In−1 0

)
with In−1 being the identity matrix (see, for example, [Lam, ch.1]).

We have thus shown that dim g = dimW + 1 is odd, and that the basis
{x1, . . . , xn−1, y1, . . . , yn1 , yn} satisfies the required conditions.

�

We recall that a subspace L of a symplectic vector space W is said to be La-
grangian if L is an isotropic subspace (i.e., if the pairing of any two elements of L
is 0) of maximal dimension. Consequently, if dimW = 2n, then dimL = n. We
denote by LG(n,W ) the Lagrangian Grassmannian of W , the homogeneous space
parameterizing the Lagrangian subspaces of W . We note for future reference that
we have an isomorphism of varieties

LG(n,W ) ' Sp2n /Pαn

where Pαn is the unique standard cominuscule parabolic subgroup of Sp2n.

Proposition 2.3. Let g be an extraspecial restricted Lie algebra of dimension 2n−1
with trivial restriction map. Equip W = g/z with the symplectic form as in the proof
of Lemma 2.2.

(1) The maximal dimension of an elementary subalgebra of g is n.
(2) E(n, g) ' LG(n− 1,W ).

Proof. We adopt the notation of the proof of Lemma 2.2 with ϕ : g → W = g/z
being the projection map. Observe that if a subalgebra ε of g is elementary then ϕ(ε)
is an isotropic linear subspace of W . Since dimϕ(ε) + dimϕ(ε)⊥ = dimW (where
ϕ(ε)⊥ denotes the orthogonal complement with respect to the sympectic form) and
ϕ(ε) ⊂ ϕ(ε)⊥ since ϕ(ε) is isotropic, we get that dimϕ(ε) ≤ (dimW )/2 = n − 1,
and, consequently, dim ε ≤ n. Moreover, the equality holds if and only if ε/z is a
Lagrangian subspace of W . Hence, E(n, g) ' LG(n− 1,W ). �

Let G be a semi-simple algebraic group. We fix a maximal torus T and a subset
of simple roots ∆ = {α1, . . . , αn} inside the root system Φ, determining the Borel
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subgroup B and its unipotent radical U . We follow the convention in [Bur, ch.6] in
the numbering of simple roots.

Let g = LieG, h be the Cartan subalgebra, g = n− ⊕ h ⊕ n be the standard
triangular decomposition. Denote by xα the root vector corresponding to the root
α.

For a simple root α ∈ ∆, we denote by Pα, pα the corresponding standard
maximal parabolic subgroup and its Lie algebra. It is easy to see that the following
unipotent radicals of certain parabolics give examples of extraspecial Lie algebras
with trivial restriction maps.

Example 2.4. (1) Let g = sln+1 and assume that p > 2. Let p ⊂ g be a
standard parabolic subalgebra defined by the subset I = {α2, . . . , αn−1} of
simple roots, that is, p = h⊕

⊕
α∈Φ−I ∪Φ+

kxα, where ΦI is the root subsystem

of Φ generated by the subset of simple roots I. Then the unipotent radical
u =

⊕
α∈Φ+\Φ+

I

kxα of p is an extraspecial Lie algebra with trivial restriction

of dimension 2n−1. In matrix terms, this is the subalgebra of strictly upper
triangular matrices with non-zero entries in the top row or the rightmost
column.

(2) Let g = sp2n. Let p = pα1
be the maximal parabolic subalgebra corre-

sponding to the simple root α1. Let γn = 2α1 + . . . + 2αn−1 + αn be the
highest long root, and let further

(2.4.1) βi = α1 + α2 + . . .+ αi, γn−i = γn − βi.
Then uα1

, the nilpotent radical of pα1
is an extraspecial Lie algebra with

trivial restriction and the basis {xβ1 , . . . , xβn−1 , xγn−1 , . . . , xγ1 , xγn} satis-
fying the conditions of Lemma 2.2.

(3) Type E7. Let p = pα1
. Then the nilpotent radical of p is an extraspecial

Lie algebra with trivial restriction.

Definition 2.5. For α a simple root, the (maximal) parabolic Pα is called comi-
nuscule if α enters with coefficient at most 1 in any positive root.

The following is a complete list of cominuscule parabolics for simple groups (see,
for example, [BL00] or [RRS92]):

(1) Type An. Pα for any α ∈ {α1, . . . , αn}.
(2) Type Bn. Pα1

.
(3) Type Cn. Pαn (αn is the unique long simple root).
(4) Type Dn. Pα for α ∈ {α1, αn−1, αn}.
(5) Type E6. Pα for α ∈ {α1, α6}.
(6) Type E7. Pα7

.

For types E8, F4, G2 there are no cominuscule parabolics.

In the following lemma we remind the reader about the equivalent description of
cominuscule parabolics which also underscores their relevance to our consideration
of elementary subalgebras.

Lemma 2.6. [RRS92, Lemma 2.2] Let G be a simple algebraic group and P be a
proper standard parabolic subgroup. Assume p 6= 2 if Φ(G) has two different root
lengths. Then the nilpotent radical of p = Lie(P ) is abelian if and only if P is a
cominuscule parabolic.
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Corollary 2.7. Let Pα be a maximal parabolic subgroup of a simple algebraic group
G, and assume p 6= 2 for types B, C. The nilpotent radical u of p = Lie(P ) is an
elementary subalgebra if and only if Pα is cominuscule.

Proof. If u is elementary then, in particular, it is abelian and, hence, Pα is comi-
nuscule by Lemma 2.6. Assume Pα is cominuscule of type A,B,C or D and consider
the standard embedding on g in gln (such as in [Hum, Ch.1]). In each case, the
nilpotent radical u embeds as a block subalgebra with square zero, hence, it is
elementary. The groups E6, E7 can be done by inspection. �

Proposition 2.8. Let G be a simple algebraic group and P be a standard parabolic
subgroup of G. Let p = Lie(P ) and u be the nilpotent radical of p. Assume that
p 6= 2. Then

(1) [u, p] = u;
(2) If P is cominuscule then p = [u, g].

Proof. (1). Since u is a Lie ideal in p, we have [u, p] ⊂ u. By the structure theory for
classical Lie algebras, for any α ∈ Φ+ there exists hα ∈ h such that [hα, xα] = 2xα.
Hence, u = [h, u] ⊂ [p, u].

(2). Let P = Pαi , let I = ∆\{αi} and let ΦI ⊂ Φ be the root system correspond-
ing to the subset of simple roots I. We have g = p⊕u− where u− =

∑
β∈Φ+\Φ+

I

kx−β .

Note that Φ+\Φ+
I consists of all positive roots into which αi enters with coefficient

1. Let β ∈ Φ+\Φ+
I and let γ be any root. If β + γ is a root, then αi enters into

β + γ with coefficient 0 or 1. Therefore, xβ+γ 6∈ u−. Hence, [xβ , xγ ] ∈ p. Since xβ
for β ∈ Φ+\Φ+

I generate u, we conclude that [u, g] ⊂ p.

For the opposite inclusion, we first show that h ⊂ [u, g]. Let S ⊂ Φ+\Φ+
I be the

set of all positive roots of the form a1α1+. . .+anαn such that ai = 1 and aj ∈ {0, 1}
for all j 6= i. For any subset J ⊂ ∆ of simple roots such that the subgraph of the
Dynkin diagram corresponding to J is connected, we have that

∑
αj∈J

αj is a root

([Bur, VI.1.6, Cor. 3 of Prop. 19]). This easily implies that for any simple root
αj , j 6= i, we can find β1, β2 ∈ S such that β2 − β1 = αj . Hence, {β}β∈S generate
the integer root lattice ZΦ. Consider the simply laced case first (A, D, E). Since
the bijection α → α∨ is linear in this case, we conclude that {β∨}β∈S generate
the integer coroot lattice ZΦ∨. This, in turn, implies that {hβ}β∈S generate the
integer form Lie(TZ) of the Lie algebra Lie(T ) = h over Z, and, therefore, generate
h = Lie(TZ)⊗Z k over k (see [Jan, II.I.11]).

In the non-simply laced case (B or C), the relation β1−β2 = αj leads to c1β
∨
1 −

c2β
∨
2 = c3α

∨
j where c1, c2, c3 ∈ {1, 2}. Hence, in this case {β}β∈S generate the

lattice Z[ 1
2 ]Φ∨. Since p 6= 2, this still implies that {hβ}β∈S generate h = Lie(TZ)⊗Zk

over k.
In either case, since hβ = [xβ , x−β ] ∈ [u, g] for β ∈ S, we conclude that h ⊂ [u, g].
The inclusion h ⊂ [u, g] implies [p, h] ⊂ [p, [u, g]]. Hence, by the Jacobi identity,

we have

[p, h] ⊂ [p, [u, g]] = [[p, u], g]] + [u, [p, g]] = [u, g] + [u, p] ⊂ [u, g].

Consequently, p = [p, h] + h ⊂ [u, g]. �

We consider the special linear Lie algebra in two parallel theorems, one for sl2m
and one for sl2m+1. For sln, we use the notation Pr,n−r, pr,n−r, and ur,n−r to denote
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the maximal parabolic, its Lie algebra, and the nilpotent radical corresponding to
the simple root αr. We denote by un the nilpotent radical of sln itself.

The first parts of both theorems are well-known in the context of maximal el-
ementary abelian subgroups in GLn(Fp) (see, for example, [G70] or [MP87]). We
use the approach in [MP87] to compute conjugacy classes.

Theorem 2.9. Assume p > 2. Let n = 2m.

(1) The maximal dimension of an elementary abelian subalgebra of sl2m is m2.
(2) An elementary abelian subalgebra of dimension m2 is conjugate to um,m,

the nilpotent radical of the standard maximal parabolic Pm,m.
(3) E(m2, sl2m) ' Grass2m,m, the Grassmannian of m-planes in a 2m-dimensional

vector space.

Proof. We prove the following statement by induction: any elementary subalgebra
of sl2m has dimension at most m2 and any subalgebra of such dimension inside the
nilpotent radical n must coincide with um,m. This will imply claims (1) and (2) of
the theorem.

The statement is clear for m = 1. Assume it is proved for m − 1. Let ε be an
elementary subalgebra of sl2m. Since ε is nilpotent, it can be conjugated into upper-
triangular form. Let J = {α2, . . . , α2m−2} and let uJ be the nilpotent radical of the
standard parabolic PJ determined by J (as in Example 2.4(1)). Since [u2m, uJ ] ⊂
uJ , this is a Lie ideal in u2m. We consider extension

0 // uJ // u2m
// u2m/uJ ' u2m−2

// 0.

By induction, the dimension of the projection of ε onto u2m−2 is at most (m− 1)2,
and this dimension is attained if and only if the image of ε under the projection

is the subalgebra of u2m−2 of all block matrices of the form

(
0 A
0 0

)
, where A is

a matrix in Mm−1. By Lemma 2.2, the maximal elementary subalgebra of uJ has
dimension 2m− 1. Hence, dim ε ≤ (m− 1)2 + 2m− 1 = m2. For this dimension to
be attained we must have that for any A ∈ Mm−1 there exists an element in ε of
the form

(2.9.1)


0 v2 v1 ∗
0 0 A w1

0 0 0 w2

0 0 0 0


where vi, (wi)

T ∈ km−1.

Let


0 v′2 v′1 ∗
0 0 0 w′1
0 0 0 w′2
0 0 0 0

 be an element in ε∩uJ . Taking a bracket of this element

with a general element in ε of the form as in (2.9.1), we get
0 0 v′2A ∗
0 0 0 Aw′2
0 0 0 0
0 0 0 0

 .

Since ε is abelian, we conclude that v′2A = 0, Aw′2 = 0 for any A ∈Mm−1. Hence,
v′2 = 0, w′2 = 0 which implies that ε ∩ uJ ⊂ um,m. Moreover, for the dimension to
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be maximal, we need dim ε ∩ uJ = 2m − 1. Hence, for any v1, (w1)T ∈ km−1, the

matrix


0 0 v1 0
0 0 0 w1

0 0 0 0
0 0 0 0

 is in ε.

It remains to show that for an arbitrary element of ε, necessarily of the form
(2.9.1), we must have v2 = 0,w2 = 0. We prove this by contradiction. Suppose

0 v2 v1 ∗
0 0 A w1

0 0 0 w2

0 0 0 0

 ∈ ε with v2 6= 0. Subtracting a multiple of E1,2m which is

necessarily in ε, we get that M =


0 v2 v1 0
0 0 A w1

0 0 0 w2

0 0 0 0

 belongs to ε. As observed

above, we also have M ′ =


0 0 0 0
0 0 0 (v2)T

0 0 0 0
0 0 0 0

 in ε. Therefore, [M,M ′] has a non-

trivial entry v2 · (v2)T in the (1, 2m) spot which contradicts commutativity of ε.
Hence, v2 = 0. Similarly, w2 = 0. This finishes the proof of the claim.

To show (3), we recall that Pm,m = StabSL2m(um,m) under the adjoint action of
SL2m. Indeed, for any parabolic P its unipotent radical U is a normal subgroup.
Hence, the adjoint action of P stabilizes the Lie algebra u = Lie(U). We conclude
that Pm,m ⊂ StabSL2m

(um,m). In particular, StabSL2m
(um,m) contains the Borel

subgroup and, hence, is a standard parabolic subgroup of SL2m. Since Pm,m is
maximal, we conclude that Pm,m = StabSL2m(um,m).

By (2), E(m2, sl2m) is the orbit of um,m under the adjoint action of SL2m. Hence,

E(m2, sl2m) ' SL2m /Pm,m ' Grass2m,m .

�

Theorem 2.10. Let n = 2m+ 1 and assume m > 1, p > 2.

(1) The maximal dimension of an elementary abelian subalgebra of sl2m+1 is
m(m+ 1).

(2) There are two distinct conjugacy classes of such elementary subalgebras,
represented by um,m+1 and um+1,m.

(3) The variety E(m2, sl2m+1) is a disjoint union of two connected components
each isomorphic to Grass2m+1,m.

Proof. One can check by a straightforward calculation that the following is a com-
plete list of two-dimensional elementary subalgebras of u3, the nilpotent radical of
sl3:

• u1,2 = {

0 a b
0 0 0
0 0 0

 | a, b ∈ k},
• u2,1 = {

0 0 b
0 0 a
0 0 0

 | a, b ∈ k},
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• a one-parameter family {

0 a b
0 0 xa
0 0 0

 | a, b ∈ k} for a fixed x ∈ k∗.

We prove the following statements by induction: For any m > 1, an elementary
subalgebra of sl2m+1 has dimension at most m(m + 1). Any subalgebra of such
dimension inside u2m+1 must coincide either with um,m+1 or um+1,m. This will
imply claims (1) and (2) of the theorem.

Base case: m = 2. Any elementary subalgebra can be conjugated to the upper-
triangular form. So it suffices to prove the statement for an elementary subalgebra
ε of u5, the nilpotent radical of sl5. Just as in the proof of Theorem 2.9, we consider
a short exact sequence of Lie algebras

0 // uJ // u5
pr // u3

// 0

where J = {α2, α3} (and, hence, uJ ⊂ u5 is the subalgebra of upper triangular
matrices with zeros everywhere except for the top row and the rightmost column).
Since dim(pr(ε)) ≤ 2 by the remark above, and dim(ε ∩ uJ) ≤ 4 by Lemma 2.2,
we get that dim ε ≤ 6. For the equality to be attained, we need pr(ε) to be one
of the two-dimensional elementary subalgebras listed above. If pr(ε) = u2,1 then
arguing exactly as in the proof for the even-dimensional case, we conclude that
ε = u3,2 ⊂ u5. Similarly, if pr(ε) = u1,2, then ε = u2,3. We now assume that

pr(ε) = {

0 a b
0 0 xa
0 0 0

 | a, b ∈ k}.

Let A′ =


0 a12 a13 ∗ ∗
0 0 0 0 ∗
0 0 0 0 a35

0 0 0 0 a45

0 0 0 0 0

 ∈ ε ∩ uJ , and let A =


0 ∗ ∗ ∗ ∗
0 0 a b ∗
0 0 0 xa ∗
0 0 0 0 ∗
0 0 0 0 0

 ∈ ε.
Then

[A′, A] =


0 0 aa12 xaa13 + ba12 ∗
0 0 0 0 −aa35 − ba45

0 0 0 0 −xaa45

0 0 0 0 0
0 0 0 0 0


Since ε is abelian, and since the values of a, b run through all elements of k, we
conclude that a12 = a13 = a35 = a45 = 0. Therefore, dim ε ∩ uJ ≤ 3 and dim ε ≤ 5.
Hence, the maximum is not attained in this case. This finishes the proof in the
base case m = 2.

We omit the induction step since it is very similar to the even-dimensional case
proved in Theorem 2.9. Hence, it remains to show (3).

Note that um,m+1 and um+1,m are not conjugate under the adjoint action of
SL2m+1 since their nullspaces in the standard representation of sl2m+1 have different
dimensions. Arguing as in the end of the proof of the even dimensional case, we
conclude that the stabilizer of um+1,m (resp. um,m+1) under the adjoint action is
the standard parabolic Pm+1,m (resp, Pm+1,m). Hence,

E(m(m+1), sl2m+1) ' SL2m+1 /Pm,m+1∪SL2m+1 /Pm+1,m ' Grass2m+1,m ∪Grass2m+1,m .

�
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We make an immediate observation that the results of Theorems 2.9 and 2.10
apply equally well to gln.

Corollary 2.11. Assume p > 2.

