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Abstract. We initiate the investigation of the projective varieties E(r, g) of

elementary subalgebras of dimension r of a (p-restricted) Lie algebra g for

various r ≥ 1. These varieties E(r, g) are the natural ambient varieties for
generalized support varieties for restricted representations of g. We identify

these varieties in special cases, revealing their interesting and varied geometric

structures. We also introduce invariants for a finite dimensional u(g)-module
M , the local (r, j)-radical rank and local (r, j)-socle rank, functions which are

lower/upper semicontinuous on E(r, g). Examples are given of u(g)-modules
for which some of these rank functions are constant.

0. Introduction

We say that a Lie subalgebra ε ⊂ g of a p-restricted Lie algebra g over a field
k of characteristic p is elementary if it is abelian with trivial p-restriction. Thus,
if ε has dimension r, then ε ' g⊕ra where ga is the one-dimensional Lie algebra
of the additive group Ga. This paper is dedicated to the study of the projective
variety E(r, g) of elementary subalgebras of g for some positive integer r and its
relationship to the representation theory of g.

For r = 1, E(1, g) is the projectivization of the p-nilpotent cone Np(g); more
generally, E(r, g) is the orbit space under the evident GLr-action on the variety
of r-tuples of commuting, linearly independent, p-nilpotent elements of g. Our
investigation of E(r, g) and its close connections with the representation theory of
g can be traced back through the work of many authors to the fundamental papers
of Daniel Quillen who established the important geometric role that elementary
abelian p-subgroups play in the cohomology theory of finite groups [36].

We have been led to the investigation of E(r, g) through considerations of co-
homology and modular representations of finite group schemes. Recall that the
structure of a restricted representation of g on a k-vector space is equivalent to the
structure of a module for the restricted enveloping algebra u(g) of g (a cocommuta-
tive Hopf algebra over k of dimension pdim(g)). A key precursor of this present work
is the identification of the spectrum of the cohomology algebra H∗(u(g), k) with the
p-nilpotent cone Np(g) achieved in [19], [28], [1], [42]. It is interesting to observe
that the theory of cohomological support varieties for restricted g-representations
(i.e., u(g)-modules) as considered first in [20] has evolved into the more geometric
study of π-points as introduced by the second and third authors in [21]. This latter
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work closed a historical loop, relating cohomological considerations to earlier work
on cyclic shifted subgroups as investigated by Everett Dade [15] and the first author
[9].

For r > 1 and g the Lie algebra of an algebraic group G, E(r, g) is closely
related to the spectrum of cohomology of the r-th Frobenius kernel G(r) of G (see
[41] for classical simple groups G; [32], [39] for more general types). Work of
Alexander Premet concerning the variety of commuting, nilpotent pairs in g [35]
gives considerable information about E(2, g). Much less is known for larger r’s,
although work in progress indicates the usefulness of considering the representation
theory of g when investigating the topology of E(r, g).

Although we postpone consideration of Lie algebras over fields of characteristic
0, we remark that much of the formalism of Sections 1, and 3, and many of the
examples in Sections 2 are valid (and often easier) in characteristic 0. On the other
hand, some of our results and examples, particularly in Section 4, require that k
be of positive characteristic.

We consider numerous examples of restricted Lie algebras g in Section 1, and
give some explicit computations of E(r, g). Influenced by the role of maximal ele-
mentary abelian p-subgroups in the study of the cohomology of finite groups, we
are especially interested in examples of E(r, g) considered in Section 2 for which r
is maximal among the dimensions of elementary subalgebras of g. For simple Lie
algebras over a field of characteristic 0, Anatoly Malcev determined this maximal
dimension [31] which is itself an interesting invariant of g. Our computations verify
that the Grassmann variety of n planes in a 2n-dimensional k-vector space maps bi-
jectively (via a finite, radiciel morphism) to E(n2, gl2n); similar results apply to the

computation of E(n(n + 1), gl2n+1) and E
(

(n+1)n
2 , sp2n

)
. We provide some com-

putations even for “non-classical” restricted Lie algebras not arising from algebraic
groups.

We offer several explicit motivations for considering E(r, g) in addition to the fact
that these projective varieties are of intrinsic interest. Some of these motivations
are pursued in Sections 3 and 4 where (restricted) representations of g come to the
fore. We point to the forthcoming paper [13], which utilizes the discussion of this
current work in an investigation of coherent sheaves and algebraic vector bundles
on E(r, g).

• The varieties E(r, g) are the natural ambient varieties in which to define gen-
eralized support varieties for restricted representations of g (as in [22]).

• Coherent sheaves on E(r, g) are naturally associated to arbitrary (restricted)
representations of g. (See [13].)

• For certain representations of g including those of constant Jordan type, the
associated coherent sheaves are algebraic vector bundles on E(r, g). (See [13].)

• Determination of the (Zariski) topology of E(r, g) is an interesting challenge
which can be informed by the representation theory of g.

The isomorphism type of the restriction ε∗M of a u(g)-module M to an elemen-
tary subalgebra ε of dimension 1 is given by its Jordan type, which is a partition
of the dimension of M . On the other hand, the classification of indecomposable
modules of an elementary subalgebra of dimension r > 1 is a wild problem (except
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in the special case in which r = 2 = p), so that the isomorphism types of ε∗M for
ε ∈ E(r, g) do not form convenient invariants of a u(g)-module M . Following the ap-
proach undertaken in [12], we consider the dimensions of the radicals and socles of

such restrictions, dim Radj(ε∗M) and dim Socj(ε∗M), for ε ∈ E(r, g) and any j with
1 ≤ j ≤ (p− 1)r. As we establish in Section 3, these dimensions give upper/lower
semi-continuous functions on E(r, g). In particular, they lead to “generalized rank
varieties” refining those introduced in [23]. We achieve some computations of these
generalized rank varieties E(r, g)M for u(g)-modules M which are either Lζ modules
or induced modules.

One outgrowth of the authors’ interpretation of cohomological support varieties
in terms of π-points (as in [21]) is the identification of the interesting classes of
modules of constant Jordan type and constant j-rank for 1 ≤ j < p (see [11]).
As already seen in [12], this has a natural analogue in the context of elementary
subalgebras of dimension r > 1. In Section 4, we give examples of u(g)-modules
of constant (r, j)-radical rank and of constant (r, j)-socle rank. This represents
a continuation of investigations initiated by the authors in [11], [23] and further
investigated by various authors (see, for example, [2], [6], [5], [7], [10], [14], [18],
and others).

As investigated in our forth-coming paper [13], u(g)-modules of constant (r, j)-
radical rank and of constant (r, j)-socle rank determine vector bundles on E(r, g).
Of particular interest are those u(g)-modules not equipped with large groups of
symmetries. We anticipate that the investigation of such modules may provide
algebraic vector bundles with interesting properties.

Throughout, k is an algebraically closed field of characteristic p > 0. All Lie
algebras g considered in this paper are assumed to be finite dimensional over k and
p-restricted; a Lie subalgebra h ⊂ g is assumed to be closed under p-restriction.
Without explicit mention to the contrary, all u(g)-modules are finite dimensional.

We thank Steve Mitchell and Monty McGovern for useful discussions pertaining
to the material in Section 2. We also acknowledge with gratitude the constructive
comments of the referee.

1. The subvariety E(r, g) of Grass(r, g)

We begin by formulating the definition of E(r, g) of the variety of elementary
subalgebras of g and establishing the existence of a natural closed embedding of
E(r, g) into the projective variety Grass(r, g) of r-planes of the underlying vector
space of g. Once these preliminaries are complete, we introduce various examples
which reappear frequently, here and in [13].

Let V be an n-dimensional vector space and r < n a positive integer. We
consider the projective variety Grass(r, V ) of r-planes of V . We choose a basis
for V, {v1, . . . , vn}; a change of basis has the effect of changing the Plücker em-
bedding (1.1.2) by a linear automorphism of P(Λr(V )). We represent a choice
of basis {u1, . . . , ur} for an r-plane U ⊂ V by an n × r-matrix (ai,j), where
uj =

∑n
i=1 ai,jvi. Let M◦n,r ⊂ Mn,r denote the open subvariety of the affine space

Mn,r ' Anr consisting of those n × r matrices of rank r and set p : M◦n,r →
Grass(r, V ) equal to the map sending a rank r matrix (ai,j) to the r-plane spanned
by {

∑n
i=1 ai,1vi, . . . ,

∑n
i=1 ai,rvi}.
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We summarize a few useful, well known facts about Grass(r, V ). Note that there
is a natural (left) action of GLr on Mn,r via multiplication by the inverse on the
right.

Proposition 1.1. For any subset Σ ⊂ {1, . . . , n} of cardinality r, set UΣ ⊂
Grass(r, V ) to be the subset of those r-planes U ⊂ V with a representing n × r
matrix AU whose r × r minor indexed by Σ (denoted by pΣ(AU )) is non-zero.

• p : M◦n,r → Grass(r, V ) is a principal GLr-torsor, locally trivial in the
Zariski topology.
• Sending an r-plane U ∈ UΣ to the unique n × r-matrix AΣ

U whose Σ-
submatrix (i.e., the r × r-submatrix whose rows are those of AΣ

U indexed
by elements of Σ) is the identity determines a section of p over UΣ:

(1.1.1) sΣ : UΣ →M◦n.r
• The Plücker embedding

(1.1.2) p : Grass(r, V ) ↪→ P(Λr(V)), U 7→ [pΣ(AU )]

sending U ∈ UΣ to the
(
n
r

)
-tuple of r×r-minors of AΣ

U is a closed immersion
of algebraic varieties.
• UΣ ⊂ Grass(r, V ) is a Zariski open subset, the complement of the zero locus

of pΣ, and is isomorphic to Ar(n−r).

Elementary subalgebras as defined below play the central role in what follows.

