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Abstract. We discuss representation-theoretic approach to support varieties:

cyclic shifted subgroups, π-points and rank varieites. We also formulate pro-

jectivity tests.

2. π-points and rank varieties

First, finishing up from last lecture. Recall that we stopped with a definition of
a finite group scheme.

Representations of G oo ∼ // kG−mod

2.1. Examples.

Example 2.1. (Finite groups).

G kG

As a functor: for R an integral domain, G̃(R) = G. In particular, G̃(K) = G

for any field. In general, G̃(R) = R×|π0(R)|, where π0(R) is the set of connected
components of Spec R. This is a constant finite group scheme.

Exercise. Show that G̃ : R 7→ G is not a functor.

Example 2.2. (Frobenius kernels) Define the algebraic group GLn as

GLn(R) = {(aij)1≤i,j≤n, invertible over R}

k[GLn] ' k[Xij,
1

det ], ∇ : k[GLn] → k[GLn] ⊗ k[GLn] sends Xij to
n∑

`=1

Xi` ⊗ X`j ,

antipode S : k[GLn]→ k[GLn] sends Xij to
Ad(Xij)

det
.

Define Frobenius map:

F : GLn

(aij)→(ap

ij)
// GLn

GLn(r)
def
= Ker F (r)

is the r-th Frobenius kernel of GLn. Explicitly,

GLn(r)(R) = {(aij)1≤i,j≤n, ap
ij = δij}.

k[GLn(r)] ' k[Xij ]/(Xp
ij − δij).
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We can define Frobenius map for any group scheme over k (e.g., by embedding
into GLn, but also internally). If G is any group scheme, then denote by G(r) =
Ker{F r : G → G}.

Definition 2.3. A group scheme is called infinitesimal if k[G] is a local algebra.

Frobenius kernels are infinitesimal finite group schemes. Geometrically, they only
have one point (as Spec of local algebras). Their representation theory, though, is
very rich. In particular, it “approximates” representation theory of the big algebraic
group for which they are kernels.

Example 2.4. (Restricted Lie algebras) Ask: what Hopf algebras do you know?
Expected answer: U(g).
If G is a group scheme, it has a Lie algebra (analogous to Lie groups and Lie alge-
bras) - the tangent space at the identity, or the space of left invariant derivations.
Because of characteristic p it comes naturally with extra structure: the [p]-th power
(or p-restriction) map:

[p] : g→ g.

E.g., g = gln. Then (aij)
[p] = (aij)

p (note the difference with the Frobenius map!).
Any Lie algebra can be embedded into gln and will inherit this pth power. There
is also an internal description as usual.

Restricted enveloping algebra:

u(g) = U(g)/〈xp − x[p]〉

This is a fin. dim. cocomm. Hopf algebra. Coproduct: for x ∈ g, ∇(x) =
x⊗ 1 + 1⊗ x.

How is g a finite group scheme directly? Let G be a group scheme, and g = LieG.
Then u(g) ' k[G(1)]. Hence,

Representations of G(1) oo ∼ // u(g)−mod

All cohomological constructions go through for a finite group scheme replacing
finite group. The Eckmann-Hilton argument is useful for graded commutativity
here. A very important ingredient:

Theorem 2.5 (Friedlander-Suslin, (1997)). Let G be a finite group scheme over a
field k of positive characteristic. Then the cohomology algebra H•(G, k) is finitely
generated over k.

The “geometry” of Spec H•(g, k) is quite different.

Theorem 2.6 (Friedlander-Parshall, Andersen-Jantzen (1983-84), Suslin-Friedlan-
der-Bendel (1997)). Let g be a restricted Lie algebra. Then Spec H∗(g, k) ' N [p](g),
where N [p](g) = {x ∈ g | x[p] = 0}.