(1) The maximal dimension of an elementary abelian subalgebra of gln is bn
2

4 c.
(2) E(m2, gl2m) ' Grass2m,m for any m ≥ 1.
(3) E(m(m+ 1), gl2m+1) ' Grass2m+1,m tGrass2m+1,m for any m ≥ 2.

Remark 2.12. In the case n = 3, excluded above, the variety E(2, gl3) is connected
and irreducible (see Example 3.20).

We now prove an analogous result in the symplectic case. Recall that αn denotes
the unique long simple root for type Cn, and, hence, Pαn is the only standard
cominuscule parabolic of Sp2n.

Theorem 2.13. Let g = sp2n be a simple Lie algebra of type Cn. Assume p > 3.
Then

(1) For any elementary subalgebra ε ⊂ g, dim ε ≤ n(n+1)
2

(2) Any elementary subalgebra ε of maximal dimension is conjugate to uαn
(3) E(n(n+1)

2 , sp2n) ' Sp2n /Pαn , the Lagrangian Grassmannian.

Proof. The proof is by induction. For n = 1 we have sp2 = sl2 for which the
statement is trivially true.

Induction step n − 1 → n. Let pα1 = lα1 ⊕ uα1 be the maximal parabolic
subalgebra corresponding to the simple root α1 with the Levi factor lα1

and the
nilpotent radical uα1

. Let ulα1
be the nilpotent radical of lα1

, and usp2n
be the

nilpotent radical of sp2n. We have a short exact sequence

0 // uα1
// usp2n

pr // ulα1

// 0.

We can apply the induction hypothesis to lα1 since it is a reductive Lie algebra of
type Cn−1.

Let ε be an elementary subalgebra of g. Conjugating by an element in Sp2n, we

can assume that ε ⊂ usp2n
. By our induction hypothesis, dim pr(ε) ≤ n(n−1)

2 . Since
uα1

is an extraspecial Lie algebra of dimension 2n−1 (see Example 2.4), Lemma 2.2

implies that dim uα1
∩ ε ≤ n. Hence, dim ε ≤ n+ n(n−1)

2 . This proves (1).
To prove (2), we observe that the induction hypothesis implies that for an ele-

mentary subalgebra ε to attain the maximal dimension, we must have that

pr ↓ε: ε→ ulα1

is surjective onto ulα1
∩uαn , the nilpotent radical of the unique standard cominuscule

parabolic of lα1
.

Let {xβi , xγi} be a basis of uα1
as defined in (2.4.1). Let x =

∑
bixβi+

∑
cixγi ∈

uα1 ∩ ε. We want to show that x ∈ uαn or, equivalently, that coefficients by xβi
are zero. Assume, to the contrary, that bi 6= 0 for some i, 1 ≤ i ≤ n − 1. Let
µ = γn−1− βi = α2 + . . .+αi + 2αi+1 + . . .+ 2αn−1 +αn. Then xµ ∈ ulα1

∩ uαn ⊂
pr(ε). Therefore, there exists y = x′ + xµ ∈ ε for some x′ ∈ uα1

. Note that
[x, x′] ⊂ [uα1

, uα1
] = kxγn , and that µ+ γi is never a root, and µ+ βj is not a root

unless i = j. Hence,

[x, y] = [x, x′] + [x, xµ] = cxγn + bi[xβi , xµ] = cxγn + bicβiµxγn−1
6= 0.
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Here, cβiµ is the structure constant from the equation [xβi , xµ] = cβiµxβi+µ =
cβiµxγn−1 which is non-zero since p > 3 (see [Sel65, II.4.1]). We get a contradiction
with the commutativity of ε. Hence, bi = 0 for all i, 1 ≤ i ≤ n− 1, and, therefore,
uα1
∩ ε ⊂ uαn . Moreover, since we assume that dim ε is maximal, we must have

dim uα1
∩ ε = n, and, therefore, uα1

∩ ε =
n⊕
i=1

kxγi .

Now let x+a be any element in ε where x ∈ uα1
and a ∈ ulα1

∩ uαn . We need to

show that x ∈ uαn , that is, x ∈
n⊕
i=1

kxγi . Let x =
∑
bixβi +

∑
cixγi and assume to

the contrary that bi 6= 0 for some i. Note that [xγj , ulα1
∩ uαn ] = 0 for any j, 1 ≤

j ≤ n since both xγj and any a ∈ ulα1
∩ uαn are linear combinations of root vectors

for roots that have coefficient 1 by αn. Hence, [x+ a, γn−i] = bi[xβi , γn−i] 6= 0. We
get a contradiction again. Therefore, ε ⊂ uαn . This proves (2).

Finally, (c) follows immediately from the fact that Pαn is the stabilizer of uαn
under the adjoint action of Sp2n. �

Proposition 2.14. Assume that p > 2.

(1) The maximal dimension of an elementary subalgebra of the standard para-
bolic subalgebra p1,2m of sl2m+1 is m(m+ 1).

(2) For m ≥ 2, E(m(m+ 1), p1,2m) is a disjoint union of two connected com-
ponents isomorphic to Grass2m,m and Grass2m,m−1:

E(m(m+ 1), p1,2m) ' Grass2m,m

∐
Grass2m,m−1 .

Proof. Let ε ⊂ p1,2m be an elementary subalgebra. Since p1,2m ⊂ sl2m+1, Theo-
rem 2.10 implies that dim ε ≤ m(m+ 1). Since um,m+1 is a subalgebra of p1,2m, we
conclude that the maximal dimension is precisely m(m+ 1). This proves (1).

To show (2), we first show that any elementary subalgebra ε of maximal dimen-
sion is conjugate to either um,m+1 or um+1,m under the adjoint action of P1,2m.
By Theorem 2.10, ε is conjugate to um,m+1 or um+1,m under the adjoint action of
SL2m+1. Assume that ε = gum+1,mg

−1 for some g ∈ SL2m+1 (the case of um,m+1)
is strictly analogous). We proceed to show that there exists g̃ ∈ P1,2m such that
ε = g̃um+1,mg̃

−1.
Let W (SL2m+1) ' NSL2m+1

(T )/ZSL2m+1
(T ) be the Weyl group, U2m+1 be the

unipotent radical, and B2m+1 the Borel subgroup of SL2m+1. For an element
w ∈W (SL2m+1), we denote by w̃ a fixed coset representative of w in NSL2m+1

(T ).
Using the Bruhat decomposition, we can write g = g1w̃g2 where g1 ∈ U2m+1,

g2 ∈ B2m+1, and w ∈ W (SL2m+1). Since both um+1,m and P1,2m are stable
under the conjugation by U2m+1 and B2m+1, it suffices to prove the statement for
g = w̃, where w is a Weyl group element. We make the standard identifications
W (SL2m+1) ' S2m+1, W (L1,2m) ' S2m and W (Lm+1,m) ' Sm+1 × Sm where Li,j
is the Levi factor of a standard parabolic Pi,j .

We further decompose

S2m+1 = W (SL2m+1) =
⊔

s∈S2m\S2m+1/(Sm+1×Sm)

S2ms(Sm+1 × Sm)

into double cosets, where S2m is the Weyl group of the Levi of P1,2m which is
isomorphic to the subgroup of all permutations in S2m+1 which fix 1. We can choose
coset representatives {t} of S2m+1/Sm+1×Sm in such a way that if t−1(1) = j 6= 1
then j > m + 1. Indeed, let t be any permutation and let t−1(1) = j 6= 1.
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Multiplying on the right by the transposition (1j), we get a new permutation that
fixes 1. If j ≤ m + 1, then (1j) ∈ Sm+1, and, hence, t and t · (1j) represent the
same coset.

Let w ∈ S2m+1, and assume that w̃um+1,mw̃
−1 ⊂ p1,2m. Write w = w1sw2,

where w1 ∈ S2m, w2 ∈ Sm+1 × Sm and s is a double coset representative. If
s−1(1) = 1, then w1s ∈ S2m and, hence, w̃1s̃ ∈ P1,2m. Since w̃2 stabilizes um+1,m,
the conjugates of um+1,m under w̃ and w̃1s̃ coincide. But w̃1s̃ is an element of P1,2m

which finishes the proof in the case s−1(1) = 1.
Now assume s(1) = j 6= 1. By the discussion above, we can assume that

S−1(1) = j, j > m + 1. Since w1(1) = 1, we get that w̃Eijw̃
−1 = Ew(i)w(j) =

Ew(i)1 6∈ p1,2m if w(i) 6= 1. Since Eij ∈ um+1,m for all i, 1 ≤ i ≤ m, we conclude

that w̃um+1,mw̃
−1 6⊂ p1,2m. This leads to a contradiction. Therefore, s(1) = 1, and

we can take g̃ = g1w̃1s̃ ∈ P1,2m.
The above discussion implies that E(r, p1,2m) = P1,2m · um+1,m ∪P1,2m · um,m+1.

The P1,2m-stabilizer of um+1,m equals P1,m,m = Pm+1,m ∩ P1,2m ⊂ SL2m+1.
Thus, P1,2m · ε ' P1,2m/P1,m,m ' Grass2m,m. Similarly, the P1,2m-stabilizer of
um,m+1 equals P1,m−1,m+1 = Pm,m+1 ∩ P1,2m ⊂ SL2m+1. Hence, P1,2m ·
um,m+1 ' Grass2m,m−1. Moreover, um+1,m and um,m+1 are not conjugate since
their nullspaces in the standard representation of sl2m+1 have different dimensions.
Therefore, E(m(m+ 1), p1,2m) ' Grass2m,m

∐
Grass2m,m−1.

�

Proposition 2.14 has the following immediate corollary.

Corollary 2.15. Let g1,2m ⊂ gl2m+1 be as defined in Example 1.11(1). The max-
imal dimension of an elementary subalgebra of g1,2m is m(m+ 1). For m ≥ 2,

E(m(m+ 1), g1,2m) ' Grass2m,m

∐
Grass2m,m−1 .

3. Radicals, socles, and geometric invariants for u(g)-modules

We now proceed to consider invariants for a (finite dimensional) u(g)-module M
defined in terms of restrictions of M to elementary subalgebras ε ⊂ g. If ε ⊂ g is
an elementary subalgebra and M a u(g)-module, then we shall denote by ε∗M the
restriction of M to u(ε) ⊂ u(g).

The following is a natural extension of the usual support variety in the case r = 1
(see [FP86]) and of the variety Grass(r, V )M of [CFP12, 1.4] for g = g⊕na .

Definition 3.1. For any u(g)-module M and any positive integer r, we define

E(r, g)M = {ε ∈ E(r, g); ε∗MK is not projective}.
Remark 3.2. Let g denote the height 1 infinitesimal group scheme associated to
g, that is, k[g] = u(g)∗. We denote by kg the dual Hopf algebra to the coordinate
algebra k[g] and call it the group algebra of g. We identify E(1, g) with the projec-
tivization of the conical affine variety of 1-parameter subgroups of g. This conical
variety is isomorphic to the p-nilpotent cone Np(g) as in Example 1.5. Then for
any finite dimensional u(g)-module M ,

E(1, g)M = Proj k[V (g)M ],

where the rank variety V (g)M ⊂ V (g) is defined in [SFB2] as the affine subvariety
of those 1-parameter subgroups Ga(1) → g restricted to which M is not projective.
In particular, E(1, g)M ⊂ E(1, g) is a closed subvariety.
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The following proposition tells us that the geometric invariant M 7→ E(r, g)M
can be computed in terms of the more familiar (projectivized) support variety
E(1, g)M = Proj(V (g)M ).

Proposition 3.3. For any u(g)-module M , and positive integer r, and any ε ∈
E(r, g),

(3.3.1) E(r, g)M = {ε ∈ E(r, g); ε ∩ V (g)M 6= 0}

where the intersection ε ∩ V (g)M is as subvarieties of g.

Proof. By definition, ε ∈ E(r, g)M if and only if ε∗M is not free which is the case if
and only if V (ε)ε∗M 6= 0. Since ε ⊂ g induces an isomorphism

V (ε)ε∗(M)
∼ // V (ε) ∩ V (g)M

(see [FP86]), this is equivalent to ε ∩ V (g)M 6= 0. �

Proposition 3.4. For any u(g)-module M and for any r ≥ 1,

E(r, g)M ⊂ E(r, g)

is a closed subvariety.
Moreover, if G is an algebraic group with g = Lie(G) and M is a rational G-

module, then E(r, g)M ⊂ E(r, g) is G-stable.

Proof. Let Proj ε ⊂ E(1, g) be the projectivization of the linear subvariety ε ⊂ g.
Let XM = {ε ∈ Grass(r, g) | Proj ε ∩ E(1, g)M 6= ∅}. Then XM ⊂ Grass(r, g) is a
closed subvariety (see [Harr, ex. 6.14]). Since E(r, g)M = E(r, g)∩XM by Prop. 3.3,
we conclude that E(r, g)M is a closed subvariety of E(r, g).

If g = Lie(G) and M is a rational G-module, then M 'Mx as u(g)-modules and

the pull-back of M along the isomorphism x−1 : u(εx)
∼ // u(ε) equals (εx)∗(Mx)

for any x ∈ G(k). Thus, E(r, g)M is G-stable. �

Proposition 3.3 implies the following result concerning the realization of subsets
of E(r, g) as subsets of the form X = E(r, g)M . We remind the reader of the
definition of the module Lζ associated to a cohomology class ζ ∈ Hn(u(g), k): Lζ
is the kernel of the map ζ : Ωn(k) → k determined by ζ, where Ωn(k) is the nth

Heller shift of the trivial module k (see [Ben] or Example 4.6).

Corollary 3.5. A subset X ⊂ E(r, g) has the form X = E(r, g)M for some u(g)-
module M if and only if there exists a closed subset Z ⊂ E(1, g) such that

(3.5.1) X = {ε ∈ E(r, g); Proj ε ∩ Z 6= ∅}.

Moreover, such an M can be chosen to be a tensor product of modules Lζ with each
ζ of even cohomological degree.

Proof. We recall that any closed, conical subvariety of V (g) (i.e., any closed sub-
variety of E(1, g)) can be realized as the (affine) support of a tensor product of
modules Lζ (see [FP86]) and that the support of any finite dimensional kg-module
is a closed, conical subvariety of V (g). Thus, the proposition follows immediately
from Proposition 3.3. �
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Example 3.6. As one specific example of Proposition 3.5, we take some even
degree cohomology class 0 6= ζ ∈ H2m(u(g), k) and M = Lζ . We identify V (g) with
the spectrum of Hev(u(g), k) (for p > 2), so that ζ is a (homogeneous) algebraic
function on V (g). Thus V (g)Lζ = Z(ζ) ⊂ V (g), the zero locus of the function ζ.
Then,

E(r, g)Lζ = {ε ∈ E(r, g); ε ∩ Z(ζ) 6= {0}}.
On the other hand, if ζ ∈ H2m+1(u(g), k) has odd degree and p > 2, then

V (g)Lζ = V (g), so that E(r, g)Lζ = E(r, g).

Remark 3.7. As pointed out in [CFP12, 1.10] in the special case g = g⊕3
a and

r = 2, not every closed subset X ⊂ E(r, g) has the form (3.5.1).

Example 3.8. We consider another computation of E(r, g)M . Let G be a reductive
group and assume that p is good for G. Let λ be a dominant weight and consider
the induced module M = H0(λ) = IndGB λ. By a result of Nakano, Parshall, and
Vella [NPV02, 6.2.1], V (g)H0(λ) = G · uJ , where uJ is the nilpotent radical of a
suitably chosen parabolic subgroup PJ ⊂ G. Then,

E(r, g)H0(λ) = G · {ε ∈ E(r, g); ε ∩ uJ 6= {0}}.

We now proceed to consider invariants of u(g)-modules associated to E(r, g)
which for r > 1 are not determined by the case r = 1. As before, for a given M
and a given r ≥ 1, we consider the restrictions ε∗(M) for ε ∈ E(r, g).

Definition 3.9. Let g be a finite dimensional p-restricted Lie algebra andM a finite
dimensional u(g)-module. For any r ≥ 1, any ε ∈ E(r, g), and any j, 1 ≤ j ≤ (p−1)r,
we consider

Radj(ε∗(M)) =
∑

j1+···+jr=j

Im{uj11 · · ·ujrr : M →M}

and

Socj(ε∗(M)) =
⋂

j1+···+jr=j

Ker{uj11 · · ·ujrr : M →M},

where {u1, . . . , ur} is a basis for ε.
For each r ≥ 1 and each j, 1 ≤ j ≤ (p−1)r, we define the local (r, j)-radical rank

of M and the local (r, j)-socle rank of M to be the (non-negative) integer valued
functions

ε ∈ E(r, g) 7→ dim Radj(ε∗(M))

and

ε ∈ E(r, g) 7→ dim Socj(ε∗(M))

respectively.

Remark 3.10. If M is a u(g)-module, we denote by M# = Homk(M,k) the dual
of M whose u(g)-module structure arises from that on M using the antipode of
u(g). Thus, if X ∈ g and f ∈ M#, then (X ◦ f)(m) = −f(X ◦m). If i : L ⊂ M
is a u(g)-submodule, then we denote by L⊥ ⊂ M# the submodule defined as the
kernel of i# : M# → L#. We remind the reader that

(3.10.1) Socj(ε∗(M#)) ' (Radj(ε∗M))⊥

(as shown in [CFP12, 2.2]).
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The following elementary observation will enable us to conclude that construc-
tions of §4 determine vector bundles on G-orbits of E(r,LieG).