Definition 1.2. An elementary subalgebra ε ⊂ g of dimension r is a Lie subalgebra
of dimension r which is commutative and has p-restriction equal to 0. We define

E(r, g) = {ε ⊂ g : ε elementary subalgebra of dimension r}

We denote by Np(g) ⊂ g the closed subvariety of p-nilpotent elements (i.e.,

x ∈ g with x[p] = 0), by Cr(Np(g)) ⊂ (Np(g))×r the variety of r-tuples of p-
nilpotent, pairwise commuting elements of g, and by Cr(Np(g))◦ ⊂ Cr(Np(g)) the
open subvariety of linearly independent r-tuples of p-nilpotent, pairwise commuting
elements of g.

For an algebraic group G with Lie algebra g = LieG, we consistently use the
adjoint action of G on E(r, g).

Proposition 1.3. Let g be a Lie algebra of dimension n. Forgetting the Lie algebra
structure of g and viewing g as a vector space, we consider the projective variety
Grass(r, g) of r-planes of g for some r, 1 ≤ r ≤ n. There exists a natural cartesian
square

(1.3.1) Cr(Np(g))◦

��

� � // M◦n,r
p

��
E(r, g) �

� // Grass(r, g)

whose vertical maps are GLr-torsors locally trivial for the Zariski topology and
whose horizontal maps are closed immersions. In particular, E(r, g) has a nat-
ural structure of a projective algebraic variety, as a reduced closed subscheme of
Grass(r, g).

If G is a linear algebraic group with g = Lie(G), then E(r, g) ↪→ Grass(r, g) is
a G-stable embedding.
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Proof. The horizontal maps of (1.3.1) are the evident inclusions, the left vertical
map is the restriction of p. Clearly, (1.3.1) is cartesian; in particular, Cr(Np(g))◦ ⊂
M◦n,r is stable under the action of GLr.

To prove that E(r, g) ⊂ Grass(r, g) is closed, it suffices to verify for each Σ that
(E(r, g) ∩ UΣ) ⊂ UΣ is a closed embedding. The restriction of (1.3.1) above UΣ

takes the form

(1.3.2) Cr(Np(g))◦ ∩ p−1(UΣ)

��

// p−1(UΣ)

p

��

∼ // UΣ ×GLr

pr

��
E(r, g) ∩ UΣ

// UΣ UΣ

Consequently, to prove that E(r, g) ⊂ Grass(r, g) is closed and that Cr(Np(g))◦ →
E(r, g) is a GLr-torsor which is locally trivial for the Zariski topology it suffices to
prove that Cr(Np(g))◦ ⊂M◦n,r is closed.

It is clear that Cr(Np(g)) ⊂ Mn,r is a closed subvariety since it is defined by

the vanishing of the Lie bracket and the p-operator (−)[p] both of which can be
expressed as polynomial equations on the matrix coefficients. Hence, Cr(Np(g))◦ =
Cr(Np(g)) ∩M◦n,r is closed in M◦n,r.

If g = Lie(G), then the (diagonal) adjoint action of G on n×r-matrices g⊕r sends
a matrix whose columns pair-wise commute and which satisfies the condition that
(−)[p] vanishes on these columns to another matrix satisfying the same conditions
(since Ad : G → Aut(g) preserves both the Lie bracket and the pth-power). Thus,
E(r, g) is G-stable. �

Remark 1.4. Let V be a k-vector space of dimension n. Consider V ≡ SpecS∗(V #) '
G×na , the vector group on the (based) vector space V . Then Lie(V) ' g⊕na and we
have an isomorphism of algebras

u(LieV) ' u(g⊕na ) ' k[t1, . . . , tn]/(tp1, . . . , t
p
n).

Let E = (Z/p)×n be an elementary abelian p-group of rank n and choose an em-
bedding of V into the radical Rad(kE) of the group algebra of E such that the
composition with the projection to Rad(kE)/Rad2(kE) is an isomorphism. This
choice determines an isomorphism

u(Lie(V))
∼→ kE.

With this identification, the investigations of [12] are special cases of considerations
of this paper.

Example 1.5. For any (finite dimensional, p-restricted) Lie algebra,

E(1, g) ' Proj k[Np(g)]

as shown in [42], where k[Np(g)] is the (graded) coordinate algebra of the p-null
cone of g. If G is reductive with g = Lie(G) and if p is good for G, then Np(g) is
irreducible and equals the G-orbit G·u of the nilpotent radical of a specific parabolic
subalgebra p ⊂ g (see [34, 6.3.1]).

Example 1.6. Let G be a connected reductive algebraic group, let g = LieG,
and assume that p is good for G. As shown by A. Premet in [35], C2(Np(g))
is equidimensional with irreducible components enumerated by the distinguished
nilpotent orbits of g; in particular, C2(Np(gln)) is irreducible. This easily implies
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that E(2, g) is an equidimensional variety, irreducible in the special case g = gln.
Since dimE(2, g) = dim C2(Np(g)) − dim GL2, dimE(2, g) = dim[G,G] − 4. In
particular, E(2, gln) has dimension n2 − 5 for p > n.

Example 1.7. Let u3 ⊂ gl3 denote the Lie subalgebra of strictly upper triangular
matrices and take r = 2. Then a 2-dimensional elementary Lie subalgebra ε ⊂ u3 is
spanned by E1,3 and another element X ∈ u3 not a scalar multiple of E1,3. We can
further normalize the basis of ε by subtracting a multiple of E1,3 from X, so that
X = a1,2E1,2 +a2,3E2,3. Thus, 2-dimensional elementary Lie subalgebras ε ⊂ u are
parametrized by points 〈a1,2, a2,3〉 ∈ P1, so that E(2, u3) ' P1.

In this case, u3 is the Lie algebra of the unipotent radical of the Borel subgroup
B3 ⊂ GL3 of upper triangular matrices. The adjoint action of GL3 on gl3 induces
the action of B3 on E(2, u3) since B3 stabilizes u3. With respect to this action of B3,
E(2, u3) is the union of an open dense orbit consisting of regular nilpotent elements
of the form a1,2E1,2 + a2,3E2,3, with a1,2 6= 0 6= a2,3; and two closed orbits. The
open orbit is isomorphic to the 1-dimensional torus Gm ⊂ P1 and the two closed
orbits are single points {0}, {∞}.

Example 1.8. We consider the algebraic group G = GLn and some r, 1 ≤ r < n.
Let ur,n−r ⊂ gln denote the Lie subalgebra of n × n matrices (ai,j) with ai,j = 0
unless 1 ≤ i ≤ r, r + 1 ≤ j ≤ n. Then ur,n−r ⊂ gln is an elementary subalgebra
of dimension r(n − r). The argument given in [33, §5] applies in our situation to
show that ur,n−r is a maximal elementary subalgebra (that is, not contained in any
other elementary subalgebra).

Let X ⊂ E(r(n− r), gln) denote the GLn-orbit of ur,n−r. Let Pr be the standard
parabolic subgroup of GLn defined by the equations ai,j = 0 for i > r, j ≤ n − r.
Since Pr is the stabilizer of ur,n−r under the adjoint action of GLn, X = G·ur,n−r '
GLn /Pr ' Grass(r, n). Since X is projective, it is a closed GLn-stable subvariety
of E(r(n− r), gln).

We next give examples of p-restricted Lie algebras which are not the Lie algebras
of algebraic groups.

Example 1.9. Let φ : gl2n → k be a semi-linear map (so that φ(av) = apφ(v)),
and consider the extension of p-restricted Lie algebras, split as an extension of Lie
algebras (see [19, 3.11]):

(1.9.1) 0→ k → g̃l2n → gl2n → 0, (b, x)[p] = (φ(x), x[p]).

Then E(n2 + 1, g̃l2n) can be identified with the subvariety of Grass(n, 2n) consisting
of those elementary subalgebras ε ⊂ gl2n of dimension n2 such that the restriction
of φ to ε is 0 (or, equivalently, such that ε is contained in the kernel of φ).

Example 1.10. (1). Consider the general linear group GLn and let V be the
defining representation. Let V be the vector group associated to V as in Remark 1.4.
We set

(1.10.1) G1,n
def Vo GLn, g1,n

def
LieG1,n

Any subspace ε ⊂ V of dimension r < n can be considered as an elementary
subalgebra of g1,n. Moreover, the G1,n-orbit of ε ∈ E(r, g1,n) can be identified with
the Grassmannian Grass(r, V ) of all r-planes in V .
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(2). More generally, let H be an algebraic group, W be a rational representation
of H, and W be the vector group associated to W . Let G ≡ W o H, and let
h = LieH. A subspace ε ⊂ W of dimension r < dimW can be viewed as an
elementary subalgebra of h. Moreover, the G-orbit of ε ∈ E(r, h) can be identified
with the H-orbit of ε in Grass(r,W ).

We conclude this section by giving a straightforward way to obtain additional
computations from known computations of E(r, g). The proof is immediate.

Proposition 1.11. Let g1, g2, . . . , gs be finite dimensional p-restricted Lie algebras
and let g = g1 ⊕ · · · ⊕ gs. Then there is a natural morphism of projective varieties

(1.11.1) E(r1, g1)× · · · × E(rs, gs) → E(r, g), r =
∑

ri,

sending (ε1 ⊂ g1, . . . , εs ⊂ gs) to ε1 ⊕ · · · ⊕ εs ⊂ g. Moreover, if ri is the maximum
of the dimensions of the elementary subalgebras of gi for each i, 1 ≤ i ≤ s, then this
morphism is bijective.

Corollary 1.12. In the special case of Proposition 1.11 in which each gi ' sl2,
r1 = · · · = rs = 1, (1.11.1) specializes to

(P1)×r ' E(r, sl⊕r2 ).

