Detecting Projectivity in Sheaves Associated to Representations of Restricted Lie Algebras

arXiv: 1309.1504 arXiv: 1309.1505

Jim Stark

Univeristy of Washington

October 26, 2014

OUTLINE

INTRODUCTION

p-Lie Algebras

LOCAL JORDAN TYPE

The Support Variety
Partitions

Jordan Type of M

GLOBALIZATION
Global Operator
Associated Sheaves
PROJECTIVITY AND $\mathcal{H}^{[1]}$ Previous Work
Results

p-Lie Algebras

Let *k* be an algebraically closed field of positive characteristic *p*.

Definition

A *restricted Lie algebra* over k is a Lie algebra $\mathfrak g$ together with a map

$$(-)^{[p]}\colon \mathfrak{g} o \mathfrak{g}$$

satisfying some conditions.

The conditions on $(-)^{[p]}$ are meant to force it to behave like a p^{th} power map $X \mapsto X^p$.

p-Lie Algebras

Example

All of the classical Lie algebras

$$\mathfrak{gl}_n = \{n \times n \text{ matrices}\}\$$
 $\mathfrak{sl}_n = \{X \in \mathfrak{gl}_n \mid \text{trace } X = 0\}\$
 $\mathfrak{sp}_n = \{X \in \mathfrak{gl}_n \mid X \text{ is Hamiltonian}\}\$
 $\mathfrak{o}_n = \{X \in \mathfrak{gl}_n \mid X \text{ is skew-symmetric}\}\$
 $\mathfrak{so}_n = \mathfrak{o}_n \cap \mathfrak{sl}_n$

are restricted Lie algebras via

$$[XY] = XY - YX$$
 and $X^{[p]} = X^p$.

p-Lie Algebras

Definition

Let g be a restricted Lie algebra and *M* a g-module. Then *M* is called *restricted* if

$$X^{[p]} \cdot m = \overbrace{X \cdots X}^{p \text{ times}} \cdot m \quad \forall X \in \mathfrak{g}, m \in M$$

THE SUPPORT VARIETY

The restricted nullcone

$$\mathcal{N}_p = \left\{ x \in \mathfrak{g} \mid x^{[p]} = 0 \right\}$$

is conical and Zariski closed.

Definition

The *support variety* of \mathfrak{g} is the projectivization $\mathbb{P}(\mathcal{N}_p)$ of the restricted nullcone.

p-Partitions

Definition

A *p-restricted partition* is a finite sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ such that:

$$p \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$$
.

Notation

Let \mathcal{P}_p be the set of all *p*-restricted partitions.

p-Partitions

Two convenient ways of writing the partition (4,3,1,1)

► Exponential notation.

$$(4,3,1,1) \longrightarrow [4][3][1]^2$$

► Young diagram.

$$(4,3,1,1) \longrightarrow \square$$

p-Partitions

Definition

The *j-rank* of a partition is the number of boxes in columns $j+1, j+2, \cdots$ of the Young diagram.

Example

The partition

has 2-rank 3.

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$.

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$v \xrightarrow{\text{matrix of}} A$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$\begin{array}{c}
\xrightarrow{\text{matrix of } X \text{ action}} A \xrightarrow{\text{Jordan}} A \xrightarrow{\text{normal form}} \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

 $\xrightarrow[\text{sizes}]{\text{block}} (3,3,1)$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$JType(M, v) =$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$v \xrightarrow{\text{matrix of}} A \xrightarrow{\text{Jordan}} A \xrightarrow{\text{normal form}} \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \xrightarrow{\text{block}} (3, 3, 1)$$

$$JType(M, v) =$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$JType(M, v) =$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$JType(M, v) =$$

Fix a finitely generated \mathfrak{g} -module M and take $v \in \mathbb{P}(\mathcal{N}_p)$. Let $X \in \mathcal{N}_p$ be a nonzero point on the line v.

$$JType(M, v) =$$

Definition
The *local Jordan type* of *M* is the function

$$\mathrm{JType}(M,-)\colon \mathbb{P}\big(\mathcal{N}_p\big)\to \mathscr{P}_p.$$

Definition

The *local Jordan type* of *M* is the function

$$\mathrm{JType}(M,-)\colon \mathbb{P}\big(\mathcal{N}_p\big)\to \mathscr{P}_p.$$

Theorem (Suslin, Friedlander, Bendel)

A restricted g-module M is projective if and only if its local Jordan type is the constant function

$$v \mapsto [p]^{\frac{\dim M}{p}}$$
.

Definition

- ▶ If JType(M, v) does not depend on v then we say M has constant Jordan type.
- ▶ If the j-rank of JType(M, v) does not depend on v then we say M has *constant* j-rank.

Constant Jordan type = constant j-rank for all j.

THE GLOBAL OPERATOR

Let $\{x_1, \ldots, x_n\}$ be a basis of g with dual basis $\{\widehat{x_1}, \ldots, \widehat{x_n}\}$.

•00000

Definition

The *global operator* is the sheaf map

$$\Theta \colon M \otimes_k \mathcal{O}_{\mathbb{P}(\mathcal{N}_p)} \to M \otimes_k \mathcal{O}_{\mathbb{P}(\mathcal{N}_p)}(1)$$

defined by the action of

$$\sum_{i=1}^n x_i \otimes \widehat{x}_i.$$

THE GLOBAL OPERATOR

Theorem (Friedlander, Pevtsova)

Given any point $v \in \mathbb{P}(\mathcal{N}_p)$, the Jordan normal form of the specialization

$$\Theta \otimes k(v) \colon M \to M$$

GLOBALIZATION 000000

gives the partition $\mathsf{JType}(M, v)$.