Proposition 3.11. If g = Lie(G) and M is a rational G-module, then the local
(r, j)-radical rank of M and the local (r, j)-socle rank of M are constant on G-orbits
of E(r, g).

Proof. Let g ∈ G, and let ε ∈ E(r, g). We denote by εg ∈ E(r, g) the image of ε
under the action of G on E(r, g), and let g · (−) : M → M be the action of G on
M . Observe that

g : M
m7→gm// Mg

defines an isomorphism of rational G-modules, where the action of x ∈ G on m ∈
Mg is given by the action of gxg−1 on m (with respect to the G-module structure
on M). Thus, the proposition follows from the observation that the pull-back of

εg∗(Mg) equals ε∗(M) under the isomorphism g : u(ε)
∼ // u(εg) . �

The following discussion leads to Proposition 3.14 which establishes the lower
and upper semi-continuity of local (r, j)-radical rank and local (r, j)-socle rank
respectively.

Notation 3.12. We fix a basis {x1, . . . , xn} of g and use it to identify Mn,r ' g⊕r

as in the beginning of §1. Let Σ ⊂ {1, . . . , n} be an r-subset. Recall the section
sΣ : UΣ → Mo

n,r of (1.1.1) that sends an r-plane ε ∈ UΣ to the n× r matrix AΣ(ε)
with the r × r submatrix corresponding to Σ being the identity and the columns
generating the plane ε. Extend the map sΣ to sΣ : UΣ → Mn,r and consider the
induced map on coordinate algebras:

(3.12.1) k[Mn,r] = k[Ti,s]
s∗Σ // k[UΣ ]

We define

TΣ
i,s ≡ s∗Σ(Ti,s)

It follows from the definition that TΣ
i,s = δα−1(i),s for i ∈ Σ, where α : {1, . . . , r} → Σ

is the function with α(1) < · · · < α(r), and that TΣ
i,s for i /∈ Σ are algebraically

independent generators of k[UΣ].
Let VΣ ≡ E(r, g)∩UΣ. We define the set {Y Σ

i,s} of algebraic generators of k[VΣ]

as images of {TΣ
i,s} under the map of coordinate algebras induced by the closed

immersion VΣ ⊂ UΣ:

k[UΣ] // // k[VΣ] , TΣ
i,s 7→ Y Σ

i,s

It again follows that Y Σ
i,s = δα−1(i),s, for i ∈ Σ and α as above. For each ε ∈ VΣ ⊂ UΣ

(implicitly assumed to be a k-rational point), we have

Y Σ
i,s(ε) = TΣ

i,s(ε) = s∗Σ(TΣ
i,s)(ε) = Ti,s(sΣ(ε)).

Hence,

(3.12.2) AΣ(ε) = [Y Σ
i,s(ε)].
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Definition 3.13. For a u(g)-module M , and for a given s, 1 ≤ s ≤ r, we define the
endomorphism of k[VΣ]–modules

(3.13.1) ΘΣ
s ≡

n∑
i=1

xi ⊗ Y Σ
i,s : M ⊗ k[VΣ]→M ⊗ k[VΣ],

via
m⊗ 1 7→

∑
i

xim⊗ Y Σ
i,s.

We refer the reader to [Hart, III.12] for the definition of an upper/lower semi-
continuous function on a topological space.

Proposition 3.14. Let M be a u(g)-module, r a positive integer, and j an integer
satisfying 1 ≤ j ≤ (p− 1)r. Then the local (r, j)-radical rank of M is a lower semi-
continuous function and the local (r, j)-socle rank of M is an upper semicontinuous
function on E(r, g).

Proof. It suffices to show that the local (r, j)-radical rank of M is lower semi-
continuous when restricted along each of the open immersions VΣ ⊂ E(r, g). For
ε ∈ VΣ with residue field K, the specialization of ΘΣ

s at ε defines a linear operator
ΘΣ
s (ε) =

∑n
i=1 Y

Σ
i,s(ε)xi on MK :

m 7→ ΘΣ
s (ε) ·m =

n∑
i=1

Y Σ
i,s(ε)xim.

Since the columns of [Y Σ
i,s(ε)] generate ε by (3.12.2), we get that

(3.14.1) Rad(ε∗M) =

r∑
s=1

Im{ΘΣ
s (ε) : MK →MK}

and

(3.14.2) Radj(ε∗M) =
∑

j1+···+jr=j

Im{ΘΣ
1 (ε)j1 . . .ΘΣ

r (ε)jr : MK →MK} =

Im{
⊕

j1+···+jr=j

ΘΣ
1 (ε)j1 . . .ΘΣ

r (ε)jr : M
⊕r(j)
K →MK}

where r(j) is the number of ways to write j as the sum of non-negative integers
j1 + · · ·+ jr. Hence, the usual argument for lower semicontinuity of the dimension
of images of a homomorphism of finitely generated free modules applied to the
k[VΣ]-linear map⊕

j1+···+jr=j

(ΘΣ
1 )j1 . . . (ΘΣ

r )jr : (M ⊗ k[VΣ])⊕r(j) →M ⊗ k[VΣ].

enables us to conclude that the function

(3.14.3) ε ∈ E(r, g) 7→ dim Radj(ε∗M) is lower semi-continuous.

The upper semi-continuity of socle ranks now follows by Remark 3.10. �

Remark 3.15. To get some understanding of the operators ΘΣ
s (ε) occurring in the

proof of Proposition 3.14, we work out the very special case in which g = ga ⊕ ga,
r = 1 (so that E(r, g) = P1), and j = 1. We fix a basis {x1, x2} for g which induces
the identification g ' A2. The two possibilities for Σ ⊂ {1, 2} are {1}, {2}. Let
k[T1, T2] be the coordinate ring for A2 (corresponding to the fixed basis {x1, x2}.
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Let Σ = {1}. We have V{1} = U{1} = {[a : b] | a 6= 0} ' A1 and the section

s{1} : V{1} → A2 given explicitly as [a : b] 7→ (1, b/a). The corresponding map of
coordinate algebras as in (3.12.1) is given by

k[A2] = k[T1, T2]→ k[V{1}] ' k[A1]

T1 7→ 1, T2 7→ s∗{1}(T2)

Then for a u(g)-module M , ε = 〈a, b〉 ∈ P1 with a 6= 0, and m ∈M , we have

(3.15.1) Θ{1} = x1 ⊗ 1 + x2 ⊗ s∗{1}(T2) : M ⊗ k[V{1}]→M ⊗ k[V{1}];

Θ{1}(ε) = x1 +
b

a
x2, m 7→ x1(m) +

b

a
x2(m).

We extend the formulation of “generalized support varieties” introduced in [FP10]
for r = 1 and in [CFP12] for elementary abelian p-groups (or, equivalently, for
g = g⊕ra ) to any r and an arbitrary restricted Lie algebra g.

Definition 3.16. For any finite dimensional u(g)-module M , any positive integer
r, and any j, 1 ≤ j ≤ (p− 1)r, we define

Radj(r, g)M ≡ {ε ∈ E(r, g) : dim(Radj(ε∗M)) < max
ε′∈E(r,g)

dim Radj(ε′∗M)}

Socj(r, g)M ≡ {ε ∈ E(r, g) : dim(Socj(ε∗M)) > min
ε′∈E(r,g)

dim Socj(ε′∗M)}

It follows from Prop. 3.14 that Radj(r, g)M, Socj(r, g)M are closed subvarieties in
E(g).

Proposition 3.17. Let M be a finite-dimensional g-module, and let r, j be positive
integers such that 1 ≤ j ≤ (p−1)r. Then Radj(r, g)M, Socj(r, g)M are proper closed
subvarieties in E(r, g).

To give our first application, we need the following elementary fact.

Lemma 3.18. Let k[x1, . . . , xn] be a polynomial ring, let xi11 . . . xinn be a monomial
of degree i and assume that p = char k > i. There exist linear polynomials without
constant term λ0, . . . , λm on the variables x1, . . . , xn, and scalars a0, . . . , am ∈ k
such that

xi11 . . . xinn = a0λ
i
0 + . . .+ amλ

i
m.

Proof. It suffices to prove the statement for n = 2, thanks to an easy induction
argument (with respect to n). Hence, we assume that we have only two variables,
x and y.

Let λj = jx+ y for j = 0, . . . , i, so that we have i+ 1 equalities:

yi = λi0
(x+ y)i = λi1
(2x+ y)i = λi2

...
...

(ix+ y)i = λii
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Treating monomials on x, y as variables, we interpret this as a system of i + 1
equations on i+ 1 variables with the matrix

0 0 . . . 0 . . . 0 1

1 i . . .
(
i
j

)
. . . i 1

2i 2i−1i . . . 2i−j
(
i
j

)
. . . 2i 1

...
...

. . .
...

. . .
...

...

ii ii−1i . . . ii−j
(
i
j

)
. . . i2 1


By canceling the coefficient

(
i
j

)
in the j + 1st column (which is non-trivial since

p > i) we reduce the determinant of this matrix to a non-trivial Vandermonde
determinant. Hence, the matrix is invertible. We conclude the monomials xjyi−j

can be expressed as linear combinations of the free terms λi0, . . . , λ
i
i. �

Determination of the closed subvarieties Radj(r, g)M, Socj(r, g)M of E(r, g) ap-
pears to be highly non-trivial. The reader will find a few computer-aided calcula-
tions in [CFP12] for g = g⊕na . The following proposition presents some information
of E(n− 1, gln).

Proposition 3.19. Assume that p ≥ n. Let X ∈ gln be a regular nilpotent element,
and let ε ∈ E(n− 1, gln) be an n − 1-plane with basis {X,X2, . . . , Xn−1}. Then
GLn ·ε is an open GLn-orbit for E(n− 1, gln).

Proof. Let V be the standard n-dimensional representation of gln. Let ε′ be any el-
ementary Lie subalgebra of gln of dimension n−1. If ε′ contains a regular nilpotent
element Y , then ε′ has basis {Y, Y 2, . . . , Y n−1}, since the centralizer of a regular
nilpotent element in gln is generated as a linear space by the powers of that nilpo-
tent element. Hence, in this case ε′ is conjugate to the fixed plane ε. Moreover,
Radn−1(ε′∗V ) = Im{Y n−1 : V → V }, and, hence, dim Radn−1(ε′∗V ) = 1.

Suppose ε′ does not contain a regular nilpotent element. Then for any matrix
Y ∈ ε′, we have Y n−1 = 0. Lemma 3.18 implies that any monomial of degree n− 1
on elements of ε′ is trivial. Therefore, Radn−1(ε′∗V ) = 0. We conclude that GLn ·ε
is the complement to Radn−1(n − 1, gln)V in E(n− 1, gln). Proposition 3.14 now
implies that GLn ·ε is open. �

Example 3.20. In this example we describe the geometry of E(2, gl3) making an
extensive use of the GL3-action. Further calculations involving more geometry will
appear elsewhere.

Assume p > 3. Fix a regular nilpotent element X ∈ gl3. Let ε1 = 〈X,X2〉 be
the 2-plane in gl3 with the basis X,X2, and let

C1 = GL3 · ε1 ⊂ E(2, gl3)

be the orbit of ε1 in E(2, gl3). By Proposition 3.19, this is an open subset of
E(2, gl3). Since E(2, gl3) is irreducible (see Example 1.6), C1 is dense. We have
dimC1 = dimC1 = dimE(2, gl3) = 4.

The closure of C1 contains two more (closed) GL3 stable subvarieties, each one
of dimension 2. They are the GL3 saturations in E(2, gl3) of the elementary sub-
algebras u1,2 (spanned by E1,2 and E1,3), and u2,1 (spanned by E1,3 and E2,3).
Since the stabilizer of u1,2 (resp. u2,1) is the standard parabolic P1,2 (resp. P2,1),
the corresponding orbit is readily identified with GL3 /P1,2 ' Grass2,3 = P2 (resp.,
GL3 /P2,1 ' P2).
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Proposition 3.21. Let u be a nilpotent p-restricted Lie algebra such that x[p] = 0
for any x ∈ u. Then the locus of elementary subalgebras ε ∈ E(r, u) such that ε is
maximal (that is, not properly contained in any other elementary subalgebra of u)
is an open subset of E(r, u).

Proof. Regard u as acting on itself via adjoint representation. Note that we neces-
sarily have ε ⊂ Soc(ε∗(uad)). Moreover, our hypothesis that x[p] = 0 for any x ∈ u
implies that this inclusion is an equality if and only if ε is a maximal elementary
subalgebra. Hence,

dim Soc(ε∗(uad)) ≥ dim ε = r

with equality if and only if ε is maximal. We conclude that the locus of elementary
subalgebras ε ∈ E(r, u) such that ε is nonmaximal equals the nonminimal socle
variety Soc(r, u)uad

. The statement now follows from Proposition 3.17. �

4. Modules of constant (r, j)-radical rank and/or and constant
(r, j)-socle rank

In previous work with coauthors, we have considered the interesting class of
modules of constant Jordan type (see, for example [CFP08]). In the terminology of
this paper, these are u(g)-modules M with the property that the isomorphism type
of ε∗M is independent of ε ∈ E(1, g). In the special case g = g⊕na , further classes
of special modules were considered by replacing this condition on the isomorphism
type of ε∗M for ε ∈ E(1, g⊕na ) by the “radical” or “socle” type of ε∗M for ε ∈
E(r, g⊕na ).

In this section, we consider u(g)-modules of constant (r, j)-radical rank and con-
stant r-radical type (and similarly for socles). As already seen in [CFP12] in the
special case g = g⊕na , the variation of radical and socle behavior for r > 1 can
be quite different. Moreover, having constant r radical type does not imply the
constant behavior for a different r.

As we shall see in the next section, a u(g)-module of constant (r, j)-radical rank or
constant (r, j)-socle rank determines a vector bundle on E(r, g), thereby providing
good motivation for studying such modules.

Definition 4.1. Fix integers r > 0 and j, 1 ≤ j < (p − 1)r. A u(g)-module M
is said to have constant (r, j)-radical rank (respectively, (r, j)-socle rank) if the

dimension of Radj(ε∗M) (resp., Socj(ε∗M)) is independent of ε ∈ E(r, g).
We say that M has constant r-radical type (respectively, r-socle type) if M has

constant (r, j)-radical rank (resp., (r, j)-socle rank) for all j, 1 ≤ j ≤ (p− 1)r.

Remark 4.2. For r > 1, the condition that the r-radical type of M is constant
does not imply that the isomorphism type of ε∗M is independent of ε ∈ E(r, g).

The condition that dim Radj(ε∗(M)) = dim Radj(ε′∗M) for all j is much weaker
than the condition that ε∗M ' ε′∗M . Indeed, examples are given in [CFP12] (with
g = g⊕na ) of modules M whose r-radical type is constant but whose r-socle type
is not constant, thereby implying that the isomorphism type of ε∗M varies with
ε ∈ E(r, g).

Proposition 4.3. A u(g)-module M has constant (r, j)-radical rank (respectively,
(r, j)-socle rank) if and only if Radj(r, g)M = ∅ (resp., Socj(r, g)M = ∅.)
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Proof. This follows from the fact that there is a non-maximal radical rank if and
only if the radical rank is not constant, a non-minimal socle rank if and only if the
socle rank is not constant. �

Proposition 4.4. Let G be an affine algebraic group, and let g = Lie(G). If
E(r, g) consists of a single G-orbit, then any finite dimensional rational G-module
has constant r-radical type and constant r-socle type.

Proof. Follows immediately from Proposition 3.11. �

Example 4.5. If P is a finite dimensional projective u(g)-module, then ε∗P is a
projective (and thus free) u(ε)-module for any elementary subalgebra ε ⊂ g. Thus,
the r-radical type and r-socle type of P are constant.

Example 4.6. Let g be a finite dimensional p-restricted Lie algebra. Recall that

Ωs(k) for s > 0 is the kernel of Ps−1
d→ Ps−2, where d is the differential in the

minimal projective resolution P∗ → k of k as a u(g)-module; if s < 0, then Ωs(k) is

the cokernel of I−s−2 d→ I−s−1, where d is the differential in the minimal injective
resolution k = I−1 → I∗ of k as a u(g)-module. Then for any s ∈ Z, the s-th Heller
shift Ωs(k) has constant r-radical type and constant r-socle type for each r > 0.

Namely, for any ε ∈ E(r, g), ε∗(Ωs(k)) is the direct sum of the s-th Heller shift
of the trivial module k and a free u(ε)-module (whose rank is independent of the
choice of ε ∈ E(r, g)).

The following example is one of many we can realize using Proposition 4.3.

Example 4.7. Let g = gl2n and r = n2. If M is any finite dimensional rational
GL2n-module, then it has constant r-radical type and constant r-socle type by
Corollary 2.11.

In Example 4.7, the dimension r of elementary subalgebras ε ⊂ g is maximal.
We next consider an example of non-maximal elementary subalgebras.

Example 4.8. Choose r > 0 such that no elementary subalgebra of dimension r

in g is maximal. Let ζ ∈ Ĥ
n
(u(g), k) for n < 0 be an element in negative Tate

cohomology. Consider the associated short exact sequence

(4.8.1) 0 // k // E // Ωn−1(k) // 0.

Then E has constant r-radical rank and constant r-socle rank for every j, 1 ≤ j ≤
(p− 1)r.

Namely, we observe that the restriction of the exact sequence (4.8.1) to ε∗ splits
for every ε ∈ E(r, g). This splitting is a consequence of [CFP12, 3.8] (stated for an
elementary abelian p-group and equally applicable to any elementary subalgebra
f ⊂ g which strictly contains ε). The assertion is now proved with an appeal to
Example 4.6.