Remark 2.7. In fact, for p > h, N = N [p] and

(1) Hev(g, k) = k[N ]
(2) Hev(g, k) = 0

Credit: Friedlander-Parshall, Andersen-Jantzen.
Note the contrast with finite groups, especially in view of Jon Carlson’s explanations
from yesterday’s afternoon.
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Remark 2.8. Quite different from the Quillen stratification for finite groups. In
particular, for g = LieG where G is a classical algebraic group (GLn, SLn, orthog-
onal, symplectic, E, F, G-type...), this is ?almost? always irreducible. The UGA
VIGRE group is a world’s expert on that.

Now we temporarily forget all about cohomology. Approach the study of G-
modules from a different perspective.

Example 2.9. E = Z/p. kZ/p ' k[t]/tp. There are finitely many indecomposable
modules: [i] ' k[t]/ti, 1 ≤ i ≤ p. In particular, [p] ' kZ/p is the only indecompos-
able projective and [1] ' k is the unique simple module.

The isomorphism class of M , a Z/p-module ↔ M '
p⊕

i=1
ai[i] ↔ JType(t, M), the

Jordan type of t as an operator of M .

“Elementary approach to modular representation theory”. For a finite group (scheme)
G, consider k[t]/tp ⊂ kG (equivalently, p-nilpotent elements t ∈ kG). For a module
M , study the family M ↓k[t]/tp .

2.2. Cyclic shifted subgroups.

Definition 2.10. Let E = Z/p×n. Let {g1, . . . , gn} be generators of E, and let
xi = gi − 1 so that kE ' k[x1, . . . , xn]/(xp

1, . . . , t
p
n). A cyclic shifted subgroup of

E is a non-trivial cyclic subgroup of kE generated by a1x1 + . . . + anxn + 1. If
a = (a1, . . . , an) ∈ kn, denote by xa = a1x1 + . . . + anxn.

Cyclic shifted subgroups 〈xa + 1〉 ←→ a ∈ A
n\{0}

.

Theorem 2.11 (Dade, 1978). A finite-dimensional kE-module M is projective
(=free) if and only if the restriction of M to every cyclic shifted subgroup is pro-
jective (=free).

Generalization:

Theorem 2.12 (Benson-Carlson-Rickard, 1996). A kE-module M (can be infinite-
dimensional) is projective (=free) if and only if the restriction of M to every cyclic
shifted subgroup is projective (=free).

Hence, the “elementary approach” detects projectivity.

Jon Carlson introduced the following construction:

Definition 2.13 (Rank variety).

VE(M) = {α ∈ A
n
k : such that M ↓〈xa+1〉 is not free } ∪ {0}

Reformulation of “Dade’s lemma”: M is projective if and only if VE(M) = 0. Carl-
son conjectured there was a close relationship between this “elementary approach”
and cohomology; the conjecture was proved by Avrunin and Scott; several other
proofs appeared later; perhaps 4 or 5 due to Jon Carlson:).

isom Theorem 2.14 (Avrunin-Scott, 1982).

VE(M) ' |G|M .

Remark 2.15. Carlson proved the “tensor product property” (property N4 form
last time) for the rank variety side. Using Theorem 2.14, Avrunin-Scott generalized
it to support varieties for all finite groups.
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2.3. Rank varieties for Lie algebras. Recall the restricted Nullcone N [p] =
{x ∈ g | x[p] = 0}.

Definition 2.16. Let M be a restricted g-module (=u(g)–module). Then Vg(M) =

{x ∈ N [p] : such that M ↓〈x〉 is not free } ∪ {0}

Theorem 2.17 (Friedlander-Parshall(1986), Suslin-Friedlander-Bendel(1997)).

|g|M ' Vg(M).

Remark 2.18. There is also a theory of “rank” varieties for Frobenius kernels of
arbitrary height (due to Suslin, Friedlnader, Bendel). The role of shifted subgroups
is played by one parameter subgroups.

2.4. π-points. Disclosure: I’ll actually talk about p-points for simplicity. π-points
show up when we allow field extensions which makes tremendous sense geometri-
cally.