Proof. This follows from the fact that E(1, sl2) = Proj k[N (sl2)] ' P1 (see, for
example, [22]). �

2. Elementary subalgebras of maximal dimension

The study of maximal abelian subalgebras in complex semi-simple Lie algebras
has a long history, dating back at least to the work of Schur in the general linear case
at the turn of last century [37]. The dimensions of maximal abelian subalgebras of
a complex simple Lie algebra are known thanks to the classical work of Malcev [31].
As pointed out to us by S. Mitchell, our investigation of Lie algebras over fields
of positive characteristic is closely related to the study Barry [3] who considered
the analogous problem of identifying maximal elementary abelian subgroups of
Chevalley groups. Subsequent work by Milgram and Priddy [33] in the case of the
general linear groups guided some of our calculations.

The reader will find below explicit determination of E(r, g) for several families of
p-restricted Lie algebras g and r the maximal dimension of an elementary subalgebra
of g.

• Heisenberg Lie algebras (Proposition 2.2)
• The general linear Lie algebra gln (Theorems 2.5 and 2.6).
• The symplectic Lie algebra sp2n. (Theorem 2.11).
• The Lie algebra of a maximal parabolic of gln (Theorem 2.12).
• The Lie algebras of Example 1.10(1) (Corollary 2.13).

In what follows, we consider a reductive algebraic group G over k. We choose a
Borel subgroup B = U · T ⊂ G, thereby fixing a basis of simple roots ∆ ⊂ Φ. For
a simple root α ∈ ∆, we denote by Pα, pα, the corresponding standard maximal
parabolic subgroup and its Lie algebra. We write

pα = h⊕
∑

β∈Φ−I ∪Φ+

kxβ ,
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where xβ is the root vector corresponding to the root β and ΦI is the root sub-
system generated by the subset ∆\{α}. We follow the convention in [8, ch.6] in
the numbering of simple roots. For g = Lie(G) we denote by h ⊂ g the Cartan
algebra given by h = Lie(T ) and write g = n− ⊕ h ⊕ n, the standard triangular
decomposition.

We begin by recalling the explicit nature of the Heisenberg Lie algebras which
will not only constitute our first example but also reappear in the inductive analysis
of other examples.

Definition 2.1. A p-restricted Lie algebra g is a Heisenberg restricted Lie algebra
if the center z of g is one-dimensional and g/z is an elementary Lie algebra.

Such a Lie algebra g admits a basis

(2.1.1) {x1, . . . xn−1, y1, . . . yn−1, yn}

such that yn generates the one-dimensional center z of g and

[xi, xj ] = [yi, yj ] = 0, [xi, yj ] = δi,jyn 1 ≤ i, j ≤ n− 1.

Let g be a Heisenberg restricted Lie algebra with the center z, let W = g/z, let
φ : g → W be the projection map, and let σ : W → g be a k-linear right splitting
of φ. For x, y ∈ W , let 〈x, y〉 be the coefficient of yn in [σ(x), σ(y)] ∈ z = kyn. So
defined, 〈−,−〉 gives W a symplectic vector space structure.

We recall that a subspace L of a symplectic vector space W is said to be La-
grangian if L is an isotropic subspace (i.e., if the pairing of any two elements of L is
0) of maximal dimension. We denote by LG(n,W ) the Lagrangian Grassmannian
of W , the homogeneous space parameterizing the Lagrangian subspaces of W .

Proposition 2.2. Let g be a Heisenberg restricted Lie algebra of dimension 2n− 1
with trivial restriction map and assume p > 2. Equip W = g/z with the symplectic
form as above.

(1) The maximal dimension of an elementary subalgebra of g is n.
(2) E(n, g) ' LG(n− 1,W ).

Proof. Let φ : g → W = g/z be the projection map. Observe that if a subal-
gebra ε of g is elementary then φ(ε) is an isotropic linear subspace of W . Since
dimφ(ε) + dimφ(ε)⊥ = dimW (where φ(ε)⊥ denotes the orthogonal complement
with respect to the symplectic form) and φ(ε) ⊂ φ(ε)⊥ since φ(ε) is isotropic, we
get that dimφ(ε) ≤ (dimW )/2 = n − 1, and, consequently, dim ε ≤ n. More-
over, the equality holds if and only if ε/z is a Lagrangian subspace of W . Hence,
E(n, g) ' LG(n− 1,W ). �

Example 2.3. We give various Lie-theoretic contexts in which the Heisenberg Lie
algebras arise.

(1) Let g = sln+1 and assume that p > 2. Let pJ ⊂ g be the standard parabolic
subalgebra defined by the subset J = {α2, . . . , αn−1} of simple roots, that
is, pJ = h⊕

⊕
α∈Φ−J ∪Φ+

kxα, where ΦJ is the root subsystem of Φ generated by

the subset of simple roots J . Then the unipotent radical uJ =
⊕

α∈Φ+\Φ+
J

kxα

of pJ is a Heisenberg restricted Lie algebra with trivial restriction of di-
mension 2n − 1. In matrix terms, this is the subalgebra of strictly upper
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triangular matrices with non-zero entries in the top row or the rightmost
column.

(2) Let g = sp2n. Let p = pα1
be the maximal parabolic subalgebra corre-

sponding to the simple root α1. Let γn = 2α1 + . . . + 2αn−1 + αn be the
highest long root, and let further

(2.3.1) βi = α1 + α2 + . . .+ αi, γn−i = γn − βi.

Then uα1
, the nilpotent radical of pα1

is a Heisenberg Lie algebra with triv-
ial restriction and the basis {xβ1 , . . . , xβn−1 , xγn−1 , . . . , xγ1 , xγn} satisfies
the conditions required in (2.1.1).

(3) Type E7. Let p = pα1
. Then the nilpotent radical of p is a Heisenberg Lie

algebra with trivial restriction.

The following well known property of parabolic subgroups will be used frequently.

Lemma 2.4. Let G be a simple algebraic group and P be a standard parabolic
subgroup of G. Let p = Lie(P ) and u be the nilpotent radical of p. If p 6= 2, then
[u, p] = u.

Proof. Since u is a Lie ideal in p, we have [u, p] ⊂ u. By the structure theory for
classical Lie algebras, for any α ∈ Φ+ there exists hα ∈ h such that [hα, xα] = 2xα.
Hence, u = [h, u] ⊂ [p, u]. �

We consider the special linear Lie algebra sln = Lie(SLn) in two parallel the-
orems, one for n even and the other for n odd. We denote by un = Lie(U)
the nilpotent radical of the Borel subalgebra b = Lie(B). We also use the nota-
tion Pr,n−r, pr,n−r, and ur,n−r for the maximal parabolic, its Lie algebra, and the
nilpotent radical corresponding to the simple root αr.

The first parts of both Theorem 2.5 and Theorem 2.6 are well-known in the
context of maximal elementary abelian subgroups in GLn(Fp) (see, for example,
[24] or [33]). We use the approach in [33] to compute conjugacy classes.

Theorem 2.5. Assume p > 2, and m ≥ 1.

(1) The maximal dimension of an elementary abelian subalgebra of sl2m is m2.
(2) Any elementary abelian subalgebra of dimension m2 is conjugate to um,m,

the nilpotent radical of the standard maximal parabolic Pm,m.
(3) There is a finite, radicial morphism Grass(m, 2m) → E(m2, sl2m), induc-

ing a homeomorphism on Zariski spaces.

Proof. We prove the following statement by induction: any elementary subalgebra
of sl2m has dimension at most m2 and any subalgebra of such dimension inside the
nilpotent radical n must coincide with um,m. This will imply claims (1) and (2) of
the theorem.

The statement is clear for m = 1. Assume it is proved for m − 1. Let ε be
an elementary subalgebra of sl2m. Since ε is commutative and acts nilpotently on
the defining representation, it can be conjugated into upper-triangular form. Let
J = {α2, . . . , α2m−2} and let uJ be the nilpotent radical of the standard parabolic
PJ determined by J . Since [u2m, uJ ] ⊂ uJ , this is a Lie ideal in u2m.

We consider extension

0 // uJ // u2m
// u2m/uJ ' u2m−2

// 0.
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By induction, the dimension of the projection of ε onto u2m−2 is at most (m− 1)2,
and this dimension is attained if and only if the image of ε under the projection

is the subalgebra of u2m−2 of all block matrices of the form

(
0 A
0 0

)
, where A is

an (m − 1) × (m − 1) matrix. Since uJ is a Heisenberg Lie algebra of dimension
4m− 3 (see Example 2.3(1)), Proposition 2.2 implies that the maximal elementary
subalgebra of uJ has dimension 2m− 1. Hence, dim ε ≤ (m− 1)2 + 2m− 1 = m2.
Furthermore, every element in ε ⊂ sl2m has the form

(2.5.1)


0 v2 v1 ∗
0 0 A w1

0 0 0 w2

0 0 0 0


where vi, (wi)

T ∈ km−1.

Let


0 v′2 v′1 ∗
0 0 0 w′1
0 0 0 w′2
0 0 0 0

 be an element in ε∩uJ . Taking a bracket of this element

with a general element in ε of the form as in (2.5.1), we get
0 0 v′2A ∗
0 0 0 Aw′2
0 0 0 0
0 0 0 0

 .

Since ε is abelian, we conclude that v′2A = 0, Aw′2 = 0 for any A ∈Mm−1. Hence,
v′2 = 0, w′2 = 0 which implies that ε ∩ uJ ⊂ um,m. Moreover, for the dimension to
be maximal, we need dim ε ∩ uJ = 2m − 1. Hence, for any v1, (w1)T ∈ km−1, the

matrix


0 0 v1 0
0 0 0 w1

0 0 0 0
0 0 0 0

 is in ε.