We next proceed to consider modules Lζ , adapting to the context of p-restricted
Lie algebras the results of [CFP12, §5].

Proposition 4.9. (see [CFP12, 5.5]) Suppose that we have a non-zero cohomology
class ζ ∈ Hm(u(g), k) satisfying the condition that

Z(ζ) ⊂ Np(g) ⊂ g



26 JON F. CARLSON, ERIC M. FRIEDLANDER, AND JULIA PEVTSOVA

does not contain a linear subspace of dimension r for some r ≥ 1. Then the u(g)-
module Lζ has constant r-radical type.

Proof. Consider ε ∈ E(r, g). We identify ε∗ : Np(ε) → Np(g) with the composition
ε → Np(g) ⊂ g. Thus, our hypothesis implies that ε is not contained in Z(ζ).
Hence, ζ ↓ε∈ Hm(u(ε), k) is not nilpotent, and, therefore, is not a zero-divisor.
Proposition 5.3 of [CFP12] applied to ε implies that

(4.9.1) Rad(Lζ↓ε) = Rad(Ωn(k ↓ε)),
where Ωn(k ↓ε) is the n-th Heller shift of the trivial u(ε)-module. We note that
the statement and proof of [CFP12, Lemma 5.4] generalizes immediately to the
map u(ε) → u(g) yielding the statement that dim Rad(ε∗(Lζ)) − dim Rad(Lζ↓ε) =
dim Rad(ε∗(Ωn(k))) − dim Rad(Ωn(k ↓ε)) is independent of ε whenever ζ ↓ε 6= 0.
Combined with (4.9.1), this allows us to conclude that

dim Rad(ε∗(Lζ)) = dim Rad(ε∗(Ωn(k))).

Since ε∗(Lζ) is a submodule of ε∗(Ωn(k)) this further implies that equality of radi-
cals

Radj(ε∗(Lζ)) = Radj(ε∗(Ωn(k)))

for all j > 0. Since Ωn(k) has constant r-radical type by Example 4.6, we conclude
that the same holds for Lζ . �

Utilizing another result of [CFP12], we obtain a large class of u(g)-modules of
constant radical type.

Proposition 4.10. For any d > 0, there exists some 0 6= ζ ∈ H2d(u(g), k) such
that Lζ has constant r-radical type.

Proof. The embedding V (g) ' Spec Hev(u(g), k) → g (for p > 2) is given by the

natural map S∗(g#[2]) → H∗(u(g), k) determined by the Hochschild construction
g# → H2(u(g), k) (see, for example, [FP83]). (Here, g#[2] is the vector space
dual to the underlying vector space of g, placed in cohomological degree 2.) As
computed in [CFP12, 5.7], the set of all homogeneous polynomials F of degree d
in S∗(g#[2]) such that the zero locus Z(F ) ⊂ Proj(g) does not contain a linear
hyperplane isomorphic to Pr−1 is dense in the space of all polynomials of degree
d. Let ζ be the restriction to Proj k[V (g)] of such an F ∈ S∗(g#[2]); since such an
F can be chosen from a dense subset of homogeneous polynomials of degree d, we
may find such an F whose associated restriction ζ is non-zero. Now, we may apply
Proposition 4.9 to conclude that Lζ has constant r-radical type. �

The following closure property for modules of constant radical and socle types
is an extension of a similar property for modules of constant Jordan type.

Proposition 4.11. Let M be a u(g)-module of constant (r, j)-radical rank (respec-
tively, constant (r, j)-socle rank) for some r, j. Then any u(g)-summand M ′ of M
also has constant (r, j)-radical rank (resp., constant (r, j)-socle rank).

Proof. Write M = M ′ ⊕ M ′′, and set m equal to the (r, j)-radical rank of M .
Since the local (r, j)-radical types of M ′, M ′′ are both lower semicontinuous by
Proposition 3.14 and since the sum of these local radical types is the constant
function m, we conclude that both M ′, M ′′ have constant (r, j)-radical rank.

The argument for (r, j)-socle rank is essentially the same. �
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5. Coherent sheaves on locally closed subvarieties of E(r, g)

Extending the construction of vector bundles given in [CFP12], we construct
image coherent sheaves Imj(M) and kernel coherent sheaves Kerj(M) on E(r, g)
associated to a u(g)-module M . Our construction in Theorem 5.4 involves the
patching of images (respectively, kernels) of explicit linear maps on affine opens of
E(r, g). The reader should keep in mind that these image and kernel sheaves are
not images and kernels of the action of u(g), but rather globalizations of images
and kernels of local actions on M ⊗k[VΣ] whose fibers above a generic point ε ∈ VΣ

are given by the images and kernels of the action of u(ε). In Theorem 5.18, we show
that these kernel and image sheaves are the same as subsheaves of the free coherent
sheaf M ⊗ OE(r,g) as the coherent sheaves we obtain by equivariant descent with
respect to the GLr-torsor N r

p (g)o → E(r, g) and globally defined operators on free
coherent sheaves of ON rp (g)o-modules

Throughout this section, we adopt most of the terminology introduced in No-
tation 3.12 and Definition 3.13. In particular, we fix a basis {x1, . . . , xn} for g;
as shown in Corollary ??, the image and kernel sheaves we introduce are do not
depend upon this choice of basis, though it is used in their formulation.

Throughout this section, we adopt most of the terminology introduced in Nota-
tion 3.12 and Definition 3.13. We make a minor generalization in the definition of
the local coordinates Y Σ

i,s extending our considerations from E(r, g) to an arbitrary
closed subset W ⊂ Grass(r, g). Indeed, we could consider locally closed subsets
X ⊂ Grass(r, g) at the cost of working with coherent sheaves on X rather than the
simpler situation of modules for k[W ].

Notation 5.1. Let W ⊂ Grass(r, g) be a closed subset. Let Σ ⊂ {1, . . . , n} be
a subset of cardinality r. Recall the closed embedding sΣ : UΣ ↪→ Mn,r induced
by the section sΣ : UΣ ↪→ Mo

n,r and the local variables TΣ
i,s = s∗Σ(Ti,s) generating

k[UΣ].

Let WΣ = W ∩ UΣ. Define YW,Σi,s to be the image of TΣ
i,s under the projection

k[UΣ] // // k[WΣ] , TΣ
i,s 7→ YW,Σi,s

We reserve the notation Y Σ
i,s for the special case W = E(r, g) which is of most

interest to us. For a u(g)-module M we define the following k[WΣ]-endomorphism
generalizing Definition 3.13 to an arbitrary closed subset W :

(5.1.1) ΘW,Σ
s ≡

n∑
i=1

xi ⊗ YW,Σi,s : M ⊗ k[WΣ]→M ⊗ k[WΣ],

via

m⊗ 1 7→
∑
i

xi(m)⊗ YW,Σi,s .

We again reserve the notation ΘΣ
s for W = E(r, g).

Definition 5.2. (cf. [CFP12, 6.1]) Let M be a u(g)-module, let W ⊂ Grassr(g)
be a closed subset, and let Σ ⊂ {1, . . . , n} be a subset of cardinality r. We define
two k[WΣ]-submodules of the free module M ⊗ k[WΣ]:

Im(M)WΣ ≡
r∑
s=1

Im ΘW,Σ
s = Im{ΘW,Σ

1 +. . .+ΘW,Σ
r : (M⊗k[WΣ])⊕r →M⊗k[WΣ]}
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Ker(M)WΣ
≡

r⋂
s=1

Ker ΘW,Σ
s = Ker{

r⊕
s=1

ΘW,Σ
s : M ⊗ k[WΣ]→ (M ⊗ k[WΣ])⊕r}.

We identify these k[WΣ]-submodules of M ⊗k[WΣ] with coherent subsheaves of the
free OW -module M ⊗OW restricted to the affine open subvariety WΣ ⊂W .

We remind the reader of the following elementary lemma.

Lemma 5.3. Let X be a topological space with an open covering {Ui, i ∈ I}, and
let G be a sheaf on X. Suppose one is given subsheaves Fi ⊂ G|Ui for all i such
that (Fi)|Ui,j = (Fj)|Ui,j for all pairs i, j, where Ui,j = Ui ∩ Uj. Then the Fi patch
together to determine a uniquely defined subsheaf F ⊂ G satisfying F|Ui = Fi (for
all i ∈ I).

We now are in a position to construct image and kernel sheaves.

Theorem 5.4. Retain the notation of Definition 5.2. The coherent subsheaves

Im(M)WΣ
⊂M ⊗ (OW )|WΣ

= M ⊗ k[WΣ]

on WΣ patch together to determine a (unique) coherent subsheaf

(5.4.1) ImW (M) ⊂M ⊗OW
on W . Similarly, the coherent subsheaves

Ker(M)WΣ
⊂M ⊗ (OW )|WΣ

patch together to determine a (unique) coherent subsheaf

(5.4.2) KerW (M) ⊂M ⊗OW .

Proof. By Lemma 5.3, it suffices to prove

Ker(M)WΣ
⊗k[WΣ] k[WΣ,Σ′ ] = Ker(M)WΣ′ ⊗k[WΣ′ ]

k[WΣ,Σ′ ]

Im(M)WΣ ⊗k[WΣ] k[WΣ,Σ′ ] = Im(M)WΣ′ ⊗k[WΣ′ ]
k[WΣ,Σ′ ]

for any pair of subsets Σ,Σ′ ⊂ {1, . . . , n}, where WΣ,Σ′ = WΣ ∩WΣ′ .
Since localization is exact, the equality of kernels (respectively, images) restricted

toWΣ,Σ′ is equivalent to the equality of kernels (resp., images) of the localized maps:

(5.4.3)

r⊕
s=1

ΘW,Σ
s : M ⊗k[WΣ] k[WΣ,Σ′ ]→ (M ⊗k[WΣ] k[WΣ,Σ′ ])

⊕r

and
r⊕
s=1

ΘW,Σ′

s : M ⊗k[WΣ′ ]
k[WΣ,Σ′ ]→ (M ⊗k[WΣ′ ]

k[WΣ,Σ′ ])
⊕r

We express our operators in matrix terms:

(5.4.4)

r⊕
s=1

ΘW,Σ
s = [x1, . . . , xn]⊗ [YW,Σi,s ],

r⊕
s=1

ΘW,Σ′

s = [x1, . . . , xn]⊗ [YW,Σ
′

i,s ]

There is an invertible matrix AWΣ,Σ′ ∈ GLn(k[WΣ,Σ′ ]) which is the “change of

generators” matrix from YW,Σi,s variables to YW,Σ
′

i,s variables. We have

(5.4.5) [YW,Σ
′

i,s ] = AWΣ,Σ′ [Y
W,Σ
i,s ].
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Hence,

Ker

r⊕
s=1

ΘW,Σ′

s = Ker [x1, . . . , xn]⊗ [YW,Σ
′

i,s ] = Ker [x1, . . . , xn]⊗AWΣ,Σ′ [Y
W,Σ
i,s ] =

Ker([1]⊗AWΣ,Σ′)([x1, . . . , xn]⊗ [YW,Σi,s ]) = Ker[x1, . . . , xn]⊗ [YW,Σi,s ] = Ker

r⊕
s=1

ΘW,Σ
s

in M ⊗ k[WΣ,Σ′ ] . The proof for images is strictly analogous.
We now explain the construction of the change of generators matrix AWΣ,Σ′ in

more detail. Let pΣ(T ) ∈ k[Ti,s] = k[Mn,r] be the Σ-minor of the n × r matrix
[Ti,s]. Let

αΣ : {1, . . . , r} → Σ

be the bijection with αΣ(1) < αΣ(2) < · · · < αΣ(r), and let AΣ be an n× r matrix
given by the rule:

AΣ
i,j =

{
Ti,j for i 6∈ Σ

δα−1
Σ (i),j for i ∈ Σ.

Define AΣ,Σ′ ∈Mn(k[Ti,j , p
−1
Σ′ ]) to be the transition matrix from AΣ to AΣ′ :

(5.4.6) AΣ,Σ′A
Σ = AΣ′ .

To construct this transition matrix, we first multiply AΣ by an appropriate matrix
in Mn(k[Ti,j ]) to get [Ti,j ], and then by another matrix to make the submatrix cor-
responding to Σ′ identity. The second matrix requires inverting the minor pΣ′(T ).
The transition matrix AΣ,Σ′ is invertible in Mn(k[Ti,j , p

−1
Σ (T ), p−1

Σ′ (T )]) since the

analogously constructed matrix AΣ′,Σ ∈Mn(k[Ti,j , p
−1
Σ (T )]) is the left inverse.

Since sΣ is a section of the GLr-torsor p : Mo
n,r → Grassr(g) on UΣ, we have the

following relations

p∗(TΣ
i,s) = p∗(s∗Σ(Ti,s)) =

{
Ti,s for i 6∈ Σ

δα−1(i),s for i ∈ Σ,

Hence, we can rewrite (5.4.6) as

(5.4.7) AΣ,Σ′ [p
∗(TΣ

i,s)] = [p∗(TΣ′

i,s )].

Applying s∗Σ′ entry-wise to both sides, we get

(5.4.8) AGr
Σ,Σ′ [T

Σ
i,s] ≡ (s∗Σ′ ◦AΣ,Σ′ ◦ p∗)[TΣ

i,s] = [s∗Σ′p
∗(TΣ′

i,s )] = [TΣ′

i,s ].

Finally, we set AWΣ,Σ′ ≡ i∗(AGr
Σ,Σ′) where i∗ : k[UΣ ∩UΣ′ ]→ k[WΣ ∩WΣ′ ] is the map

on algebras induced by the embedding i : W ⊂ Grassr(g). The equation (5.4.5)
follows by applying i∗ to (5.4.8). �

Definition 5.5. Let M be a u(g)-module and let X ⊂ Grass(r, V ) be a locally
closed subvariety. We define the image sheaf

ImX(M) ⊂ M ⊗OX
to be the coherent sheaf obtained by restricting the coherent sheaf ImW (M) of
Theorem 5.4 to X, where W is the closure of X in Grass(r,V).

Similarly, we define the kernel sheaf

KerX(M) ⊂ M ⊗OX
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to be the coherent sheaf obtained by restricting the coherent sheaf KerW (M) of
Theorem 5.4 to X.

We now assume that W ⊂ E(r, g). Under this assumption, the operators ΘΣ,W
s

commute which allows us to extend Definitions 5.2 as follows:

Definition 5.6. Let M be a u(g)-module, let W ⊂ E(r, g) be a closed subset, let
Σ ⊂ {1, . . . , n} be a subset of cardinality r, and let j be a positive integer ≤ (p−1)r.
We define the following k[WΣ]-submodules of the free module M ⊗ k[WΣ]:

Kerj(M)WΣ
≡ Ker{

⊕
j1+···+jr=j

(ΘW,Σ
1 )j1 . . . (ΘW,Σ

r )jr : M⊗k[WΣ]→ (M⊗k[WΣ])⊕r(j)}

Imj(M)WΣ
≡ Im{

∑
j1+···+jr=j

(ΘW,Σ
1 )j1 . . . (ΘW,Σ

r )jr : (M⊗k[WΣ])⊕r(j) →M⊗k[WΣ]}

where r(j) is the number of ways j can be written as a sum of r non-negative
integers, j = j1 + · · ·+ jr.

Notation 5.7. In the special case j = 1, we continue to use KerW (M), ImW (M)
rather than Kerj,W (M), Imj,W (M). In the special case in which W equals E(r, g),
we drop the superscript W and simply write Kerj(M), Imj(M).

Theorem 5.8. The coherent subsheaves

Imj(M)WΣ ⊂M ⊗ (OW )|WΣ
= M ⊗ k[WΣ]

of Definition 5.6 patch together to determine a (unique) coherent subsheaf

(5.8.1) Imj,W (M) ⊂M ⊗OW .

Similarly, the coherent subsheaves

Kerj(M)WΣ
⊂M ⊗ (OW )|WΣ

)

of Definition 5.6 patch together to determine a (unique) coherent subsheaf

(5.8.2) Kerj,W (M) ⊂M ⊗OW .

Proof. We need to prove an analogue of Theorem 5.4 for j > 1. The proof proceeds
exactly as in the j = 1 case with a minor change that we describe. Let AWΣ,Σ be the

change of variables matrix as in (5.4.5). We have

Ker
⊕

∑
j`=j

(ΘW,Σ′

1 )j1 . . . (ΘW,Σ′

r )jr = Ker
⊕

∑
j`=j

([xi]⊗[YW,Σ
′

i,1 ])j1 . . . ([xi]⊗[YW,Σ
′

i,r ])jr =

Ker
⊕

j1+···+jr=j

([xi]⊗AWΣ,Σ′ [Y
W,Σ
i,1 ])j1 . . . ([xi]⊗AWΣ,Σ′ [Y

W,Σ
i,r ])jr ) =

Ker ([1]⊗AWΣ,Σ′)j(
⊕

j1+···+jr=j

([xi]⊗ [YW,Σi,1 ])j1 . . . ([xi]⊗ [YW,Σi,r ])jr ) =

Ker
⊕

j1+···+jr=j

([xi]⊗[YW,Σi,1 ])j1 . . . ([xi]⊗[YW,Σi,r ])jr = Ker
⊕

j1+···+jr=j

(ΘW,Σ
1 )j1 . . . (ΘW,Σ

r )jr .