Note that Θ can be composed with itself by shifting further copies.

$$M \otimes_k \mathcal{O}_{\mathbb{P}(\mathcal{N}_p)} \xrightarrow{\Theta} M \otimes_k \mathcal{O}_{\mathbb{P}(\mathcal{N}_p)}(1) \xrightarrow{\Theta(1)} M \otimes_k \mathcal{O}_{\mathbb{P}(\mathcal{N}_p)}(2)$$

We choose the shifts such that constructions take place in degree 0. For example:

$$\ker\left\{\Theta^{j},M\right\} = \ker\left[\Theta^{j} \colon M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)} \to M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)}(j)\right]$$

$$\operatorname{im}\left\{\Theta^{j},M\right\} = \operatorname{im}\left[\Theta^{j} \colon M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)}(-j) \to M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)}\right]$$

$$\operatorname{coker}\left\{\Theta^{j},M\right\} = \operatorname{coker}\left[\Theta^{j} \colon M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)}(-j) \to M \otimes_{k} \mathcal{O}_{\mathbb{P}\left(\mathcal{N}_{p}\right)}\right]$$

These sheaves tell us about the local Jordan type of M.

Theorem (Friedlander, Pevtsova, S.)

Let $U \subseteq \mathbb{P}(\mathcal{N}_p)$ be open and connected. Given the statements:

- (1) M has constant j-rank on U.
- (2) The restriction of $coker\{\Theta^j, M\}$ to U is a locally free sheaf.
- (3) The restriction of $\operatorname{im}\{\Theta^j,M\}$ to U is a locally free sheaf.
- (4) The restriction of $\ker\{\Theta^j, M\}$ to U is a locally free sheaf. we have

$$(1) \Leftrightarrow (2) \Rightarrow (3) \Rightarrow (4).$$

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and JType $(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

 $\ker A$

Let
$$p = 5$$
 and $JType(A) = [5]^2[4][2]^2[1]$.

Let
$$p = 5$$
 and JType(A) = $[5]^2[4][2]^2[1]$.

 $im A^4$

 $\overline{\text{im }A^4}$

Let
$$p = 5$$
 and JType $(A) = [5]^2[4][2]^2[1]$.

So dim $\left(\frac{\ker A}{\operatorname{im} A^{p-1}}\right)$ gives the number of blocks of size < p.

ASSOCIATED SHEAVES

Definition For $1 \le i < p$ let

$$\mathcal{H}^{[1]}(M) = \frac{\ker\{\Theta,M\}}{\operatorname{im}\{\Theta^{p-1},M\}}.$$

Definition

For $1 \le i < p$ let

$$\mathcal{H}^{[1]}(M) = \frac{\ker\{\Theta, M\}}{\operatorname{im}\{\Theta^{p-1}, M\}}.$$

GLOBALIZATION 00000

Question

Is it true that *M* is projective if and only if $\mathcal{H}^{[1]}(M) = 0$?

Theorem (Friedlander, Pevtsova, 2011)

A G-module M is projective if and only if $\mathcal{H}^{[1]}(M) = 0$ and M has constant 1 and (p-1)-rank.

GLOBALIZATION

Theorem (S.)

If $\mathcal{H}^{[1]}(M) = 0$ then the following conditions are equivalent:

- ► M is projective,
- ► *M has constant 1-rank,*
- ► M has constant (p-1)-rank,
- $coker{\Theta, M}$ is locally free,
- $\operatorname{coker}\{\Theta^{p-1}, M\}$ is locally free,
- ▶ $im\{\Theta, M\}$ is locally free,
- $\operatorname{im}\{\Theta^{p-1}, M\}$ is locally free,
- $ker{\Theta, M}$ is locally free,
- ▶ $\ker\{\Theta^{p-1}, M\}$ is locally free.

Corollary

If $\mathbb{P}(\mathcal{N}_p)$ is a nonsingular curve then M is projective if and only if $\mathcal{H}^{[1]}(M) = 0$.

GLOBALIZATION

Projectivity and $\mathcal{H}^{[1]}$

Corollary

If $\mathbb{P}(\mathcal{N}_p)$ is a nonsingular curve then M is projective if and only if $\mathcal{H}^{[1]}(M) = 0$.

Example

If p = 3 then the standard representation $M = k^3$ of \mathfrak{sl}_3 does not have constant Jordan type but $\mathcal{H}^{[1]}(M) = 0$.

So the question becomes, for which g does the correspondence

GLOBALIZATION

$$\mathcal{H}^{[1]}(M) = 0 \qquad \Leftrightarrow \qquad M \text{ projective}$$

hold?

Theorem (S.)

If $\mathbb{P}(\mathcal{N}_p)$ is nonsingular then a \mathfrak{g} -module M is projective if and only if $\mathcal{H}^{[1]}(M) = 0.$

GLOBALIZATION

Theorem (S.)

If $\mathbb{P}(\mathcal{N}_p)$ is nonsingular then a \mathfrak{g} -module M is projective if and only if $\mathcal{H}^{[1]}(M) = 0$.

The only known examples of nonprojective M such that $\mathcal{H}^{[1]}(M) = 0$ occur for \mathfrak{sl}_n when $p \mid n$. So the nonsingular case remains open.

THE END

Thanks for listening:)