It remains to show that for an arbitrary element of ε, necessarily of the form
(2.5.1), we must have v2 = 0,w2 = 0. We prove this by contradiction. Suppose

0 v2 v1 ∗
0 0 A w1

0 0 0 w2

0 0 0 0

 ∈ ε with v2 6= 0. Subtracting a multiple of


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

,

which is necessarily in ε, we get that M =


0 v2 v1 0
0 0 A w1

0 0 0 w2

0 0 0 0

 belongs to ε. Since

v2 6= 0, we can find a vector (w1)T ∈ km−1 such that v2 · (w1)T 6= 0. As observed

above, we have M ′ =


0 0 0 0
0 0 0 (w1)T

0 0 0 0
0 0 0 0

 in ε. Therefore, [M,M ′] has a non-

trivial entry v2 · (w1)T in the (1, 2m) spot which contradicts commutativity of ε.
Hence, v2 = 0. Similarly, w2 = 0. This finishes the proof of the claim.
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To show (3), let P̃ denote the stabilizer of um,m under the adjoint action of

SL2m, so that SL2m /P̃ ' SL2m ·um,m. By (2) and the fact that Pm,m normalizes
its unipotent radical Um,m, and, hence, stabilizes um,m, the orbit map SL2m →
SL2m ·um,m = E(m2, sl2m) factors as SL2m → SL2m /Pm,m → SL2m /P̃ . Since
Pm,m is maximal among (reduced) algebraic subgroups of SL2m, we conclude that
Pred = Pm,m. Consequently, we conclude that

Grass(m, 2m) = SL2m /Pm,m → SL2m /P̃ = E(m2, sl2m)

is a torsor for the infinitesimal group scheme P̃ /Pm,m and thus is finite and radicial.
�

Theorem 2.6. Assume m > 1, p > 2.

(1) The maximal dimension of an elementary abelian subalgebra of sl2m+1 is
m(m+ 1).

(2) There are two distinct conjugacy classes of such elementary subalgebras,
represented by um,m+1 and um+1,m.

(3) There is a finite radicial morphism

Grass(m, 2m+ 1) tGrass(m, 2m+ 1)→ E(m(m+ 1), sl2m+1)

inducing a homeomorphism on Zariski spaces.

Proof. One can check by a straightforward calculation that the following is a com-
plete list of maximal (two-dimensional) elementary subalgebras of u3, the nilpotent
radical of sl3:

• u1,2 =


0 a b

0 0 0
0 0 0

 | a, b ∈ k
,

• u2,1 =


0 0 b

0 0 a
0 0 0

 | a, b ∈ k
,

• a one-parameter family


0 a b

0 0 xa
0 0 0

 | a, b ∈ k
 for a fixed x ∈ k∗.

We prove the following statements by induction: For any m > 1, an elementary
subalgebra of sl2m+1 has dimension at most m(m + 1). Any subalgebra of such
dimension inside u2m+1 must coincide either with um,m+1 or um+1,m. This will
imply (1),

Base case: m = 2. Any elementary subalgebra can be conjugated to the upper-
triangular form. So it suffices to prove the statement for an elementary subalgebra
ε of u5, the nilpotent radical of sl5. Just as in the proof of Theorem 2.5, we consider
a short exact sequence of Lie algebras

0 // uJ // u5
pr // u3

// 0

where J = {α2, α3} (and, hence, uJ ⊂ u5 is the subalgebra of upper triangular
matrices with zeros everywhere except for the top row and the rightmost column).
Since dim(pr(ε)) ≤ 2 by the remark above, and dim(ε ∩ uJ) ≤ 4 by Proposi-
tion 2.2(1), we get that dim ε ≤ 6. For the equality to be attained, we need pr(ε) to
be one of the two-dimensional elementary subalgebras listed above. If pr(ε) = u2,1
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then arguing exactly as in the proof for the even-dimensional case, we conclude
that ε = u3,2 ⊂ u5. Similarly, if pr(ε) = u1,2, then ε = u2,3. We now assume that

pr(ε) = {

0 a b
0 0 xa
0 0 0

 | a, b ∈ k}.

Let A′ =


0 a12 a13 ∗ ∗
0 0 0 0 ∗
0 0 0 0 a35

0 0 0 0 a45

0 0 0 0 0

 ∈ ε ∩ uJ , and let A =


0 ∗ ∗ ∗ ∗
0 0 a b ∗
0 0 0 xa ∗
0 0 0 0 ∗
0 0 0 0 0

 ∈ ε.
Then

[A′, A] =


0 0 aa12 xaa13 + ba12 ∗
0 0 0 0 −aa35 − ba45

0 0 0 0 −xaa45

0 0 0 0 0
0 0 0 0 0


Since ε is abelian, and since the values of a, b run through all elements of k, we
conclude that a12 = a13 = a35 = a45 = 0. Therefore, dim ε ∩ uJ ≤ 3 and dim ε ≤ 5.
Hence, the maximum is not attained in this case. This finishes the proof in the
base case m = 2.

We omit the induction step since it is very similar to the even-dimensional case
proved in Theorem 2.5.

To prove (2), we observe that um,m+1 and um+1,m are not conjugate under the
adjoint action of SL2m+1 since their nullspaces in the standard representation of
sl2m+1 have different dimensions.

Finally, statement (3) follows from (1) and (2) as in the end of the proof of
Theorem 2.5. �

We make the immediate observation that the results of Theorems 2.5 and 2.6
apply equally well to gln.

Corollary 2.7. Assume p > 2.

(1) The maximal dimension of an elementary abelian subalgebra of gln is bn
2

4 c.
(2) For any m ≥ 1, there is a finite radicial morphism Grass(m, 2m)→ E(m2, gl2m)

inducing a homeomorphism on Zariski spaces
(3) For any m ≥ 2, there is a finite radicial morphism

Grass(m, 2m+ 1) tGrass(m, 2m+ 1) → E(m(m+ 1), gl2m+1)

inducing a homeomorphism on Zariski spaces.

Remark 2.8. In the case n = 3, excluded above, the variety E(2, gl3) is irreducible
(see Example 3.19).

Remark 2.9. Let G be an algebraic group and M be a G-variety, both defined
over an algebraically closed field k. For x ∈ M , the orbit map πx : G → G · x ⊂
M determines a homeomorphism πx : G/Gx → G · x where Gx is the (reduced)
stabilizer of x. This is an isomorphism of varieties if the map πx is separable
(equivalently, if the tangent map dπx at the identity is surjective). In [13, 3.7]
we show that when p > 2h − 2 where h is the Coxeter number of a semi-simple
algebraic group G, the orbit map G→ G · ε ⊂ Grass(r, g) under the adjoint action
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of G on Grass(r, g) is separable. This implies that the homeomorphisms of (2.5)(3),
(2.6)(3) and (2.7) are isomorphisms of varieties at least when p > 2n− 2.

For the symplectic case we are about to consider, the homeomorphism of Theo-
rem 2.11 is an isomorphism at least for p > 4n− 2.

To make analogous calculations in the symplectic case, we need the following
technical observation.

Lemma 2.10. Let ε be an elementary subalgebra of the symplectic Lie algebra sp2m.
There exists an element g ∈ Sp2m such that gεg−1 belongs to the nilpotent radical
of the standard Borel subalgebra of sp2m.

Proof. Let V be a 2m-dimensional symplectic space with a basis {x1, . . . , xm, ym, . . . y1}
such that the symplectic form with respect to this basis has the standard matrix

S =

(
0 I
−I 0

)
. A complete isotropic flag is a nested sequence of subspaces of the

form:
0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm = V ⊥m ⊂ V ⊥m−1 ⊂ . . . ⊂ V ⊥1 ⊂ V

such that dimVi = i. The condition that Vi ⊆ V ⊥i implies that each Vi is isotropic.
The standard Borel subalgebra b of sp2m (such as in [17, 12.5]) is characterized as
the stabilizer of the standard complete isotropic flag in V , meaning the flag with Vi
spanned by {x1, . . . , xi} (so that V ⊥i is spanned by {x1, . . . , xn, yn, . . . , yn−i−1}).
Thus, each Vi, as given, has the property that bVi ⊆ Vi. Any two complete isotropic
flags are conjugate by an element of Sp2n. Therefore if we show that the subalgebra
ε stabilizes a complete isotropic flag, then some conjugate of ε is contained in a
standard Borel subalgebra of sp2m, as asserted.

Constructing a complete isotropic flag that is invariant under ε is a straightfor-
ward inductive exercise. We begin with i = 0. Assume for some i an isotropic
ε-invariant subspace Vi ⊆ V ⊥i has been constructed. Choose Vi+1 to be any sub-
space such that Vi ⊂ Vi+1 and Vi+1/Vi is an ε-invariant subspace of dimension one
in V ⊥i /Vi. Since ε is an elementary Lie algebra, its restricted enveloping algebra
u(ε) is a local ring and, hence, Vi+1/Vi always has such a 1-dimensional invari-
ant subspace. Note that Vi+1 is isotropic because it is contained in V ⊥i and Vi
is isotropic. Continuing this process to step n constructs an ε-invariant complete
isotropic flag. �

Theorem 2.11. Let g = sp2n. Assume p > 3. Then

(1) For any elementary subalgebra ε of g, dim ε ≤ n(n+1)
2 .

(2) Any elementary subalgebra ε of maximal dimension is conjugate to uαn .
(3) There is a finite radicial morphism from the Lagrangian Grassmannian

Sp2n /Pαn to E(n(n+1)
2 , sp2n) induced by the orbit map Sp2n → Sp2n ·uαn .

In particular, this morphism induces a homeomorphism on Zariski spaces.

Proof. We prove by induction that the statement of the theorem holds for a Lie
algebra g = LieG of any reductive algebraic group of type Cn. The statement is
trivial for n = 1.

Assume the statement is proven for n−1. Let G be a reductive algebraic group of
type Cn and let g = LieG. Recall that we follow the convention of [8] for numbering
of simple roots, so that the Dynkin diagram for g looks as follows:

(2.11.1) ◦
1

◦
2

◦
3

. . . ◦
n−2

◦
n−1

◦
n

ks
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Let pα1 = lα1 ⊕ uα1 be the maximal parabolic subalgebra corresponding to the
simple root α1 with the Levi factor lα1

and the nilpotent radical uα1
. To obtain

the Dynkin diagram for lα1
we simply remove the first node from (2.11.1). Hence,

lα1
is a reductive Lie algebra of type Cn−1, and we can apply inductive hypothesis

to it.
Let ulα1

be the nilpotent radical of lα1 , and ug be the nilpotent radical of the
borel subalgebra of g. We have a short exact sequence

0 // uα1
// ug

pr // ulα1

// 0.