The proof for images is similar. �
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Definition 5.9. Let M be a u(g)-module and let X ⊂ E(r, g) be a locally closed
subvariety. We define the j-image sheaf

Imj,X(M) ⊂ M ⊗OX

to be the coherent sheaf obtained by restricting the coherent sheaf Imj,W (M) of
Theorem 5.8 to X, where W is the closure of X in Grass(r,V).

Similarly, we define the j-kernel sheaf

Kerj,X(M) ⊂ M ⊗OX

to be the coherent sheaf obtained by restricting the coherent sheaf Kerj,W (M) of
Theorem 5.4 to X.

We also define the sheaf Cokerj,W (M) to be the cokernel of the embedding
Imj,X(M)→M ⊗OX

The following elementary proposition identifies the “generic” fibers of the image
and kernel sheaves of Definition 5.9. This is particularly useful when the locally
closed subset X ⊂ E(r, g) is an orbit closure.

Proposition 5.10. Let M be a u(g)-module, X ⊂ Grassr(g) be a locally closed
subset, W = X be the closure of X, and r, j be positive integers with j ≤ (p− 1)r.
If j > 1, we further assume that X ⊂ E(r, g). For any Σ ⊂ {1, . . . , n} of cardinality
r there exists an open dense subset U ⊂ X ∩WΣ such that for any point ε ∈ U with
residue field K there are natural identifications

Imj,X(M)ε = Imj(M)WΣ
⊗k[WΣ] K = Radj(ε∗(MK)),

Kerj,X(M)ε = Kerj(M)WΣ
⊗k[WΣ] K = Socj(ε∗(MK)).

Proof. Since X is open dense in W , we may assume that W = X. For ε ∈ WΣ a
generic point, the given identifications are immediate consequences of the exactness
of localization and (3.14.1) (together with its analogue for kernels/socles). The fact
that these identifications apply to an open subset now follows from the generic
flatness of the k[WΣ]-modules Imj(M)WΣ

, Kerj(M)WΣ
. �

Remark 5.11. To see why the isomorphism Imj(M)ε ' Radj(ε∗M) is not valid
for a general u(g)-module M and an arbitrary point ε ∈ E(r, g), we consider the
short exact sequence of bundles on E(r, g),

(5.11.1) 0→ Imj(M)→M ⊗OE(r,g) → Cokerj(M)→ 0.

and specialize at some point ε ∈ E(r, g). The equality Imj(M)ε = Radj(ε∗M)
is equivalent to (left) exactness of specializations at the point ε. In particular,
if R = OE(r,g),ε, the stalk of the structure sheaf at ε, a sufficient (but appar-

ently not necessary) condition for Imj(MX)ε ' Radj(ε∗M) is vanishing of

Tor1
R(k, Cokerj(M)R).

For an elementary example of the failure of the isomorphism Kerj(M)ε '
Socj(ε∗M) outside of an open subset of WΣ, we consider g = ga ⊕ ga , take r = 1
and j = 1 as in Remark 3.15. Let {x1, x2} be a fixed basis of g, and let M be the
four dimensional module with basis {m1, . . . ,m4}, such that x1m1 = m4, x1m2 =
x1m3 = x1m4 = 0 and x2m1 = m3, x2m2 = m4, x2m3 = x2m4 = 0. We can
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picture M as follows:
m2

x2

##

m1
x2

##x1{{
m4 m3.

The kernel of

x1 ⊗ 1 + x2 ⊗ T {1}2 : M ⊗ k[T
{1}
2 ]→M ⊗ k[T

{1}
2 ]

(as in (3.15.1) ) is a free k[T
{1}
2 ]-module of rank 2, generated by m3⊗1 and m4⊗1.

The specialization of this module at the point ε = kx1 (letting T2 → 0) is vector
space of dimension 2. This is a proper subspace of Soc(ε∗(M)) which is spanned
by m2,m3,m4.

Assume now that g = Lie(G) for an algebraic group G (over k) and that the
u(g)-module M comes from a rational G-module structure on M . Then the action
map u(g)⊗M →M is G-equivariant; in other words, for g ∈ G, x ∈ g, and m ∈M ,

(5.11.2) (x ◦m)g = xg ◦mg,

where the action x 7→ xg is the adjoint action of g on x and the action m 7→ mg is
the given rational action of G on M .

For ε ∈ E(r, g) denote by εg the result of the (adjoint) action of G of E(r, g).
This action induces an action of G on OE(r,g) in the usual way. For U ⊂ E(r, g),

and f ∈ OE(r,g)(U), we have fg ∈ OE(r,g)(U
g−1

).

Let ΘΣ
s be as in (3.13.1) (or (3.15.1) for W = E(r, g)), and let ε ∈ VΣ. Applying

(5.11.2) to X = ΘΣ
s (ε) we get the following equality:

(5.11.3)

(ΘΣ
s (ε)m)g = (

∑
Y Σ
i,s(ε)xi)(m))g =

∑
Y Σ
i,s(ε)x

g
im

g = (ΘΣ
s )g(εg

−1

)(mg),

where

(ΘΣ
s )g ≡

n∑
i=1

xgi ⊗ (Y Σ
i,s)

g : M ⊗ k[V g
−1

Σ ]→M ⊗ k[V g
−1

Σ ].

Hence, specialization of the following diagram at each point ε ∈ VΣ is commutative:

(5.11.4) M ⊗ k[VΣ]

(ΘΣ
1 )j1 ...(ΘΣ

r )jr

��

g // M ⊗ k[V g
−1

Σ ]

((ΘΣ
1 )j1 ...(ΘΣ

r )jr )g

��

M ⊗ k[VΣ]
g // M ⊗ k[V g

−1

Σ ].

This implies that the diagram is commutative. Indeed, suppose f : M ⊗ k[VΣ] →
M⊗k[V g

−1

Σ ] is a map of modules compatible with the isomorphism k[VΣ]
g→ k[V g

−1

Σ ]
and such that the specialization of f at each point ε ∈ VΣ is zero. Since special-

ization is right exact, this implies that the surjection M ⊗ k[V g
−1

Σ ] → Coker f
is an isomorphism when specialized to any point of VΣ. This, in turn, implies

that M ⊗ k[V g
−1

Σ ] ' Coker f (see, for example, [BP12, 3.1]). Therefore, f = 0.
To conclude commutativity of the diagram (5.11.4) we apply this argument to

((ΘΣ
1 )j1 . . . (ΘΣ

r )jr )g ◦ g − g ◦ (ΘΣ
1 )j1 . . . (ΘΣ

r )jr : M ⊗ k[VΣ]→M ⊗ k[V g
−1

Σ ].

Let G be an affine algebraic group and X an algebraic variety on which G acts. A
quasi-coherent sheaf F on X is said to be G-equivariant if one has an algebraic (i.e.,
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functorial with respect to base change from k to any finitely generated commutative
k-algebra R) action of G on F compatible with the action of G on X: for all open
subset U ⊂ X and every h, g ∈ G(R) , an OX(UR)-isomorphism (−)g : F(UR) →
F(Ug

−1

R ) such that (−)h ◦ (−)g = (−)hg. This is equivalent to the following data:

an isomorphism θ : µ∗F ∼→ p∗F (where µ, p : G × X → X are the action
and projection maps) together with a cocycle condition on the pull-backs of θ to
G×G×X insuring that (−)h ◦ (−)g = (−)hg.

If X is a point, then a G-equivariant sheaf on X is simply a rational G-module.
If G acts of X and if M is a rational G-module, then the trivial vector bundle
M ⊗ OX is a G–equivariant vector bundle (that is, a vector bundle which is also
a G-equivariant sheaf). If X is a G-orbit (that is, G acts transitively on X), then
any G-equivariant sheaf on X is a G-equivariant vector bundle.

The following proposition shows that the Imj(M), Kerj(M), Cokerj(M) are
G-equivariant sheaves whenever g = Lie(G) and M is a rational G-module.

Proposition 5.12. Let G be an affine algebraic group, g = Lie(G), and M a
rational G-module. Fix some r ≥ 1 and j with 1 ≤ j ≤ (p − 1)r. Then Imj(M)

(respectively, Cokerj(M); resp., Kerj(M)) is a G-equivariant sheaf on E(r, g).
More generally, if X ⊂ Grass(g) is a G-stable, locally closed subset with X ⊂

E(r, g) for j > 1, then Imj,X(M) (resp. Cokerj,X(M); resp., Kerj,X(M)) is a
G-equivariant sheaf on W .

Proof. Let OE denote the structure sheaf of the projective variety E(r, g). To prove
that Imj(M) is a G-equivariant sheaf on E(r, g), it suffices to prove that Imj(M) ⊂
M ⊗OE is a G-stable subsheaf. For this, it suffices to show that the action of each
g ∈ G sends the stalk Imj(M)(ε) at ε to the stalk Imj(M)(εg−1).

Localizing (5.11.4) we obtain the commutative square

(5.12.1) M ⊗ k[VΣ](ε)

(ΘΣ
1 )j1 ...(ΘΣ

r )jr

��

g // M ⊗ k[V g
−1

Σ ](εg−1)

((ΘΣ
1 )j1 ...(ΘΣ

r )jr )g

��

M ⊗ k[VΣ](ε)
g // M ⊗ k[V g

−1

Σ ](εg−1).

Since kernels and images commute with taking the stalk, we conclude that Imj(M),

Kerj(M), Cokerj(M) are G-equivariant sheaves.
The proof of the second assertion for X ⊂ Grassr(g) a G-stable, locally closed

subset can be obtained from the above proof by making minor notational changes.
�

As in [CFP12, §6.2], we give an alternative construction of image and kernel
sheaves Imj(M), Kerj(M) on E(r, g) which does not rely on a patching argument.
Rather than identify these sheaves on N r

p (g) local charts VΣ ⊂ E(r, g), this alterna-
tive construction exploits the technique of equivariant descent to obtain the sheaves
from a global construction on N r

p (g)o, a GLr-torsor over E(r, g) obtained from the
classical Stiefel fibration Mo

n,r → Grassn,r. This is a natural extension to r > 1 of
the construction of the global nilpotent operator given in [FP11].

As we shall see, one advantage of this approach is that it easily leads to the
verification that the kernel and image sheaves do not depend upon our choice
{x1, . . . , xn} of basis for g.
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The natural action of GLr on g⊕r induces an action of GLr on g×r, the affine
variety associated to g⊕r (isomorphic to the affine space Anr); if g = Lie(G), then
G also acts on g×r by the diagonal adjoint action and this action commutes with
that of GLr. We set (g×r)o ⊂ g×r to be the open subvariety of those r-tuples of
elements of g which are linearly independent. We consider the following diagram
of quasi-projective varieties over k with Cartesian (i.e., pull-back) squares

(5.12.2) N r
p (g) // g×r

N r
p (g)o

��

//

OO

(g×r)o

��

OO

E(r, g) // Grassr(g)

whose upper vertical maps are open immersions, lower vertical maps are quotient
maps by the GLr actions, and horizontal maps are closed immersions.

Our choice of basis {x1, . . . , xn} of g as in Notation 3.12 determines an identifi-
cation of g⊗r with Mn,r. Under this identification, the matrix function Ti,s is the
linear dual to the element (. . . , 0, xi, 0, . . .) ∈ g⊕r with xi in the sth spot. Further-
more, Yi,s ∈ k[N r

p (g)] is defined to be the image of the matrix function Ti,s under
the surjective map

k[Mn,r] ' k[g×r] � k[N r
p (g)], Ti,s 7→ Yi,s.

For any s, 1 ≤ s ≤ r, we define

(5.12.3) Θs ≡
n∑
i=1

xi ⊗ Yi,s ∈ g⊗ k[N r
p (g)]

and use the same notation to denote the operator

Θs : M ⊗ k[N r
p (g)] → M ⊗ k[N r

p (g)], Θs(m⊗ f) =

n∑
i=1

xim⊗ Yi,sf

for any finite dimensional u(g)-module M .

Proposition 5.13. The operator Θs of (5.12.3) does not depend upon the choice
of basis of g.

Proof. Let {y1, . . . , yn} be another choice of basis of g, and set Zi,s equal to the
image of Ti,s under the surjective map k[Mn,r] → k[N r

p (g)] determined by this
choice. Let (ai,j) ∈ GLn(k) be the change of basis matrix, so that yj =

∑
i ai,jxi.

Since Yi,s
′s are the images of the linear duals to xi

′s under the projection k[Mn,r]→
k[N r

p (g)] (and similarly for Zi,s), we conclude that Zj,s =
∑
i bj,iYi,s where (bi,j) =

(ai,j)
−1. To prove the proposition, it suffices to observe that∑

j

yj ⊗ Zj,s ≡
∑
j

(
∑
i

ai,jxi)⊗ (
∑
i

bj,iYi,s) =
∑
i

xi ⊗ Yi,s.

This follows directly from the fact that (ai,j) · (bi,j) equals the identity matrix. �
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Let j : X ⊂ E(r, g) be a locally closed embedding, and denote by X̃ → X the
restriction of the GLr-torsor N r

p (g)o → E(r, g) to X so that there is a Cartesian
square

(5.13.1) X̃
� � j̃ //

��

N r
p (g)o

��
X �
� j // E(r, g).

We extend (5.12.3) by defining

(5.13.2) ΘX̃
s : M ⊗OX̃ → M ⊗OX̃ , Θs(m⊗ f) =

n∑
i=1

xim⊗ j̃∗(Yi,s)f.

Definition 5.14. For any finite-dimensional u(g)-module M , and any j, 1 ≤ j ≤
p(r − 1), we define the following submodules of M ⊗ k[N r

p (g)]:

Im{Θj ,M} = Im{
∑

∑
j`=j

Θj1
1 · · ·Θjr

r : (M ⊗ k[N r
p (g)])⊕r(j) →M ⊗ k[N r

p (g)]},

Ker{Θj ,M} = Ker{[Θj1
1 · · ·Θjr

r ]∑ j`=j : M ⊗ k[N r
p (g)]→ (M ⊗ k[N r

p (g)])⊕r(j)},
where r(j) is the number of ways to write j as a sum of non-negative integers.

Moreover, for any locally closed subset X ⊂ E(r, g), we define the following

coherent sheaves on X̃:

Im{Θj,X̃ ,M} = Im{
∑

Σj`=j

(ΘX̃
1 )j1 · · · (ΘX̃

r )jr : (M ⊗OX̃)⊕r(j) →M ⊗OX̃},

Ker{Θj,X̃ ,M} = Ker{[(ΘX̃
1 )j1 · · · (ΘX̃

r )jr ]Σj`=j : M ⊗OX̃ → (M ⊗O⊕r(j)
X̃

}.

Remark 5.15. By Proposition 5.13, Im{Θj,X̃ ,M}, Ker{Θj,X̃ ,M} do not depend
upon our choice of basis for g.

The argument of [CFP12, Lemma 6.7] now applies to show the following:

Lemma 5.16. Let M be a u(g)-module. For any locally closed subset X ⊂ E(r, g),

Ker{Θj,X̃ ,M}, Im{Θj,X̃ ,M} are GLr-invariant OX̃-submodules of M ⊗OX̃ .

The relevance of the previous proposition to our consideration of coherent sheaves
on E(r, g) becomes evident in view of the following categorical equivalence.

Proposition 5.17. Since N r
p (g)o → E(r, g) is a GLr-torsor, there is a natural

equivalence of categories

(5.17.1) η : CohGLr (N r
p (g)o)

∼ // Coh(E(r, g))

between the GLr-equivariant coherent sheaves on N r
p (g)o and coherent sheaves on

E(r, g).
Moreover, (5.17.1) restricts to an equivalence of categories

(5.17.2) ηX : CohGLr (X̃)
∼ // Coh(X)

for any locally closed subset X ∈ E(r, g) and X̃ → X as in (5.13.1).
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Proof. See, for example, [CFP12, 6.5]. �

We now identify the “patching” construction of sheaves in Theorem 5.8 and
the construction obtained via equivariant descent. Even though the proof of the
following theorem is very similar to that of [CFP12, 6.8], we provide it here for
completeness.

Theorem 5.18. Let M be a u(g)-module, let r, j be positive integers with j ≤
(p − 1)r, let X ⊂ E(r, g) be a locally closed subset, and let X̃ → X be GLr-torsor
as in (5.13.1). Then

Imj,X(M) = ηX(Im{Θj,X̃ ,M})

Kerj,X(M) = ηX(Ker{Θj,X̃ ,M})

as subsheaves of the free coherent sheaf M ⊗OX .

Proof. We give the proof in the special case X = E(r, g); the general proof proceeds
exactly as that given, only with cumbersome additional notation involving base
change from E(r, g) to X. Since N r

p (g)o is open dense in N r
p (g), the exactness of

localization implies that for X = E(r, g), X̃ = N r
p (g)o,

Im{Θj,X̃ ,M} = Im{Θj ,M}|X̃ , Ker{Θj,X̃ ,M} = Ker{Θj ,M}X̃ .

Hence, in the case X = E(r, g), the statement reduces to the following equalities:

(5.18.1) Imj(M) = η(Im{Θj ,M}|N rp (g)o), Kerj(M) = η(Ker{Θj ,M}|N rp (g)o).

It suffices to show that the asserted equalities of sheaves are valid when restricted
to each open chart VΣ ⊂ E(r, g) as Σ runs through subsets of cardinality r in
{1, 2, . . . , n}.

The operator Θs of (5.12.3) is given as a product (written symbolically) Θs =
[xi]⊗ [Yi,s], where {x1, . . . , xn} is our chosen basis for g.