A finite group scheme U is unipotent abelian if kU is a commutative local algebra.
E.g., group algebra of an abelian p-group.

Definition 2.19. Let G be a finite group scheme. A π-point α of G is a flat map
of algebras

k[t]/tp

##G
G

G
G

α //_______ kG

kA

==||||||||

which factors through some unipotent abelian subgroup scheme A ⊂ G.

Examples of π-points:

• Cyclic shifted subgroups for E,
• p-nilpotent elements in restricted Lie algebras
• one parameter subgroups for Frobenius kernels.

Connection to cohomology:

Proposition 2.20. A π-point α : k[t]/tp → kG induces a non-trivial map in
cohomology: α∗ : H•(G, k)→ H•(k[t]/tp, k) ' k[x].

Geometrically:
A π-point k[t]/tp → kG  H•(G, k)→ H•(k[t]/tp, k) ' k[x]  

A
1 = Spec k[x]→ Spec H•(G, k) = |G|.

Projectivize (factor out the scalar action of k∗): pt ∈ Proj |G|. Hence,

π-point  a point on Proj H•(G, k)
.

But too many π-points collapse.

2.5. Π-space. Let M be a G-module, α : k[t]/tp → kG be a π-point. Denote by
α∗M the restriction of M to k[t]/tp via α.

Definition 2.21. Let α, β be two π-points of G.
α ∼ β ⇐⇒ for any finite-dimensional G–module M , α∗M is free if and only if β∗M
is free.
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Remark 2.22. What is behind the equivalence relation? Let’s bisect it in the
case of elementary abelian p-group. Let kE = k[x1, . . . , xn]/(xp

i ). Cyclic shifted
subgroups and Rank varieties were defined in terms of these generators xi. What
if we change generators? Let kE = k[x′

1, . . . , x
′
n]/((x′

i)
p). We need to compare

restrictions of a module M to 〈xa+1〉 and 〈x′
a+1〉 where xa = a1x1+. . .+anxn+1,

x′
a = a1x

′
1 + . . . + anx′

n + 1.

Exercise. xa − x′
a ∈ I2 = (x1, . . . , xn)2.

The equivalence relation in this case says the following:

M ↓〈xa+1〉 is projective if and only if M ↓〈xa+p(x1,...,xn)+1〉 is projective

where p(x1, . . . , xn) is any polynomial without constant or linear term.

Definition 2.23. Support space of a finite group scheme G:

Π(G) =< π-points > / ∼

Support space of a G-module M :

Π(G)M =< [α] : k[t]/tp → kG : α∗M is not free >

Topology: closed sets are Π(G)M for finite dimensional G-modules M .

This specializes to

• Proj VE and Proj VE(M) for G = E, an elementary abelian p-group.

• ProjN [p] and Vg(M) for a restricted Lie algebra g

• SFB theory of varieties of one-parameter subgroups for Frobenius kernels

main Theorem 2.24 (Friedlander-P.).

Π(G) ' Proj |G|

Π(G)M︸ ︷︷ ︸
local prop

' Proj |G|M︸ ︷︷ ︸
cohomology

for any finite dimensional G-module M

Π(G) has an intrinsic topology and a scheme structure. It’s isomorphic to
Proj |G| with respect to both of these structures.

Theorem 2.25 (Detection of projectivity ∼ Dade’s lemma). M is projective ⇔
Π(G)M = ∅ ⇔ M is free when restricted to any subalgebra k[t]/tp→ kG.

Credit: Dade, Chouinard, Benson-Carlson-Rickard, [finite groups], Bendel, Pevtsova
[infinitesimal group schemes], Friedlander-Pevtsova [finite group schemes]. Will not
touch upon this here but the theorem is valid for all modules, not necessarily fi-
nite dimensional. This makes it more difficult because the finite dimensional case
follows from Theorem 2.24 easily.