Let ε be an elementary subalgebra of g. Since ε consists of nilpoent matrices, it
can be conjugated into the standard borel subalgebra of g by Lemma 2.10. Fur-
thermore, since every element of ε is p-nilpotent, such a conjugate will necessarily
belong to the nilpotent radical ug. Hence, we may assume that ε ⊂ ug. By the

induction hypothesis, dim pr(ε) ≤ n(n−1)
2 . Since uα1

is a Heisenberg Lie algebra of
dimension 2n−1 (see Example 2.3(2)), Proposition 2.2 implies that dim uα1

∩ε ≤ n.

Hence, dim ε ≤ n+ n(n−1)
2 . This proves (1).

To prove (2), we observe that the induction hypothesis implies that for an ele-
mentary subalgebra ε to attain the maximal dimension, we must have that

pr ↓ε: ε→ ulα1

is surjective onto ulα1
∩uαn , the nilpotent radical of the parabolic of lα1

correspond-
ing to αn.

Let {xβi , xγi} be a basis of uα1 as defined in (2.3.1). Let x =
∑
bixβi+

∑
cixγi ∈

uα1
∩ ε. We want to show that x ∈ uαn or, equivalently, that coefficients by xβi

are zero. Assume, to the contrary, that bi 6= 0 for some i, 1 ≤ i ≤ n − 1. Let
µ = γn−1− βi = α2 + . . .+αi + 2αi+1 + . . .+ 2αn−1 +αn. Then xµ ∈ ulα1

∩ uαn ⊂
pr(ε). Therefore, there exists y = x′ + xµ ∈ ε for some x′ ∈ uα1

. Note that
[x, x′] ⊂ [uα1 , uα1 ] = kxγn , and that µ+ γi is never a root, and µ+ βj is not a root
unless i = j. Hence,

[x, y] = [x, x′] + [x, xµ] = cxγn + bi[xβi , xµ] = cxγn + bicβiµxγn−1 6= 0.

Here, cβiµ is the structure constant from the equation [xβi , xµ] = cβiµxβi+µ =
cβiµxγn−1 which is non-zero since p > 3 (see [38, II.4.1]). Thus, we have a contra-
diction with the commutativity of ε. Hence, bi = 0 for all i, 1 ≤ i ≤ n − 1, and,
therefore, uα1

∩ ε ⊂ uαn . Moreover, since we assume that dim ε is maximal, we

must have dim uα1 ∩ ε = n, and, therefore, uα1 ∩ ε =
n⊕
i=1

kxγi .

Now let x + a be any element in ε where x ∈ uα1
and a ∈ ulα1

∩ uαn . We need

to show that x ∈ uαn , that is, x ∈
n⊕
i=1

kxγi . Let x =
∑
bixβi +

∑
cixγi and assume

to the contrary that bi 6= 0 for some i. Note that [xγj , ulα1
∩ uαn ] = 0 for any j,

1 ≤ j ≤ n, since both xγj and any a ∈ ulα1
∩ uαn are linear combinations of root

vectors for roots that have coefficient by αn equal to 1. Hence, [x + a, γn−i] =
bi[xβi , γn−i] 6= 0. Again, we have contradiction. Therefore, ε ⊂ uαn . This proves
(2).

To establish (3), we first note that Pαn is the (reduced) stabilizer of uαn under
the adjoint action of Sp2n. Arguing as in the end of the proof of Theorem 2.5, we
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conclude that the orbit map Sp2n → Sp2n ·uαn induces a finite radicial morphism

Sp2n /Pαn ' Sp2n ·uαn .

�

Our final calculation in this section determines the variety of elementary subal-
gebras of maximal dimension for a maximal parabolic of sln.

Theorem 2.12. Assume that p > 2.

(1) The maximal dimension of an elementary subalgebra of the standard para-
bolic subalgebra p1,2m of sl2m+1 is m(m+ 1).

(2) For m ≥ 2, E(m(m+ 1), p1,2m) is a disjoint union of two connected com-
ponents homeomorphic to Grass(m, 2m) and Grass(m− 1, 2m).

Proof. Let ε ⊂ p1,2m be an elementary subalgebra. Since p1,2m ⊂ sl2m+1, Theo-
rem 2.6 implies that dim ε ≤ m(m+ 1). Since um,m+1 is a subalgebra of p1,2m, we
conclude that the maximal dimension is precisely m(m+ 1). This proves (1).

To show (2), we first show that any elementary subalgebra ε of maximal dimen-
sion is conjugate to either um,m+1 or um+1,m under the adjoint action of P1,2m.
By Theorem 2.6, ε is conjugate to um,m+1 or um+1,m under the adjoint action of
SL2m+1. Assume that ε = gum+1,mg

−1 for some g ∈ SL2m+1 (the case of um,m+1

is strictly analogous). We proceed to show that there exists g̃ ∈ P1,2m such that
ε = g̃um+1,mg̃

−1.
Let W (SL2m+1) ' NSL2m+1(T )/CSL2m+1(T ) be the Weyl group, U2m+1 be the

unipotent radical, and B2m+1 the Borel subgroup of SL2m+1. For an element
w ∈W (SL2m+1), we denote by w̃ a fixed coset representative of w in NSL2m+1

(T ).
Using the Bruhat decomposition, we can write g = g1w̃g2 where g1 ∈ U2m+1,

g2 ∈ B2m+1, and w ∈ W (SL2m+1). Since both um+1,m and P1,2m are stable
under the conjugation by U2m+1 and B2m+1, it suffices to prove the statement for
g = w̃, where w is a Weyl group element. We make the standard identifications
W (SL2m+1) ' S2m+1, W (L1,2m) ' S2m and W (Lm+1,m) ' Sm+1 × Sm where Li,j
is the Levi factor of the standard parabolic Pi,j .

We further decompose

S2m+1 = W (SL2m+1) =
⊔

s∈S2m\S2m+1/(Sm+1×Sm)

S2ms(Sm+1 × Sm)

into double cosets, where S2m is the Weyl group of the Levi of P1,2m which is
isomorphic to the subgroup of all permutations in S2m+1 which fix 1. We can choose
coset representatives {t} of S2m+1/Sm+1×Sm in such a way that if t−1(1) = j 6= 1
then j > m + 1. Indeed, let t be any permutation and let t−1(1) = j 6= 1.
Multiplying on the right by the transposition (1j), we get a new permutation that
fixes 1. If j ≤ m + 1, then (1j) ∈ Sm+1, and, hence, t and t · (1j) represent the
same coset.

Let w ∈ S2m+1, and assume that w̃um+1,mw̃
−1 ⊂ p1,2m. Write w = w1sw2,

where w1 ∈ S2m, w2 ∈ Sm+1 × Sm and s is a double coset representative. If
s−1(1) = 1, then w1s ∈ S2m and, hence, w̃1s̃ ∈ P1,2m. Since w̃2 stabilizes um+1,m,
the conjugates of um+1,m under w̃ and w̃1s̃ coincide. But w̃1s̃ is an element of P1,2m

which finishes the proof in the case s−1(1) = 1.
Now assume s(1) = j 6= 1. By the discussion above, we can assume that s−1(1) =

j, j > m + 1. Since w1(1) = 1, we get that w̃Eijw̃
−1 = Ew(i)w(j) = Ew(i)1 6∈
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p1,2m if w(i) 6= 1. Since Eij ∈ um+1,m for all i, 1 ≤ i ≤ m, we conclude that
w̃um+1,mw̃

−1 6⊂ p1,2m. This leads to a contradiction. Therefore, s(1) = 1, and we
can take g̃ = g1w̃1s̃ ∈ P1,2m.

The above discussion implies that E(r, p1,2m) = P1,2m · um+1,m tP1,2m · um,m+1.
The (reduced) stabilizer of um+1,m in P1,2m equals P1,m,m = Pm+1,m ∩ P1,2m ⊂
SL2m+1. Hence, the orbit map P1,2m → P1,2m · um+1,m induces a homeomorphism
Grass(m, 2m) ' P1,2m/P1,m,m → P1,2m · um+1,m, and similarly for the other com-
ponent. �

Theorem 2.12 has the following immediate corollary.

Corollary 2.13. Let g1,2m ⊂ gl2m+1 be as defined in Example 1.10(1). The max-
imal dimension of an elementary subalgebra of g1,2m is m(m + 1). For m ≥ 2,
E(m(m+ 1), g1,2m) is homeomorphic to Grass(m, 2m) tGrass(m− 1, 2m).

3. Radicals, socles, and geometric invariants for u(g)-modules

As throughout this paper, g denotes a finite dimensional p-restricted Lie algebra
over k. We recall that g is the Lie algebra Lie(g) of a uniquely defined infinitesimal
group scheme g of height 1 (see, for example, [16]). In [42], a rank variety V (G)M
was constructed for any finite dimensional representation M of the infinitesimal
group scheme G. The variety V (G)M is a closed subset of V (G), the variety of
(infinitesimal) 1-parameter subgroups of G. As shown in [42], these rank varieties
can be identified with cohomological support varieties defined in terms of the action
of H∗(G, k) on Ext∗G(M,M).

For infinitesimal group schemes G of height 1 (i.e., of the form g for some finite
dimensional p-restricted Lie algebra), we consider more complete invariants of rep-
resentations of G which one can think of as more sophisticated variants of “higher
rank varieties.” Our investigations follow that of our earlier paper [12] in which
we considered representations of elementary abelian p-groups. Because the group
algebra k(Z/p×r) is isomorphic to the restricted enveloping algebra u(g⊕ra ) of the
Lie algebra g⊕ra (commutative, with trivial p-restriction), that investigation is in
fact a very special case of what follows.