Let Σ = {i1, . . . , ir}, let VΣ = UΣ ∩ E(r, g), and let ṼΣ → VΣ be the GLr-
torsor obtained by pulling-back the GLr-torsor N r

p (g)o → E(r, g) along the open

immersion VΣ ⊂ E(r, g). The GLr-torsor ṼΣ → VΣ is trivial (see, for example,

[CFP12, Rem. 6.6]). The section sΣ of Remark 3.12 gives a splitting ṼΣ = VΣ×GLr
given explicitly as follows. Let ε ∈ VΣ, let s(ε) = AΣ(ε) as defined in Prop. 1.1 or

Notation 3.12 and let g ∈ GLr. Then the isomorphism VΣ ×GLr
∼ // ṼΣ ⊂Mn,r

is given by

ε× g 7→ AΣ(ε) · g−1

where we use matrix multiplication to multiply AΣ(ε) and g−1. We use g−1 here
because the action of GLr on Mo

n,r in the GLr-torsor Mo
n,r → Grassr(g) is via

multiplication by the inverse on the right. Let Zit,j , 1 ≤ t, j ≤ r be the standard
polynomial generators of k[GLr]. The effect of the associated isomorphism on

coordinate algebras k[ṼΣ]
∼→ k[VΣ]⊗k[GLr] = k[Y Σ

i,s]⊗k[Zit,s,det−1] can be written
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symbolically as follows:

Y1,1 . . . Y1,r

...
. . .

...

...
. . .

...
Yn,1 . . . Yn,r


∼→



Y Σ
1,1 . . . Y Σ

1,r
...

. . .
...

...
. . .

...
Y Σ
n,1 . . . Y Σ

n,r

⊗
Zi1,1 . . . Zi1,r

...
. . .

...
Zir,1 . . . Zir,r


−1

Hence, we obtain the following decomposition (independent of s) of the operator

Θs ↓ṼΣ
on M ⊗ k[ṼΣ] 'M ⊗ k[VΣ]⊗ k[GLr]:

Θs ↓ṼΣ
= ΘΣ

s ⊗ [Zit,j ]
−1 ∈ (M ⊗ k[Y Σ

i,s])⊗ k[GLr].

Because this decomposition is independent of s, this gives decompositions

(5.18.2) Θj1
1 · · ·Θjr

r = (ΘΣ
1 )j1 · · · (ΘΣ

r )jr ⊗ [Zit,j ]
−j

where j = j1 + · · ·+ jr. The exactness of localization enables us to conclude that

Im{Θj ,M} ↓ṼΣ
= Imj(M)VΣ ⊗ k[GLr] = (η ↓VΣ)−1(Imj(M)VΣ),

Ker{Θj ,M} ↓ṼΣ
= Kerj(M)VΣ

⊗ k[GLr] = (η ↓VΣ
)−1(Kerj(M)VΣ

),

where the right hand equalities hold by the triviality of the GLr-torsor ṼΣ → VΣ

In other words, we conclude

ηVΣ(Im{Θj ,M} ↓ṼΣ
) = Imj(M)VΣ ,

ηVΣ(Ker{Θj ,M} ↓ṼΣ
) = Kerj(M)VΣ ,

which finishes the proof. �

Theorem 5.18 combined with Proposition 5.13 (see also Remark 5.15) immedi-
ately imply the following corollary.

Corollary 5.19. Let M be a finite-dimensional u(g)-module, and let X ⊂ E(r, g)
be a locally closed subset. Then the sheaves Imj,X(M), Kerj,X(M) are independent
of the choice of basis of g.

For the remainder of this section and in Section 6, we analyze the situation in
which the sheaves Kerj(M), Imj(M) are algebraic vector bundles. This generalizes
the work of the last two authors [FP11] for r = 1 where this connection was first
observed and also the work [CFP12] for the special case of elementary abelian
groups.

The following proposition is a significant extension of [CFP12, 6.2], whose proof
applies in this more general context. For notation, see 3.16.

Proposition 5.20. Let M be an u(g)-module, and let Z = Radj(r, g)M (resp,
Z = Socj(r, g)M). Let X = E(r, g) \ Z. Then Imj,X(M) = Imj(M)|X (resp.,

Kerj,X(M)) is an algebraic vector bundle on X.
Moreover, the fiber of Imj(M) (reps., Kerj(M)) at ε ∈ X is naturally identified

with Radj(ε∗M) (resp. Socj(ε∗M)).
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Proof. It suffices to restrict to an arbitrary Σ ⊂ {1, . . . , n} of cardinality r and
prove that the OVΣ∩X -modules Imj(M)|VΣ∩X (resp., (Kerj(M)|VΣ∩X) are locally
free.

Recall that ΘΣ
s (ε) for ε ∈ E(r, g) is the specialization of ΘΣ

s at the point ε, which
is the result of tensoring (−)⊗k[VΣ] k along evaluation at ε. Since specialization is
right exact,

Coker{
∑

∑
ji=j

(ΘΣ
1 )j1 · · · (ΘΣ

r )jr} ⊗k[VΣ] k = Coker{
∑

∑
ji=j

ΘΣ
1 (ε)j1 · · ·ΘΣ

r (ε)jr}.

Exactly as in the proof of [CFP12, 6.2], the hypothesis that dim Radj(ε∗M) is the
same for any ε ∈ X implies that Coker{

∑∑
ji=j

(ΘΣ
1 )j1 · · · (ΘΣ

r )jr}|VΣ∩X is a locally

free OVΣ∩X -module. The short exact sequence

0 // Imj(M)VΣ
// (M ⊗ k[VΣ])⊕r(j) // Coker{

∑∑
ji=j

(ΘΣ
1 )j1 · · · (ΘΣ

r )jr} // 0

localized at VΣ∩X now implies that Im(M)j|VΣ∩X is locally free, as well as enables

the identification of the fiber above ε ∈ VΣ ∩X.
The proof for Kerj(M) is a minor adaptation of above; see also the proof of

Theorem 6.2 of [CFP12]. �

As an immediate corollary we verify that Imj(M) (respectively, Kerj(M)) is an
algebraic vector bundle on E(r, g) provided that M has constant (r, j)-radical rank
(respectively, constant (r, j)-socle rank).

Corollary 5.21. Let M be an u(g)-module which has constant (r, j)-radical rank
(respectively, (r, j)-socle rank). Then the coherent sheaf Imj(M) (respectively,
Kerj(M)) is an algebraic vector bundle on E(r, g).

Moreover, the fiber of Imj(M) (resp., Kerj(M)) at ε is naturally identified with

Radj(ε∗M) (resp. Socj(ε∗M)).

Proof. The condition of constant (r, j)-radical rank (respectively, (r, j)-socle rank)
implies that Radj(r, g)M = ∅ (resp, Socj(r, g)M = ∅). Hence, the corollary is a
special case of Proposition 5.20 for X = E(r, g). �

Example 5.22. Let u be a nilpotent restricted Lie algebra such that x[p] = 0 for any
x ∈ u, and let uad denote the adjoint representation of u on itself. Let X ⊂ E(r, u)
denote the open subvariety of maximal elementary subalgebras of dimension r as
in Prop. 3.21. Then Ker(uad)|X ⊂ uad ⊗OX is isomorphic to the restriction along
X ⊂ E(r, u) ⊂ Grassr(g) of the canonical rank r subbundle γr ⊂ u⊗OGrassr(u).

Indeed, as noted in the proof of Prop. 3.21, X is an open subset of E(r, u) equal
to the complement of Soc(r, u)uad

. Hence, by Proposition 5.20, Ker(uad)|X is a
vector bundle with the fiber Ker(uad)ε = Soc(ε∗(uad)) for any ε ∈ X. Since ε is
maximal, Soc(ε∗(uad)) = ε which finishes the proof.

In the next example we specialize to u = u3 as in Example 1.7

Example 5.23. Let g = u3 ⊂ gl3 so that E(2, u3) ' P1. Consider u3 as a module
over itself via the adjoint action. Then

Ker(u3) ' OP1(−1)⊕OP1 ⊂ u3 ⊗OP1 .
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The following proposition refines the analysis given in [FP11] of projective mod-
ules on sl⊕r2 . We implicitly use the isomorphism E(r, sl⊕r2 ) ' (P1)×r of Corollary
1.13.

Proposition 5.24. Let g = sl⊕r2 and let πs : g → sl2 be the s-th projection,
1 ≤ s ≤ r. For each λ, 0 ≤ λ ≤ p − 1, let Pλ be the indecomposable projective
u(sl2)-module of highest weight λ. Then for each (λ, s) 6= (λ′, s′), there exists
some j such that the vector bundle Kerj(π∗s (Pλ)) on E(r, g) is not isomorphic to
Kerj(π∗s′(Pλ′)).

Proof. Observe that Socj(ε∗(π∗sM)) = Socj(ε∗sM) for any u(sl2)-module M and
any j, 1 ≤ j < r, where ε = (ε1, . . . , εr) ∈ E(r, sl⊕r2 ); in particular, the action of ε
on ε∗(π∗sM) factors through εs. This implies that Kerj(π∗s (Pλ)) ' π∗s (Kerj(Pλ)).
The proposition now follows from the computation given in [FP11, 6.3]. �

6. Vector bundles on G-orbits of E(r, g)

Our explicit examples of algebraic vector bundles involve the restrictions of im-
age, cokernel, and kernel sheaves to G-orbits, where G is an algebraic group, g is
the Lie algebra of G, and M is a rational G-module. Proposition 6.1 verifies that
the image and kernel sheaves determine algebraic vector bundles on G-orbits inside
E(r, g), which are interpreted in Theorem 6.5 in terms of the well-known induction
functor from rational H-modules to vector bundles on G/H. .

We begin this section with a general discussion of such bundles and conclude
with explicit examples.

Let ε ⊂ E(r, g) be an elementary subalgebra, and let X = G · ε be the G-orbit
of ε in E(r, g). Then X is open in its closure i ◦ j : X ⊂ X ⊂ E(r, g), and, hence,
to any finite-dimensional rational G-representation M and any j, 1 ≤ j ≤ (p− 1)r,
we can associate coherent sheaves Imj,X(M), Kerj,X(M) as in Definition 5.9.

The following proposition can be viewed as a generalization of Proposition 4.4.

Proposition 6.1. Let G be an affine algebraic group, g = Lie(G), and M a rational
G-module. Let ε ∈ E(r, g) be an elementary subalgebra of rank r, and let X = G·ε ⊂
E(r, g) be the orbit of ε under the adjoint action of G.

Then

Imj,X(M), Kerj,X(M), Cokerj,X(M)

are algebraic vector bundles on X.
Moreover, for any x = εg ∈ X, we have natural identifications

Imj,X(M)x ' gRadj(ε∗M), Kerj,X(M)x ' g Socj(ε∗M)

of fibers at the point x.

Proof. The sheaves Imj,X(M), Cokerj,X(M), Kerj,X(M) are G-equivariant by
Proposition 5.12 since X is a G-stable locally closed subset of E(r, g). If x = εg

for some g ∈ G, then the action of g on one of these sheaves sends the fiber at
ε isomorphically to the fiber at x. Since X is Noetherian, we conclude that the
sheaves are locally free (see, for example, [FP11, 4.11] or [Hart, 5. ex. 5.8]).

The identification of fibers follows from Proposition 5.10 and the fact that for
a G-rational module M we have equalities gRadj(ε∗M) = Radj((εg)∗M) (resp.,
g Socj(ε∗M) = Socj((εg)∗M)). �
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To identify the bundles on homogeneous varieties, we recall the following well
known induction functor ([Jan]).

Proposition 6.2. [Jan, II.6.1] Let G be a affine algebraic group, H ⊂ G a closed
subgroup. For each (finite dimensional) rational H-module W , consider the sheaf
of OG/H-modules LG/H(W ) which sends an open subset U ⊂ G/H to the sections

of G×H W → G/H above U :

(6.2.1) LG/H(W )(U) = {sections of G×H W → G/H above U}.
(1) So defined, W 7→ LG/H(W ) is a functor from finite dimensional rational

representations W of H to G-equivariant locally free coherent sheaves on
G/H.

(2) If W is the restriction of a rational G-module, then LG/H(W ) is isomorphic
as a coherent sheaf to W ⊗OG/H .

(3) LG/H(−) is exact and commutes with tensor powers (−)(⊗i), duals (−)#,

symmetric powers Si(−), divided powers Γi(−), exterior powers Λi(−), and
Frobenius twists (−)(i).

In the next proposition we remind the reader that the functor L of (6.2.1) deter-
mines an equivalence of categories between rational H-modules and G-equivariant
vector bundles on G/H. The statement of the proposition follows from the ob-
servation that p : G → G/H is an H-torsor in the fppf topology (cf. [Jan, I.5.6])
and that the sheaf of sections of such an H-torsor is locally trivial in the Zariski
topology by [DG, III.§4,2.4]. We thank Burt Totaro for this last reference.

Proposition 6.3. Let G be an affine algebraic group, and H ⊂ G be a closed
subgroup. For any G-equivariant vector bundle E on G/H we have an isomorphism
of G-equivariant algebraic vector bundles on G/H

E ' LG/H(W ),

where W is the fiber of E over the coset eH ∈ G/H with H-module structure
obtained by restricting the action of G to H (which stabilizes this fiber).

Moreover, for any x = gH ∈ G/H, there is a natural identification of H-modules

Ex ' gW
where Ex is the fiber of E at the point x.

Example 6.4. We identify some standard bundles using the functor L. Let G =
GLn, P = Pr,n−r be a maximal parabolic with the Levi factor L ' GLr ×GLn−r.
Set X = Grassn,r = G/P and let V be the defining representation for G. Denote by
W the representation of P given by composition of the projection P → L → GLr
followed by the defining representation for GLr. We set

(6.4.1) γr ' LX(W ), δn−r ' LX((V/W )#).

Thus, γr is the canonical rank r subbundle on Grassn,r. Observe that we have a
short exact sequence of algebraic vector bundles on X:

(6.4.2) 0 // γr // V ⊗OX // δ∨n−r // 0 ,

where we denote by E∨ the dual sheaf to E .
Let F (−) be one of the functors of Proposition 6.2.3. Then Proposition 6.2.3

implies that
F (γr) ' LX(F (W )).
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Combining Propositions 6.1 and 6.2, we conclude the following “identifications”
of the vector bundles on a G-orbit in E(r, g) associated to a rational G-module.
The proof follows immediately from these propositions.

Theorem 6.5. Let G be an algebraic group and M be a rational G-module. Set
g = Lie(G), and let r be a positive integer. Let H ⊂ G denote the stabilizer of
some ε ∈ E(r, g), set X ' G/H, and consider LX : H-mod → G/H-bundles as in
(6.2.1).

For any j, 1 ≤ j ≤ (p−1)r, we have the following isomorphisms of G-equivariant
vector bundles

Imj,X(M) ' LX(Radj(ε∗M)), Kerj,X(M) ' LX(Socj(ε∗M))

as subbundles of the trivial bundle LX(M) = M⊗OX , where Radj(ε∗M)), Socj(ε∗M))
are endowed with the action of H induced by the action of G on M .

The following proposition, a generalization of [CFP12, 7.9], enables us to identify
kernel bundles provided we know corresponding image bundles and vice versa.

Proposition 6.6. Retain the notation and hypotheses of Theorem 6.5. Then there
is a natural short exact sequence of vector bundles on G/H ' X ⊂ E(r, g)

(6.6.1) 0 // Kerj,X(M#) // (M#)⊗OX // (Imj,X(M))∨ // 0.

Proof. The proof is a repetition of that of [CFP12, 7.19]. By Remark 3.10, the
sequence

(6.6.2) 0 // Socj(ε∗(M#)) // M# // (Radj(ε∗M))# // 0.

is an exact sequence of H-modules. Applying the functor L to (6.6.2) (which
preserves exactness by Proposition 6.2) and appealing to Theorem 6.5, we conclude
the exactness of (6.6.1). �

We next work out specific examples of vector bundles on E(m, gln).

Proposition 6.7. Let G = GLn, and let V be the n-dimensional defining repre-
sentation. Let ε = ur,n−r ∈ E(r(n− r), gln) for some r < n. Consider the (closed)
GLn-orbit

X ≡ GLn ·ε ' Grassn,r

of E(r(n− r), gln). We have the following isomorphisms of algebraic vector bundles
on X:

(1) ImX(V ) ' KerX(V ) ' γr,
Imj,X(V ) = 0 for j > 1.

(2) CokerX(V ) ' δ∨n−r,
Cokerj,X(V ) = 0 for j > 1.

(3) KerX(Λn−1(V )) ' ImX(Λn−1(V )) ' δ∨n−r,
Imj,X(Λn−1(V )) = 0 for j > 1.

Proof. Let e1, . . . , en be the standard basis of V , so that both Rad(ε∗V ) and
Soc(ε∗M) are spanned by e1, . . . , er. That is, Rad(ε∗V ) = Soc(ε∗M) = W as
Pr,n−r-modules in the notation of Example 6.4. Hence, Theorem 6.5 implies that

ImX(V ) ' LX(W ) = γr and KerX(V ) ' LX(W ) = γr.
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This proves the first part of (1). The vanishing Imj,X(V ) = 0 follows immediately

from the fact that Radj(ε∗(V )) = 0 for j ≥ 2.
Part (2) follows from the exactness of (6.4.1). The last assertion follows from the

elementary identification of Λn−1V with V # as GLn-modules and Proposition 6.6.
�

Proposition 6.8. We retain the hypotheses and notation of Proposition 6.7. For
any positive integer m ≤ n− r,

(1) Imm,X(V ⊗m) = γ⊗mr ,
(2) Imm,X(Sm(V )) = Sm(γr),
(3) Imm,X(Λm(V )) = Λm(γr).

Proof. Write u(ε) = k[ti,j ]/(t
p
i,j), 1 ≤ i ≤ r, r+ 1 ≤ j ≤ n. The action of ti,j on V is

given by the rule ti,jej = ei and ti,je` = 0 for ` 6= j. Let W = Rad(ε∗V ) as in the
proof of Prop. 6.7. On a tensor product M ⊗N of modules the action is given by
ti,j(v⊗w) = ti,jv⊗w+v⊗ ti,jw; thus Radm(ε∗(V ⊗m)) is contained in the subspace
of V ⊗m spanned by all elements ei1 ⊗ · · · ⊗ eim , where 1 ≤ i1, . . . , im ≤ r, which is
W⊗m. On the other hand, for any sequence i1, . . . , im, with 1 ≤ i1, . . . , im ≤ r, we
have that

(6.8.1) ei1 ⊗ · · · ⊗ eim = (ti1,r+1 . . . tim,r+m)(er+1 ⊗ · · · ⊗ er+m)

since r + m ≤ n. Hence, Radm(ε∗(V ⊗m)) = W⊗m. Therefore, the equality
Imm,X(V ⊗m) = LX(W⊗m) = γ⊗mr follows from Proposition 6.2.3, Theorem 6.5,
and Example 6.4.

To show (2), note that the action of u(ε) on Sm(V ) is induced by the action on
V ⊗m via the projection V ⊗m � Sm(V ). Hence, the formula (6.8.1) is still valid in
Sm(V ), and implies the inclusion Sm(W ) ⊂ Radm(ε∗(Sm(V )). The reverse inclu-
sion is immediate just as in the tensor powers case. Therefore, Radm(ε∗(Sm(V ))) =
Sm(W ), and we conclude the equality Imm,X(Sm(V )) = Sm(γr) appealing to
Theorem 6.5.

The proof for exterior powers is completely analogous. �

We provide similar computations for the symplectic group Sp2n.

Proposition 6.9. Consider G = Sp2n and its defining representation V (of di-
mension 2n); assume p > 3. Let P ⊂ Sp2n be the unique cominuscule parabolic
subgroup (as described in Definition 2.5), and let p = Lie(P ). Let ε be the nilpotent
radical of p, an elementary subalgebra of sp2n of dimension m =

(
n+1

2

)
. Applying

Theorem 2.13, we consider

Y = E(m, sp2n) ' LG(n, V ).

Let γn ⊂ O⊕2n
Y be the canonical subbundle of rank n. We have the following

natural identifications of algebraic vector bundles on Y :

(1) Im(V ) ' γn, Imj(V ) = 0 for j > 1.

(2) Im(Λ2n−1(V )) ' γ∨n , Imj(Λ2n−1(V )) = 0 for j > 1.

(3) For m ≤ n,
(a) Imm(V ⊗m) = (γn)⊗m,
(b) Imm(Sm(V )) = Sm(γn),
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(c) Imm(Λm(V )) = Λm(γn).

Proof. We view Sp2n as the stabilizer of the form(
0 In
−In 0

)
,

so that sp2n is the set of matrices of the form(
A B
C D

)
where D = −AT and B and C are n × n symmetric matrices. Then p ⊂ sp2n is
defined by C = 0 (this can be easily verified from the explicit description of roots
and roots spaces as in, for example, [EW06, 12.5]). We view V as the space of
column vectors on which these matrices act from the left, and give V the standard
basis e1, . . . , e2n.

The restricted enveloping algebra of ε has the form k[ti,j ]/(t
p
i,j) where 1 ≤ i ≤ n

and n+ i ≤ j ≤ 2n. The generator ti,j acts on V by the matrix Ei,j if j = n+ i and
by Ei,j + Ej−n,i+n otherwise. Here, Ei,j is the matrix with 1 in the (i, j) position
and 0 elsewhere. Thus we have that

(6.9.1) ti,jej = ei, ti,jei+n = ej−n, and ti,je` = 0

whenever ` 6= j, i + n. These relations immediately imply that Rad(ε∗V ) =
Soc(ε∗(V )) = W where W ⊂ V is the P -stable subspace generated by e1, . . . , en.

Moreover, we also have that Radj(ε∗V ) = Socj(ε∗V ) = 0 for any j > 1. Applying
Theorem 6.5, we get

Im(V ) = Ker(V ) ' LY (W ) = γn, Imj(V ) = Kerj(V ) = 0 for j > 1.

Part (2) follows from (1) and the fact that Λ2n−1(V ) is the dual of g-module V .
We proceed to show that Imm(V ⊗m) ' (γn)⊗m for m ≤ n. We note that as

in the proof of Proposition 6.7 it is only necessary to show that (Rad(ε∗V ))⊗m ⊆
Radm(ε∗(V ⊗m)), since the reverse inclusion is obvious.

Since Rad2(ε∗V ) = 0, the action of Radm(u(ε)) on V ⊗m is given by the formula

(6.9.2) (ti1,n+j1 · · · tim,n+jm)(es1 ⊗ · · · ⊗ esm) =∑
π∈Σm

tiπ(1),n+jπ(1)
es1 ⊗ · · · ⊗ tiπ(1),n+jπ(m)

esm .

To prove the inclusion (Rad(ε∗V ))⊗m ⊆ Radm(ε∗(V ⊗m)), we need to show that
for any m-tuple of indices (i1, . . . , im), 1 ≤ ij ≤ n, we have ei1 ⊗ · · · ⊗ eim ∈
Radm(ε∗(V ⊗m)). We first show the following

Claim. For any simple tensor ei1 ⊗ · · · ⊗ eim in (Rad(ε∗V ))⊗m there exists a
permutation w ∈ Σm such that ew(i1) ⊗ · · · ⊗ ew(im) ∈ Radm(ε∗(V ⊗m)).

We proceed to prove the claim. Let ei1 ⊗ · · · ⊗ eim be any simple tensor in
(Rad(ε∗V ))⊗m. Applying a suitable permutation π ∈ Σm to (1, . . . ,m), we may
assume that (i1, . . . , im) has the form (ia1

1 , ia2
2 , . . . , ia`` ) where i1 > i2 > · · · > i` and

a1 + . . . + a` = m. Applying yet another permutation, we may assume that the
string of indices (i1, . . . , im) has the form

(i1, i2, . . . , i`, i
a1−1
1 , . . . , ia`−1

` ),
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with i1 > i2 > · · · > i`. To this string of indices we associate the string of indices
j1, . . . , jm by the following rule:

j1 = i1, j2 = i2, . . . , j` = i`

and (j`+1, . . . , jm) is a subset ofm−` distinct numbers from {1, . . . , n}\{i1, i2, . . . , i`}.
We claim that

(6.9.3) (ti1,n+j1 · · · tim,n+jm)(en+j1 ⊗ · · · ⊗ en+jm) = ei1 ⊗ · · · ⊗ eim .
Indeed, relations (6.9.1) imply that ti1,n+j1en+j1 ⊗ · · · ⊗ tim,n+jmen+jm = ei1 ⊗
· · · ⊗ eim . We need to show that all the other terms in (6.9.2) are zero. To
have tis,n+jsen+jr 6= 0, we must have either js = jr or is = jr. By the choice
of (j1, . . . , jm), the second condition is = jr implies that s = r and, hence,
js = jr. Therefore, tis,n+jsen+jr 6= 0 if and only if js = jr. Since by con-
struction all (j1, . . . , jm) are distinct, we conclude that tiπ(1),n+jπ(1)

en+j1 ⊗ · · · ⊗
tiπ(1),n+jπ(m)

en+jm 6= 0 if and only if π is the identity permutation which proves

(6.9.3). This finishes the proof of the claim.
Now let ei1⊗· · ·⊗eim be an arbitrary tensor with 1 ≤ ij ≤ n. As we just proved,

there exist w ∈ Σm and indices j1, . . . , jm such that

(6.9.4) (tw(i1),n+j1 · · · tw(im),n+jm)(en+j1 ⊗ · · · ⊗ en+jm) = ew(i1) ⊗ · · · ⊗ ew(im).

The formula(6.9.2) implies that if we apply w−1 to (6.9.4) we get the desired result,
that is

(ti1,n+w−1(j1) · · · tim,n+w−1(jm))(en+w−1(j1) ⊗ · · · ⊗ en+w−1(jm)) = ei1 ⊗ · · · ⊗ eim .

Therefore, ei1 ⊗ · · · ⊗ eim ∈ Radm(ε∗(V ⊗m)). The statement for symmetric and
exterior powers follows just as in Proposition 6.8. �

In the next proposition we remind the reader of some standard constructions of
bundles using the operator L in addition to γ and δ mentioned in Example 6.4. As
this must be well-known, we only provide either references or short sketches of the
proofs.

Proposition 6.10. Let G be a reductive algebraic group and let P be a standard
parabolic subgroup. Set g = LieG, p = LieP , and let u be the nilpotent radical of
p.

(1) TG/P ' LG/P (g/p), where TG/P is the tangent bundle.
(2) Assume that g has a nondegenerate G-invariant symmetric bilinear form

(such as the Killing form). Then

ΩG/P = T∨G/P ' LG/P (u),

where u is viewed as P -module via the restriction of the adjoint action of
P on p.

(3) For G = SLn, P = Pr,n−r, X = G/P = Grassn,r, we have

TX ' γ∨r ⊗ δ∨n−r, ΩX ' γr ⊗ δn−r.
(4) Let G = Sp2n, P = Pαn , the cominuscule parabolic. Let Y = G/P . Then

TY ' LG/P (g/p) ' S2(γ∨n ).

Moreover, if p > 2 and does not divide n+ 1, then

ΩY ' S2(γn).
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Proof. (1). See [Jan, II.6.1].
(2). This follows from (1) together with the isomorphism of P -modules (g/p)# '

u, guaranteed by the existence of a nondegenerate form.
(3). We have gad = End(V ). Let e1, . . . , en be a basis of V , and choose a linear

splitting of the sequence 0 // W // V // V/W // 0 sending V/W to

the subspace generated by er+1, . . . , en (see notation introduced in Ex 6.4). We
have

End(V ) = Hom(W,V/W )⊕Hom(V/W,W )⊕Hom(W,W )⊕Hom(V/W, V/W ),

where the sum of the last three summands is a P -stable subspace isomorphic to p.
Hence, we have an isomorphism of P -modules: g/p ' Hom(W,V/W ) 'W#⊗V/W .
Therefore,

TX ' LG/P (g/p) ' L(W#)⊗ L(V/W ) = γ∨r ⊗ δ∨n−r.
Consequently,

ΩX ' γr ⊗ δn−r,
since the form (x, y) 7→ Tr(xy) is non-degenrate on sln.

(4). In this case W is an isotropic subspace of V , and W ' (V/W )#. Then
g/p ' HomSym(W,V/W ) ' S2(W#). Hence,

TY ' LG/P (g/p) ' S2(γ∨n ).

The condition on p assures that the Killing form is nondegenerate (see [Sel65]).
Hence, we can dualize to obtain the last asserted isomorphism. �

We next show how to realize the tangent bundle of G/P for a cominuscule
parabolic P of a simple algebraic group G as a cokernel bundle.

Proposition 6.11. Let G be a simple algebraic group, and let P be a cominuscule
parabolic subgroup of G. Set g = LieG, p = LieP , and let u be the nilpotent radical
of p. Let G · u ' G/P be the (closed) orbit of u ∈ E(dim u, g). Consider g as the
adjoint representation of G. We have isomorphisms of vector bundles on G/P :

ImG/P (g) ' LG/P (p)

and

CokerG/P (g) ' TG/P .

Proof. Let X = G/P , and let ε = u. Then Rad(ε∗g) = [u, g] = p by Prop. 2.8.
Propositions 6.1 and 6.2 give an isomorphism

ImX(g) ' LX(p)

as bundles on X. Applying Proposition 6.2 again, we conclude that the short exact
sequence of rational P -modules

0→ p→ g→ g/p→ 0

determines a short exact sequence of bundles on X:

0→ LX(p) → g⊗OX → LX(g/p)→ 0.

We conclude that

CokerX(g) ' (g⊗OX)/ ImX(g) ' (g⊗OX)/LX(p) ' LX(g/p) ' TG/P .

�
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We offer some other interesting bundles coming from the adjoint representation
of g.

Proposition 6.12. Under the assumptions of Proposition 6.11, we have

Im2,G/P (g) ' LG/P (u),

where u is viewed as a submodule of p via the adjoint action of P .

Proof. Let ε = u. By Proposition 2.8, Rad2(ε∗g) = [u, [u, g]] = u. Hence, Im2,G/P (g) '
LG/P (u) by Theorem 6.5. �

In the next three examples we specialize Proposition 6.12 to the simple groups
of types An, Bn, and Cn.

Example 6.13. Let G = SLn, P = Pr,n−r, X = G/P ' Grassn,r. We have an
isomorphism of vector bundles on X

Im2,X(g) ' ΩX ' γr ⊗ δn−r.

Indeed, this follows immediately from Propositions 6.12 and 6.10(3).

Example 6.14. Let G = SO2n+1 be a simple algebraic group of type Bn so that
g = so2n+1, and let P = Pα1

be the standard cominuscule parabolic subgroup of
G (we choose the symmetric form, the Cartan matrix, and the simple roots as in
[EW06, 12.3]). Let u be the nilpotent radical of p = Lie(P ), and let X ' G/P '
P2n−1 be the G orbit of u in E(2n− 1, g). Then

Im2,X(g) = LG/P (u) ' LP2n−1(V2n−1),

and, if p > 2 and does not divide 2n− 1,

Im2,X(g) ' ΩP2n−1 .

In the first formula above, V2n−1 is the natural module for the block of the Levy
factor of P which has type Bn−1. More precisely, we have P = LU where L is the
Levi factor and U is the unipotent radical. The Levi factor L is a block matrix
group with blocks of size 2 and 2n − 1. Factoring out the subgroup concentrated
in the block of size 2, we get a simple algebraic group isomorphic to SO2n−1. We
take V2n−1 to be the standard module for this group inflated to the parabolic P .

To justify the claims, we note that the isomorphism Im2,X(g) = LX(u) is the
content of Proposition 6.12, whereas the isomorphism Im2,X(g) = LX(V2n−1) fol-
lows from an isomorphism of P -modules u ' V2n−1 which can be checked by direct
inspection. Finally, the last asserted isomorphism follows from Proposition 6.10,
since the condition on p guarantees that the Killing form on g = LieG is nonde-
generate (see [Sel65]).

Example 6.15. Let G = Sp2n, P = Pαn , and assume that p > 3 does not divide
n+ 1. We have an isomorphism of vector bundles on E(

(
n+1

2

)
, g) ' LG2n,n:

Im2(g) ' S2(γn).

Just as in the previous examples, this follows immediately from Theorem 2.13
which identifies E(

(
n+1

2

)
, g) with LG2n,n, and Propositions 6.12 and 6.10(4). Propo-

sition 6.10 is applicable here since the condition on p guarantees that the Killing
form is nondegenerate (see [Sel65]).
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Proposition 6.16. Let G be a simple algebraic group and P ⊂ G be a cominuscule
parabolic. Let g = LieG, p = LieP , and let u be the nilpotent radical of p. Let
X = G · u ⊂ E(r, g) where r = dim u. Consider the adjoint action of G on g. We
have an isomorphism of bundles on X ' G/P :

KerX(g) ' LG/P (u)⊕OX .

If, in addition, g has a nondegenerate G-invariant bilinear form, then

KerX(g) ' ΩX ⊕OX .

Proof. Let ε = u which is an elementary subalgebra by Lemma 2.6. We have
Soc(ε∗(g)) = Cg(u), the centralizer of u in g. Since p is the normalizer of u, we
have Cg(u) ⊂ p. Moreover, since u ⊂ p is a Lie ideal, so is Cg(u). Since p/u
is reductive, we conclude that Cg(u)/u is the center of the Levi subalgebra of p
which coincides with the center of p itself. Denote the center of p by C(p). We
have Cg(u) = u+C(p); moreover, C(p) is a trivial one-dimensional P -module since
P is a maximal parabolic. Therefore, LG/P (C(g)) ' OG/P , a trivial line bundle.
Combining this with Theorem 6.5 we get the following isomorphisms

KerG/P (g) ' LG/P (Cg(u)) ' LG/P (u)⊕ LG/P (C(g)) ' LG/P (u)⊕OG/P .

If g has a nondegenerate G-invariant bilinear form then LG/P (u) is isomorphic
to the cotangent bundle ΩG/P by Proposition 6.10. Hence, in this case we have

KerG/P (g) ' ΩG/P ⊕OG/P .

�

We restate in the following example the special cases of Proposition 6.16 for
which we have an identification E(r, g) = G · u ' G/P as shown in Section 2.

Example 6.17. (1). For G = SL2n, (x, y) = Tr(xy) defines a nondegenerate
G-invariant bilinear form on g = sl2n. Hence, specializing Proposition 6.16 to
G = SL2n, P = Pn,n, r = n2, and E(r, sl2n) ' Grass2n,n, we get an isomorphism of
bundles on the Grassmannian:

Ker(sl2n) ' ΩGrass2n,n
⊕OGrass2n,n

.