We use our earlier work for elementary abelian p-groups as a guide for the study
of u(g)-modules for an arbitrary g. In particular, rather than considering isomor-
phism types of a given module upon restriction to elementary subalgebras of a
given rank r, we consider dimensions of the radicals (respectively, socles) of such
restrictions. A key result is Theorem 3.13 which verifies that these dimensions
are lower (resp., upper) semi-continuous. As seen in Theorem 3.16, this implies
that the non-maximal radical and socle varieties associated to a u(g)-module M
are closed. Proposition 3.18 suggests that using the topology of these geometric
invariants of u(g)-modules will be a useful tool in identifying the topology on the
varieties E(r, g).

The following is a natural extension of the usual support variety in the case
r = 1 (see [20]) and of the variety Grass(r, V )M of [12, 1.4] for g = g⊕na . If ε ⊂ g is
an elementary subalgebra and M a u(g)-module, then we shall denote by ε∗M the
restriction of M to u(ε) ⊂ u(g).

Definition 3.1. For any u(g)-module M and any positive integer r, we define

E(r, g)M = {ε ∈ E(r, g); ε∗M is not projective}.
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In particular,

E(1, g)M = Proj k[V (g)M ] ⊂ Proj k[V (g)] = E(1, g)

is the projectivization of of the closed subvariety of V (g) = Np(g) consisting of those
(infinitesimal) 1-parameter subgroups restricted to which M is not projective.

The following proposition tells us that the geometric invariant M 7→ E(r, g)M
can be computed in terms of the more familiar (projectivized) support variety
E(1, g)M = Proj(V (g)M ).

Proposition 3.2. For any u(g)-module M and positive integer r,

(3.2.1) E(r, g)M = {ε ∈ E(r, g); ε ∩ V (g)M 6= 0}
where the intersection ε ∩ V (g)M is as subvarieties of g.

Proof. By definition, ε ∈ E(r, g)M if and only if ε∗M is not free which is the case if
and only if V (ε)ε∗M 6= 0. Since ε ⊂ g induces an isomorphism

V (ε)ε∗(M)
∼ // V (ε) ∩ V (g)M

(see [20]), this is equivalent to ε ∩ V (g)M 6= 0. �

Proposition 3.3. For any u(g)-module M and for any r ≥ 1,

E(r, g)M ⊂ E(r, g)

is a closed subvariety.
Moreover, if G is an algebraic group with g = Lie(G) and if M is a rational

G-module, then E(r, g)M ⊂ E(r, g) is G-stable.

Proof. Let Proj ε ⊂ E(1, g) be the projectivization of the linear subvariety ε ⊂ g.
Let XM = {ε ∈ Grass(r, g) | Proj ε ∩ E(1, g)M 6= ∅}. Then XM ⊂ Grass(r, g) is a
closed subvariety (see [25, ex. 6.14]). Since E(r, g)M = E(r, g) ∩XM by Prop. 3.2,
we conclude that E(r, g)M is a closed subvariety of E(r, g).

If g = Lie(G) and M is a rational G-module, then M 'Mx as u(g)-modules and

the pull-back of M along the isomorphism x−1 : u(εx)
∼ // u(ε) equals (εx)∗(Mx)

for any x ∈ G(k). Thus, E(r, g)M is G-stable. �

Proposition 3.2 implies the following result concerning the realization of subsets
of E(r, g) as subsets of the form X = E(r, g)M . We remind the reader of the
definition of the module Lζ associated to a cohomology class ζ ∈ Hn(u(g), k): Lζ
is the kernel of the map ζ : Ωn(k) → k determined by ζ, where Ωn(k) is the nth

Heller shift of the trivial module k (see [4] or Example 4.6).

Corollary 3.4. A subset X ⊂ E(r, g) has the form X = E(r, g)M for some u(g)-
module M if and only if there exists a closed subset Z ⊂ E(1, g) such that

(3.4.1) X = {ε ∈ E(r, g); Proj ε ∩ Z 6= ∅}.
Moreover, such an M can be chosen to be a tensor product of modules Lζ with each
ζ of even cohomological degree.

Proof. We recall that any closed, conical subvariety of V (g) (i.e., any closed sub-
variety of E(1, g)) can be realized as the (affine) support of a tensor product of
modules Lζ (see [20]) and that the support of any finite dimensional u(g)-module
is a closed, conical subvariety of V (g). Thus, the proposition follows immediately
from Proposition 3.2. �
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Example 3.5. As one specific example of Proposition 3.4, we take some even
degree cohomology class 0 6= ζ ∈ H2m(u(g), k) and M = Lζ . We identify V (g) with
the spectrum of Hev(u(g), k) (for p > 2), so that ζ is a (homogeneous) algebraic
function on V (g). Thus V (g)Lζ = Z(ζ) ⊂ V (g), the zero locus of the function ζ.
Then,

E(r, g)Lζ = {ε ∈ E(r, g); ε ∩ Z(ζ) 6= {0}}.
On the other hand, if ζ ∈ H2m+1(u(g), k) has odd degree and p > 2, then

V (g)Lζ = V (g), so that E(r, g)Lζ = E(r, g).

Remark 3.6. As pointed out in [12, 1.10] in the special case g = g⊕3
a and r = 2,

not every closed subset X ⊂ E(r, g) has the form (3.4.1).

Example 3.7. We consider another computation of E(r, g)M . Let G be a reductive
group and assume that p is good for G. Let λ be a dominant weight and consider
the induced module M = H0(λ) = IndGB λ. By a result of Nakano, Parshall, and
Vella [34, 6.2.1], V (g)H0(λ) = G · uJ , where uJ is the nilpotent radical of a suitably
chosen parabolic subgroup PJ ⊂ G. Then,

E(r, g)H0(λ) = G · {ε ∈ E(r, g); ε ∩ uJ 6= {0}}.

We now proceed to consider invariants of u(g)-modules associated to E(r, g)
which for r > 1 are not determined by the case r = 1. As before, for a given M
and a given r ≥ 1, we consider the restrictions ε∗(M) for ε ∈ E(r, g).

Definition 3.8. Let g be a p-restricted Lie algebra and M a finite dimensional
u(g)-module. For any r ≥ 1, any ε ∈ E(r, g), and any j, 1 ≤ j ≤ (p − 1)r, we
consider

Radj(ε∗(M)) =
∑

j1+···+jr=j

Im{uj11 · · ·ujrr : M →M}

and
Socj(ε∗(M)) =

⋂
j1+···+jr=j

Ker{uj11 · · ·ujrr : M →M},

where {u1, . . . , ur} is a basis for ε.
For each r ≥ 1 and each j, 1 ≤ j ≤ (p−1)r, we define the local (r, j)-radical rank

of M and the local (r, j)-socle rank of M to be the (non-negative) integer valued
functions

ε ∈ E(r, g) 7→ dim Radj(ε∗(M))

and
ε ∈ E(r, g) 7→ dim Socj(ε∗(M))

respectively.

Remark 3.9. If M is a u(g)-module, we denote by M# = Homk(M,k) the dual of
M whose u(g)-module structure arises from that on M using the antipode of u(g).
Thus, if X ∈ g and f ∈ M#, then (X ◦ f)(m) = −f(X ◦m). If i : L ⊂ M is a
u(g)-submodule, then we denote by L⊥ ⊂M# the submodule defined as the kernel
of i# : M# → L#. We remind the reader that

(3.9.1) Socj(ε∗(M#)) ' (Radj(ε∗M))⊥

(as shown in [12, 2.2]).
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The following elementary observation will enable us to conclude in [13] that the
constructions of §4 determine vector bundles on G-orbits of E(r,LieG).

Proposition 3.10. If g = Lie(G) and M is a rational G-module, then the local
(r, j)-radical rank of M and the local (r, j)-socle rank of M are constant on G-orbits
of E(r, g).

Proof. Let g ∈ G, and let ε ∈ E(r, g). We denote by εg ∈ E(r, g) the image of ε
under the action of G on E(r, g), and let g · (−) : M → M be the action of G on
M . Observe that

g : M
m7→gm// Mg

defines an isomorphism of rational G-modules, where the action of x ∈ G on m ∈
Mg is given by the action of gxg−1 on m (with respect to the G-module structure
on M). Thus, the proposition follows from the observation that the pull-back of

εg∗(Mg) equals ε∗(M) under the isomorphism g : u(ε)
∼ // u(εg) . �

The following discussion leads to Theorem 3.13 which establishes the lower and
upper semi-continuity of local (r, j)-radical rank and local (r, j)-socle rank respec-
tively.

Notation 3.11. We fix a basis {x1, . . . , xn} of g and use it to identify Mn,r ' g⊕r

as in the beginning of §1. Let Σ ⊂ {1, . . . , n} be an r-subset. Recall the section
sΣ : UΣ → M◦n,r of (1.1.1) that sends an r-plane ε ∈ UΣ to the n× r matrix AΣ(ε)
with the r × r submatrix corresponding to Σ being the identity and the columns
generating the plane ε. Extend the map sΣ to sΣ : UΣ → Mn,r and consider the
induced map on coordinate algebras:

(3.11.1) k[Mn,r] = k[Ti,s]
s∗Σ // k[UΣ ]

We define

TΣ
i,s ≡ s∗Σ(Ti,s)

It follows from the definition that TΣ
i,s = δα−1(i),s for i ∈ Σ, where α : {1, . . . , r} → Σ

is the function with α(1) < · · · < α(r), and that TΣ
i,s for i /∈ Σ are algebraically

independent generators of k[UΣ].
Let VΣ ≡ E(r, g)∩UΣ. We define the set {Y Σ

i,s} of algebraic generators of k[VΣ]

as images of {TΣ
i,s} under the map of coordinate algebras induced by the closed

immersion VΣ ⊂ UΣ:

k[UΣ] // // k[VΣ] , TΣ
i,s 7→ Y Σ

i,s

It again follows that Y Σ
i,s = δα−1(i),s, for i ∈ Σ and α as above. For each ε ∈ VΣ ⊂ UΣ

(implicitly assumed to be a k-rational point), we have

Y Σ
i,s(ε) = TΣ

i,s(ε) = s∗Σ(TΣ
i,s)(ε) = Ti,s(sΣ(ε)).