(2). Assume that p > 2 and does not divide n + 1. This guarantees that
the Killing form on sp2n is nondegenerate (see [Sel65]). For G = Sp2n and r =
dim u =

(
n+1

2

)
, we have E(r, sp2n) = LG(n, n) (the Lagrangian Grassmannian), by

Theorem 2.13. Hence, we have an isomorphism of bundles on LGn,n:

Ker(sp2n) ' ΩLGn,n ⊕OLGn,n .

7. Vector bundles associated to semi-direct products

In this section, we provide a reinterpretation of “GL-equivariant kE-modules”
considered in [CFP12] as modules for the subgroup scheme G(1),n = V(1) oGLn of
the algebraic group G1,n = VoGLn of Example 1.11. This leads to consideration
of rational representations for semi-direct product group schemes W(1) oH where
H is any algebraic group H and W is any faithful rational H-representation.



48 JON F. CARLSON, ERIC M. FRIEDLANDER, AND JULIA PEVTSOVA

Notation 7.1. Throughout this section, V is an n-dimensional vector space with
chosen basis, so that we may identify GL(V ) with GLn and V with the defining
representation of GLn. Let V = Spec(S∗(V #)) ' G⊕na be the vector group as-
sociated to V , and let V(1) ' (Ga(1))

⊕n be the first Frobenius kernel of V. The
standard action of GLn on V induces an action on the vector group V. Moreover, it
is straightforward that this action stabilizes the subgroup scheme V(1) ⊂ V. Hence,
we can form the following semi-direct products:

(7.1.1) G1,n
def Vo GLn G(1),n

def V(1) o GLn .

Let

(7.1.2) g1,n
def

Lie(G(1),n) = Lie(G1,n) .

We view V ' Lie(V(1)) ⊂ g1,n as an elementary subalgebra of g1,n which is also a
Lie ideal stable under the adjoint action of G1,n. For any r-dimensional subspace
ε ⊂ V ⊂ g1,n, we consider the adjoint action of G1,n on ε. Since V is stable under
the adjoint action, and the action of V on V is trivial, we get that the adjoint orbit
G1,n · ε ⊂ E(r, g1,n) can be identified with GLn ·ε ⊂ Grass(r,V) ' E(r,Lie(V(1))) ⊂
E(r, g1,n).

We recall the notion of a GL-equivariant kE-module considered in [CFP12].

Definition 7.2. Let E be an elementary abelian p-group of rank n and choose
some linear map V → Rad(kE) such that the composition V → Rad(kE) →
Rad(kE)/Rad2(kE) is an isomorphism. This determines an identification kE '
S∗(V )/〈vp, v ∈ V 〉. Then M is said to be a GL-equivariant kE-module (in the
terminology of [CFP12, 3.5]) if M is provided with two pairings

(7.2.1) S∗(V )/〈vp, v ∈ V 〉 ⊗M → M, GL(V )×M →M

such that the first pairing is GL(V )-equivariant with respect to the diagonal action
of GL(V ) on S∗(V )/〈vp, v ∈ V 〉 ⊗M .

As the next proposition explains, the consideration of GL-equivariant kE-modules
has a natural interpretation as G(1),n-representations for G(1),n = V(1) o GLn.

Proposition 7.3. There is a natural equivalence of categories between the category
of rational modules for the group scheme G(1),n and the category of “GL-equivariant
kE-modules”.

Proof. Assume that we are given a functorial action of the semi-direct product

(G(1),n)(A) = V(1)(A) o GLn(A) on M ⊗A

as A runs over commutative k-algebras. We view this as a group action of pairs
(v, g) = (v, 1) · (0, g) on M . Since (0, g) · (v, 1) = (vg, g) = (vg, 1) · (0, g) in the semi-
direct product, we conclude for any m ∈ M that the action of (0, g) on (v, 1) ◦m
equals the action of (vg, 1) on (0, g) ◦m. This is precisely the condition that the
action of V(1) ×M → M is GLn-equivariant for the diagonal action of GLn on
V(1)×M . Consequently, once the identification kE ' kV(1) = u(Lie(V)) is chosen,
to give a GLn-equivariant action kE ×M →M is to give actions of V(1) and GLn
on M which satisfy the condition that this pair of actions determines an action of
the semi-direct product.
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Conversely, given a GLn-equivariant kE-module N , it is straightforward to check
that the actions of GLn and kE ' kV(1) determine an action of G(1),n on the
underlying vector space of N . �

Note that we have GLn acting on g1,n by restricting the adjoint action of G1,n

on its Lie algebra. This, in turn, makes E(r, g1,n) into a GLn-variety. We next
observe that rational G(1),n-representations (even those which are not restrictions
of G1,n-representations) lead to GLn-equivariant sheaves on Grass(r, V ).

Proposition 7.4. Let W ⊂ E(r, g1,n) be a closed GLn-invariant subset for some
r, 1 ≤ r < n. Let M be a finite dimensional rational representation of G(1),n. Then

for any j, 1 ≤ j ≤ (p− 1)r, the image and kernel sheaves Kerj,W (M), Imj,W (M)
on W are GLn-equivariant.

Consequently, Kerj,X(M) and Imj,X(M) are GLn-equivariant algebraic vector
bundles on X = GLn ·ε ' Grassn,r, where ε ⊂ V is an r-dimensional subspace.

Proof. As seen in the proof of Proposition 7.3, the action u(g1,n)⊗M →M restricts
to an action of u(LieV)⊗M →M which is GLn-equivariant. In other words,

(7.4.1) (v ◦m)g = vg ◦mg

for v ∈ V = LieV, g ∈ GLn, m ∈M .
We consider the following analogue of (5.11.4):

(7.4.2) M ⊗ k[WΣ]

(ΘW,Σ1 )j1 ...(ΘW,Σr )jr

��

g // M ⊗ k[W g−1

Σ ]

((ΘW,Σ1 )j1 ...(ΘW,Σr )jr )g

��

M ⊗ k[WΣ]
g // M ⊗ k[W g−1

Σ ],

where g ∈ GLn and WΣ is a principal open subset of W (the restriction of a principal
open subset of Grass(r, g1,n)), and ε ∈WΣ. The operators Θs in (7.4.3) are defined
as in (5.1.1) with u(g) replaced by u(Lie(V)). The commutativity of (7.4.2) follows
from (7.4.1), just as the commutativity of (5.11.4) follows from (5.11.2).

To complete the proof, we argue as in the proof of Proposition 5.12 (replacing the
commutative square (5.11.4) by the above commutative square (7.4.2)) to obtain
the following commutative square analogous to (5.12.1):

(7.4.3) M ⊗ k[WΣ](ε)

(ΘW,Σ1 )j1 ...(ΘW,Σr )jr

��

g // M ⊗ k[W g−1

Σ ](εg−1)

((ΘW,Σ1 )j1 ...(ΘW,Σr )jr )g

��

M ⊗ k[WΣ](ε)
g // M ⊗ k[W g−1

Σ ](εg−1).

The proof of the proposition is completed by arguing exactly as at the end of the
proof of Proposition 5.12: since kernels and images commute with taking stalks,
ImW,j(M), KerW,j(M) are GLn-equivariant sheaves.

The second statement of the proposition follows just as in the proof of Proposi-
tion 6.1. �

Using the GLn equivariance of image and kernel sheaves, we obtain the following
comparison supplementing Proposition 7.4.



50 JON F. CARLSON, ERIC M. FRIEDLANDER, AND JULIA PEVTSOVA

Proposition 7.5. Let M|E denote the kE-module associated to the rational G(1),n-
module M . Choose some r, 1 ≤ r < n, and some j with 1 ≤ j ≤ (p − 1)r. Let
ε ⊂ V be an r-dimensional subspace. Then there are natural identifications of
GLn-equivariant vector bundles on X ' Grass(r, V ),

Imj,X(M) ' Imj(M|E), Kerj,X(M) ' Kerj(M|E),

where the vector bundles Imj(M|E), Kerj(M|E) on Grass(r, V ) are those con-
structed in [CFP12].

Proof. The vector bundle Imj,X(M) on X ⊂ E(r, g1,n) is GLn-equivariant by

Proposition 7.4 with the fiber at the point ε ∈ X isomorphic to Radj(ε∗M) by
Proposition 6.1. As proved in [CFP12, 7.5], the vector bundle Imj(M|E) on
Grass(r, V ) is also GLn-equivariant with fiber over ε ∈ Grass(r, V ) also isomor-

phic to Radj(ε∗M). Hence, Imj,X(M) ' Imj(M|E) by Proposition 6.3.
The argument for the kernels is strictly analogous. �

As an immediate corollary of Proposition 7.3, we conclude the following inter-
pretation of the computations of [CFP12]. The representations N,M,R of the
following proposition are rational G(1),n-modules which do not extend to rational

G1,n-modules. The G(1),n action on N = S∗(V )/S∗≥j+1(V ), for example, is given
by V(1) acting by “multiplying by V ” which increases degree of this graded mod-
ule, whereas the GLn structure is a direct sum of actions on each symmetric power
Si(V ). See [CFP12, 3.6] for details of the G(1),n-structures on N,M,R.

Proposition 7.6. [CFP12, 7.12,7.11,7.14] Let ε ⊂ V be an r-plane for some integer
r, 1 ≤ r ≤ n, and let X = GLn ·ε ' Grassn,r be the orbit of ε in E(r, g1,n) as
in Notation 7.1. There are isomorphisms of GLn-equivariant vector bundles on
Grassn,r:

(1) For the rational G(1),n-module N = S∗(V )/S∗≥j+1(V ) and for any j, 1 ≤
j ≤ p− 1,

Imj,X(N) ' Sj(γr),

where γr is the canonical rank r subbundle of the trivial rank n bundle on Grassn,r.

(2) For the rational G(1),n-module M = Radr(Λ∗(V ))/Radr+2(Λ∗(V )),

KerX(M) ' OX(−1)⊕O( n
r+1)
X .

(3) For the rational G(1),n module R = Sr(p−1)(V )/〈Sr(p−1)+2(V ); vp, v ∈ V〉,

KerX(R) ' OX(1− p)⊕ (Rad(R)⊗OX).

We point out that specializing Proposition 7.6(1) to the case j = 1 gives a
realization of the canonical subbundle γr on the Grassmannian as an image bundle
of the G(1),n-module S∗(V )/S≥2(V ) different from the realization of γr given in
Proposition 6.7(1).

Our new examples of vector bundles arise by considering subgroup schemes of
G(1),n which we now introduce.

Notation 7.7. Let H be an algebraic group and W a faithful, finite dimensional
rational representation of H of dimension n; let W be the associated vector group
(' G⊕na ) equipped with the action of H. Let

GW,H ≡ W(1) oH ⊂WoH,
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and let
gW,H = Lie(GW,H).

For any subspace ε ⊂ W of dimension r, we identify the W o H-orbit of ε ∈
E(r, gW,H) with Y = H · ε ⊂ Grass(r,W ) ⊂ E(r, gW,H).

If ρ : H → GLn defines the representation of H on W , then ρ induces closed
embeddings

WoH ⊂ G1,n, GW,H ⊂ G(1),n.

Our next proposition affirms that Proposition 7.4 extends to rational GW,H -
representations.

Proposition 7.8. Let M be a finite dimensional rational GW,H-module and choose
some r, 1 ≤ r < n. For any j, 1 ≤ j ≤ (p− 1)r, the image and kernel sheaves

Imj,Y (M), Kerj,Y (M)

on Y are H-equivariant algebraic vector bundles.

Proof. The proof is a repetition of the proof of Proposition 7.4 with slight notational
changes. We leave it as an exercise for the interested reader. �

We easily extend the computations of Proposition 7.6 by considering the rational
G(1),n-modules N , M , R upon restriction to GW,H ⊂ G(1),n

Theorem 7.9. In the Notation 7.7, we have the following isomorphisms of H-
equivariant vector bundles on Y :

(1) For the rational G(1),n-modules N = S∗(V )/S∗≥j+1(V ) and any j, 1 ≤ j ≤
p− 1,

Imj,Y (N|GW,H ) ' Sj(γr)|Y ,

where γr denotes the canonical rank r subbundle on Grass(r,W ).
(2) For the rational G(1),n-modules M = Radr(Λ∗(V )/Radr+2(Λ(V )),

KerY (M|GW,H ) ' OY (−1)⊕O( n
r+1)
Y .

(3) For the rational G(1),n-modules R = Sr(p−1)(V )/〈Sr(p−1)+2(V ); vp, v ∈ V 〉,

KerY (R|GW,H ) ' OY (1− p)⊕ (Rad(R)⊗OY ).

Proof. Let L be a rational representation of G(1),n. Theorem 6.5 implies that

the fibers above ε ∈ Y of Imj,Y (L|GW,H ), Imj,X(L)|Y are both isomorphic to

Radj(ε∗L) as modules for StabH(ε) ⊂ H. Since both Imj,Y (L|GW,H ), Imj,X(L)|Y
are H-equivariant coherent sheaves on the H-orbit Y , we conclude that they are
isomorphic by Theorem 6.5.

The proposition now follows immediately from Proposition 7.6 and the above
observation applied to N , M , or R. �

We restate as a corollary the following special case of Theorem 7.9.1.

Corollary 7.10. Let H be an algebraic group, and let W be a finite dimensional
representation of H. Choose ε ⊂ W an r-dimensional subspace, let S ⊂ H be the
stabilizer of ε, and let Y = H · ε ' H/S. Then there exists a rational GW,H-
representation M such that

LH/S(ε) = (γr)|Y ' ImY (M)

as H-equivariant algebraic vector bundles on Y ⊂ Grass(r,W ) ⊂ E(r, gW,H).
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Proof. The isomorphism (γr)|Y ' ImY (M) is a special case of Theorem 7.9(1)
for j = 1.

Note that the given action of H on W induces an action on Grass(r,W ) and
also makes the canonical subbundle γr on Grass(r,W ) H-equivariant. The action
of S on the fiber ε of γr at the point ε is the restriction of the action of H on W .
Similarly, the action of S on the fiber ε of LH/S(ε) is the restriction of the action
of H on W . Hence, LH/S(ε) ' (γr)|Y by Prop. 6.3. �

Proposition 7.11. Let H be a simple algebraic group with a nondegenerate H-
invariant bilinear form on h = LieH. Let P be a standard cominuscule parabolic
of H, and let ε = u be the nilradical of LieP . Then for any j, 1 ≤ j ≤ p− 1, there
exists a rational Gh,H-representation N such that

Imj,Y (N) ' Sj(ΩY ),

where

Y = H · ε ' G/P
is considered as a subvariety in E(r, gh,H) for r = dim ε.

Proof. By Theorem 7.9.1, we can find a rational Gh,H -representation N such that
Imj,Y (N) ' Sj(γr)|Y = Sj((γr)|Y ) where γr is the canonical rank r subbundle on
Grass(r, h). As shown in Corollary 7.10, (γr)|Y ' LY (ε). Since LY (ε) ' ΩY by
Proposition 6.10, the statement follows. �

Applying Proposition 7.11 in combination with Proposition 6.10 to H = Sp2n, we
get the following realization results for bundles on the Lagrangian Grassmannian.
An interested reader can compare them to Proposition 6.9(3b).

Example 7.12. Take H = Sp2n, and let ε ⊂ sp2n be the nilpotent radical of the
Lie algebra of the standard cominuscule parabolic subgroup of H; let r = dim ε =(
n+1

2

)
. Assume that p > 2 and does not divide n + 1 (so that the Killing form is

nondegenerate). Consider

Y = H · ε ' LGn,n ' E(r, sp2n)

where LGn,n is the Lagrangian Grassmannian (see Theorem 2.13 for details). Then
we have

ImY (N) ' ΩY ' S2(γn)

for a certain Gsp2n,Sp2n
-representation N . Moreover, for any j, 1 ≤ j ≤ p − 1, we

can find a rational Gsp2n,Sp2n
-representation N such that

Imj,Y (N|GW,H ) ' Sj(ΩY ) ' S2j(γn).

Here, γn is the canonical rank n subbundle on LGn,n.

We finish with the following consequence of Corollary 7.10 – any image or kernel
bundle on an H-orbit is the pull-back of an “image-1” bundle for some rational
GW,H -module.

Proposition 7.13. Let H be an affine algebraic group, let ε ⊂ LieH be an ele-
mentary subalgebra of dimension r, and let X = H · ε ⊂ E(r,LieH). Let W be a
rational H-module, and choose an integer j, 1 ≤ j ≤ (p− 1)r.
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(1) Let µ = Radj(ε∗W ), let Y = H · µ ' H/StabH(µ), and let f : X → Y be
the evident projection map. There exists a rational GW,H-module N such
that

Imj,X(W ) ' f∗(ImY (N))

as H-equivariant vector bundles on X.
(2) Similarly, let ν = Socj(ε∗W ), let Z = H · ν ' H/StabH(ν), and let φ :

X → Y be the projection map. There exists a rational GW,H-module L such
that

Kerj,X(W ) ' f∗(ImZ(L)).

Proof. (1). Since the stabilizer of ε ∈ E(r,Lie(H)) is contained in the stabilizer of
µ, we, indeed, have an H-equivariant quotient map

f : X = H/StabH(ε) → Y = H/StabH(µ).

By Corollary 7.10, LH/ Stab(µ)(µ) is of the form ImY (N) for some choice of rational

GW,H -module N . The fibers of f∗(ImY (N)) and Imj,X(W ) above ε ∈ X can

both be identified with µ = Radj(ε∗W ) as StabH(ε)-modules. The statement now
follows from Proposition 6.3.

The proof for (2) is strictly analogous. �
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