Hence,

(3.11.2) AΣ(ε) = [Y Σ
i,s(ε)].
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Definition 3.12. For a u(g)-module M , and for a given s, 1 ≤ s ≤ r, we define the
endomorphism of k[VΣ]–modules

(3.12.1) ΘΣ
s ≡

n∑
i=1

xi ⊗ Y Σ
i,s : M ⊗ k[VΣ]→M ⊗ k[VΣ],

via
m⊗ 1 7→

∑
i

xim⊗ Y Σ
i,s.

We refer the reader to [26, III.12] for the definition of an upper/lower semi-
continuous function on a topological space.

Theorem 3.13. Let M be a u(g)-module, r a positive integer, and j an integer
satisfying 1 ≤ j ≤ (p− 1)r. Then the local (r, j)-radical rank of M is a lower semi-
continuous function and the local (r, j)-socle rank of M is an upper semicontinuous
function on E(r, g).

Proof. It suffices to show that the local (r, j)-radical rank of M is lower semi-
continuous when restricted along each of the open immersions VΣ ⊂ E(r, g). For
ε ∈ VΣ with residue field K, the specialization of ΘΣ

s at ε defines a linear operator
ΘΣ
s (ε) =

∑n
i=1 Y

Σ
i,s(ε)xi on MK :

m 7→ ΘΣ
s (ε) ·m =

n∑
i=1

Y Σ
i,s(ε)xim.

Since the columns of [Y Σ
i,s(ε)] generate ε by (3.11.2), we get that

(3.13.1) Rad(ε∗M) =

r∑
s=1

Im{ΘΣ
s (ε) : MK →MK}

and

(3.13.2) Radj(ε∗M) =
∑

j1+···+jr=j

Im{ΘΣ
1 (ε)j1 . . .ΘΣ

r (ε)jr : MK →MK} =

Im{
⊕

j1+···+jr=j

ΘΣ
1 (ε)j1 . . .ΘΣ

r (ε)jr : M
⊕r(j)
K →MK}

where r(j) is the number of ways to write j as the sum of non-negative integers
j1 + · · ·+ jr. Hence, the usual argument for lower semicontinuity of the dimension
of images of a homomorphism of finitely generated free modules applied to the
k[VΣ]-linear map⊕

j1+···+jr=j

(ΘΣ
1 )j1 . . . (ΘΣ

r )jr : (M ⊗ k[VΣ])⊕r(j) →M ⊗ k[VΣ].

enables us to conclude that the function

(3.13.3) ε ∈ E(r, g) 7→ dim Radj(ε∗M) is lower semi-continuous.

The upper semi-continuity of socle ranks now follows by Remark 3.9. �

Remark 3.14. To get some understanding of the operators ΘΣ
s (ε) occurring in the

proof of Theorem 3.13, we work out the very special case in which g = ga ⊕ ga,
r = 1 (so that E(r, g) = P1), and j = 1. We fix a basis {x1, x2} for g which induces
the identification g ' A2. The two possibilities for Σ ⊂ {1, 2} are {1}, {2}. Let
k[T1, T2] be the coordinate ring for A2 (corresponding to the fixed basis {x1, x2}.



ELEMENTARY SUBALGEBRAS 21

Let Σ = {1}. We have V{1} = U{1} = {[a : b] | a 6= 0} ' A1 and the section

s{1} : V{1} → A2 given explicitly as [a : b] 7→ (1, b/a). The corresponding map of
coordinate algebras as in (3.11.1) is given by

k[A2] = k[T1, T2]→ k[V{1}] ' k[A1]

T1 7→ 1, T2 7→ s∗{1}(T2)

Then for a u(g)-module M , ε = 〈a, b〉 ∈ P1 with a 6= 0, and m ∈M , we have

(3.14.1) Θ{1} = x1 ⊗ 1 + x2 ⊗ s∗{1}(T2) : M ⊗ k[V{1}]→M ⊗ k[V{1}];

Θ{1}(ε) = x1 +
b

a
x2, m 7→ x1(m) +

b

a
x2(m).

We extend the formulation of “generalized support varieties” introduced in [23]
for r = 1 and in [12] for elementary abelian p-groups (or, equivalently, for g = g⊕ra )
to any r and an arbitrary p-restricted Lie algebra g.

Definition 3.15. For any finite dimensional u(g)-module M , any positive integer
r, and any j, 1 ≤ j ≤ (p− 1)r, we define

Radj(r, g)M ≡ {ε ∈ E(r, g) : dim(Radj(ε∗M)) < max
ε′∈E(r,g)

dim Radj(ε′∗M)}

Socj(r, g)M ≡ {ε ∈ E(r, g) : dim(Socj(ε∗M)) > min
ε′∈E(r,g)

dim Socj(ε′∗M)}

Theorem 3.16. Let M be a finite-dimensional g-module, and let r, j be positive
integers such that 1 ≤ j ≤ (p−1)r. Then Radj(r, g)M, Socj(r, g)M are proper closed
subvarieties in E(r, g).

Proof. Follows immediately from Theorem 3.13. �

To give our first application, we need the following elementary fact.

Lemma 3.17. Let k[x1, . . . , xn] be a polynomial ring, let xi11 . . . xinn be a monomial
of degree i and assume that p = char k > i. There exist linear polynomials without
constant term λ0, . . . , λm on the variables x1, . . . , xn, and scalars a0, . . . , am ∈ k
such that

xi11 . . . xinn = a0λ
i
0 + . . .+ amλ

i
m.

Proof. It suffices to prove the statement for n = 2, thanks to an easy induction
argument (with respect to n). Hence, we assume that we have only two variables,
x and y.

Let λj = jx+ y for j = 0, . . . , i, so that we have i+ 1 equalities:

yi = λi0
(x+ y)i = λi1
(2x+ y)i = λi2

...
...

(ix+ y)i = λii
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Treating monomials on x, y as variables, we interpret this as a system of i + 1
equations on i+ 1 variables with the matrix

0 0 . . . 0 . . . 0 1

1 i . . .
(
i
j

)
. . . i 1

2i 2i−1i . . . 2i−j
(
i
j

)
. . . 2i 1

...
...

. . .
...

. . .
...

...

ii ii−1i . . . ii−j
(
i
j

)
. . . i2 1


By canceling the coefficient

(
i
j

)
in the (j + 1)-st column (which is non-trivial since

p > i) we reduce the determinant of this matrix to a non-trivial Vandermonde
determinant. Hence, the matrix is invertible. We conclude the monomials xjyi−j

can be expressed as linear combinations of the free terms λi0, . . . , λ
i
i. �

Determination of the closed subvarieties Radj(r, g)M, Socj(r, g)M of E(r, g) ap-
pears to be highly non-trivial. The reader will find a few computer-aided calcula-
tions in [12] for g = g⊕na . The following proposition presents some information for
E(n− 1, gln).

Proposition 3.18. Assume that p ≥ n. Let X ∈ gln be a regular nilpotent element,
and let ε ∈ E(n− 1, gln) be an n − 1-plane with basis {X,X2, . . . , Xn−1}. Then
GLn ·ε is an open GLn-orbit for E(n− 1, gln).

Proof. Let V be the defining n-dimensional representation of gln. Let ε′ be any el-
ementary Lie subalgebra of gln of dimension n−1. If ε′ contains a regular nilpotent
element Y , then ε′ has basis {Y, Y 2, . . . , Y n−1}, since the centralizer of a regular
nilpotent element in gln is generated as a linear space by the powers of that nilpo-
tent element. Hence, in this case ε′ is conjugate to the fixed plane ε. Moreover,
Radn−1(ε′∗V ) = Im{Y n−1 : V → V }, and, hence, dim Radn−1(ε′∗V ) = 1.

Suppose ε′ does not contain a regular nilpotent element. Then for any matrix
Y ∈ ε′, we have Y n−1 = 0. Lemma 3.17 implies that any monomial of degree
n− 1 on elements of ε′ is trivial. Therefore, Radn−1(ε′∗V ) = 0. We conclude that
GLn ·ε is the complement to Radn−1(n − 1, gln)V in E(n− 1, gln). Theorem 3.13
now implies that GLn ·ε is open. �

Example 3.19. In this example we describe the geometry of E(2, gl3) making an
extensive use of the GL3-action. Further calculations involving more geometry are
currently being investigated.

Assume p > 3. Fix a regular nilpotent element X ∈ gl3. Let ε1 = 〈X,X2〉 be
the 2-plane in gl3 with the basis X,X2, and let

C1 = GL3 · ε1 ⊂ E(2, gl3)

be the orbit of ε1 in E(2, gl3). By Proposition 3.18, this is an open subset of
E(2, gl3). Since E(2, gl3) is irreducible (see Example 1.6), C1 is dense. We have
dimC1 = dimC1 = dimE(2, gl3) = 4.

The closure of C1 contains two more (closed) GL3 stable subvarieties, each one
of dimension 2. They are the GL3 saturations in E(2, gl3) of the elementary subal-
gebras u1,2 (spanned by E1,2 and E1,3), and u2,1 (spanned by E1,3 and E2,3). Since
the stabilizer of u1,2 (resp. u2,1) is the standard parabolic P1,2 (resp. P2,1), the
corresponding orbit is readily identified with GL3 /P1,2 ' Grass(2, 3) = P2 (resp.,
GL3 /P2,1 ' P2) (see Remark 2.9).
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Proposition 3.20. Let u be a p-restricted Lie algebra with trivial p-restriction
map. Then the locus of elementary subalgebras ε ∈ E(r, u) such that ε is maximal
(that is, not properly contained in any other elementary subalgebra of u) is an open
subset of E(r, u).

Proof. Regard u as acting on itself via adjoint representation. Note that we neces-
sarily have ε ⊂ Soc(ε∗(uad)). Moreover, our hypothesis that x[p] = 0 for any x ∈ u
implies that this inclusion is an equality if and only if ε is a maximal elementary
subalgebra. Hence,

dim Soc(ε∗(uad)) ≥ dim ε = r

with equality if and only if ε is maximal. We conclude that the locus of elementary
subalgebras ε ∈ E(r, u) such that ε is nonmaximal equals the nonminimal socle
variety Soc(r, u)uad

. The statement now follows from Proposition 3.16. �

4. Modules of constant (r, j)-radical rank and/or constant
(r, j)-socle rank

In previous work with coauthors, we have considered the interesting class of
modules of constant Jordan type (see, for example, [11]). In the terminology of
this paper, these are u(g)-modules M with the property that the isomorphism type
of ε∗M is independent of ε ∈ E(1, g). In the special case g = g⊕na , further classes
of special modules were considered by replacing this condition on the isomorphism
type of ε∗M for ε ∈ E(1, g⊕na ) by the “radical” or “socle” type of ε∗M for ε ∈
E(r, g⊕na ).

In this section, we consider u(g)-modules of constant (r, j)-radical rank and con-
stant r-radical type (and similarly for socles). As already seen in [12] in the special
case g = g⊕na , the variation of radical and socle behavior for r > 1 can be quite
different. Moreover, having constant r radical type does not imply the constant
behavior for a different r.

As we investigate in [13], a u(g)-module of constant (r, j)-radical rank or constant
(r, j)-socle rank determines a vector bundle on E(r, g), thereby providing good
motivation for studying such modules. While a great many examples of such u(g)-
modules, some well known, can be constructed from rational G-modules, there are
numerous others which do not arise in this way. Some examples are given in 4.8,
4.9 and 4.10. Although identifying the associated vector bundles is hard, some such
vector bundles might prove to be of geometric importance.

Definition 4.1. Fix integers r > 0 and j, 1 ≤ j < (p − 1)r. A u(g)-module M
is said to have constant (r, j)-radical rank (respectively, (r, j)-socle rank) if the

dimension of Radj(ε∗M) (respectively, Socj(ε∗M)) is independent of ε ∈ E(r, g).
We say that M has constant r-radical type (respectively, r-socle type) if M has

constant (r, j)-radical rank (respectively, (r, j)-socle rank) for all j.

Remark 4.2. For r > 1, the condition that the r-radical type of M is constant
does not imply that the isomorphism type of ε∗M is independent of ε ∈ E(r, g). The

condition that dim Radj(ε∗(M)) = dim Radj(ε′∗M) for all j is much weaker than
the condition that ε∗M ' ε′∗M . Indeed, examples are given in [12] (for g = g⊕na ) of
modules M whose r-radical type is constant but whose r-socle type is not constant.
In particular, the isomorphism type of ε∗M for such M varies with ε ∈ E(r, g).
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Proposition 4.3. A u(g)-module M has constant (r, j)-radical rank (respectively,
(r, j)-socle rank) if and only if Radj(r, g)M = ∅ (resp., Socj(r, g)M = ∅.)

Proof. This follows from the fact that there is a non-maximal radical rank if and
only if the radical rank is not constant, a non-minimal socle rank if and only if the
socle rank is not constant. �

Proposition 4.4. Let G be an affine algebraic group, and let g = Lie(G). If
E(r, g) consists of a single G-orbit, then any finite dimensional rational G-module
has constant r-radical type and constant r-socle type.

Proof. This follows immediately from Proposition 3.10. �

Example 4.5. If P is a finite dimensional projective u(g)-module, then ε∗P is a
projective (and thus free) u(ε)-module for any elementary subalgebra ε ⊂ g. Thus,
the r-radical type and r-socle type of P are constant.

Example 4.6. Let g be a p-restricted Lie algebra. Recall that Ωs(k) for s > 0

is the kernel of Ps−1
d→ Ps−2, where d is the differential in the minimal projective

resolution P∗ → k of k as a u(g)-module; if s < 0, then Ωs(k) is the cokernel

of I−s−2 d→ I−s−1, where d is the differential in the minimal injective resolution
k = I−1 → I∗ of k as a u(g)-module. Then for any s ∈ Z, the s-th Heller shift
Ωs(k) has constant r-radical type and constant r-socle type for each r > 0.

Namely, for any ε ∈ E(r, g), ε∗(Ωs(k)) is the direct sum of the s-th Heller shift
of the trivial module k and a free u(ε)-module (whose rank is independent of the
choice of ε ∈ E(r, g)).

The following example is one of many we can realize using Proposition 4.4.

Example 4.7. Let g = gl2n and r = n2. If M is any finite dimensional rational
GL2n-module, then it has constant r-radical type and constant r-socle type by
Corollary 2.7.

In Example 4.7, the dimension r of elementary subalgebras ε ⊂ g is maximal.
We next consider an example of non-maximal elementary subalgebras.

Example 4.8. Choose r > 0 such that no elementary subalgebra of dimension r

in g is maximal. Let ζ ∈ Ĥ
n
(u(g), k) for n < 0 be an element in negative Tate

cohomology. Consider the associated short exact sequence

(4.8.1) 0 // k // E // Ωn−1(k) // 0.

Then E has constant r-radical rank and constant r-socle rank for every j, 1 ≤ j ≤
(p− 1)r.

Namely, we observe that the restriction of the exact sequence (4.8.1) to ε splits
for every ε ∈ E(r, g). This splitting is a consequence of [12, 3.8] (stated for an
elementary abelian p-group and equally applicable to any elementary subalgebra
f ⊂ g which strictly contains ε). The assertion is now proved with an appeal to
Example 4.6.

We next proceed to consider modules Lζ , adapting to the context of p-restricted
Lie algebras the results of [12, §5].
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Proposition 4.9. (see [12, 5.5]) Suppose that we have a non-zero cohomology class
ζ ∈ Hm(u(g), k) satisfying the condition that

Z(ζ) ⊂ Np(g) ⊂ g

does not contain a linear subspace of dimension r for some r ≥ 1. Then the u(g)-
module Lζ has constant r-radical type.

Proof. Consider ε ∈ E(r, g). We identify ε∗ : Np(ε) → Np(g) with the composition
ε → Np(g) ⊂ g. Thus, our hypothesis implies that ε is not contained in Z(ζ).
Hence, ζ ↓ε∈ Hm(u(ε), k) is not nilpotent, and, therefore, is not a zero-divisor.
Proposition 5.3 of [12] applied to ε implies that

(4.9.1) Rad(Lζ↓ε) = Rad(Ωn(ε∗k)),

where Ωn(k ↓ε) is the n-th Heller shift of the trivial u(ε)-module. We note that
the statement and proof of [12, Lemma 5.4] generalizes immediately to the map
u(ε) → u(g) yielding the statement that dim Rad(ε∗(Lζ)) − dim Rad(Lζ↓ε) =
dim Rad(ε∗(Ωn(k))) − dim Rad(Ωn(k ↓ε)) is independent of ε whenever ζ ↓ε 6= 0.
Combined with (4.9.1), this allows us to conclude that

dim Rad(ε∗(Lζ)) = dim Rad(ε∗(Ωn(k))).

Since ε∗(Lζ) is a submodule of ε∗(Ωn(k)) this further implies that equality of
radicals

Radj(ε∗(Lζ)) = Radj(ε∗(Ωn(k)))

for all j > 0. Since Ωn(k) has constant r-radical type by Example 4.6, we conclude
that the same holds for Lζ .

�

Utilizing another result of [12], we obtain a large class of u(g)-modules of constant
radical type.

Proposition 4.10. Let d be a positive integer, sufficiently large compared to r and
dim g. There exists some 0 6= ζ ∈ H2d(u(g), k) such that Lζ has constant r-radical
type.

Proof. The embedding V (g) ' Spec Hev(u(g), k) ↪→ g (for p > 2) is given by the

natural map S∗(g#[2]) → H∗(u(g), k) determined by the Hochschild construction
g# → H2(u(g), k) (see, for example, [19]). (Here, g#[2] is the vector space dual to
the underlying vector space of g, placed in cohomological degree 2.) As computed
in [12, 5.7], the set of all homogeneous polynomials F of degree d in S∗(g#[2]) such
that the zero locus Z(F ) ⊂ Proj(g) does not contain a linear hyperplane isomorphic
to Pr−1 is dense in the space of all polynomials of degree d for d sufficiently large.
Let ζ be the restriction to Proj k[V (g)] of such an F in S∗(g#[2]); since such an
F can be chosen from a dense subset of homogeneous polynomials of degree d, we
may find such an F whose associated restriction ζ is non-zero. Now, we may apply
Proposition 4.9 to conclude that Lζ has constant r-radical type. �

The following closure property for modules of constant radical and socle types
is an extension of a similar property for modules of constant Jordan type.
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Proposition 4.11. Suppose E(r, g) is connected. Let M be a u(g)-module of con-
stant (r, j)-radical rank (respectively, constant (r, j)-socle rank) for some r, j. Then
any u(g)-summand M ′ of M also has constant (r, j)-radical rank (resp., constant
(r, j)-socle rank).

Proof. Write M = M ′⊕M ′′, and set m equal to the (r, j)-radical rank of M . Since
the local (r, j)-radical types of M ′, M ′′ are both lower semicontinuous by Theorem
3.13 and since the sum of these local radical types is the constant function m, we
conclude that both M ′, M ′′ have constant (r, j)-radical rank.

The argument for (r, j)-socle rank is essentially the same. �
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