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Notation/Definitions

Preliminaries:

• k - algebraically closed field.

• G - affine algebraic group over k .

• Ga - k as an algebraic group under addition.

• one-parameter subgroup of G is a homomorphism from Ga to G .

• g - Lie algebra of G .

• N - nilpotent variety of g.

• U - unipotent variety of G .

In characteristic p > 0

There is a p-mapping on g, X 7→ X [p]. We set Np ⊆ N to be
{X : X [p] = 0}.

Similarly, let Up ⊆ U be {u : up = 1}.
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Notation/Definitions

More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding ρ : G → GLn.

X ∈ g is nilpotent if dρ(X ) is a nilpotent matrix.

u ∈ G is unipotent if ρ(u)− In is a nilpotent matrix.

In char. p > 0, dρ(X [p]) = dρ(X )p.
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Springer Isomorphisms

For GLn, clear that ∃ a GLn-equivariant isomorphism N ∼−→ U given by

X 7→ In + X ,

however, in characteristic 0...

The Exponential Map is Better

X 7→ exp(X ) = In + X + X 2/2 + · · ·X n−1/(n − 1)! better respects group
structure of GLn:

• For all c ∈ Ga, the map c 7→ exp(cX ) defines one-parameter
subgroup of GLn.

• If G closed subgroup, X ∈ g ⊆ gln, then exp(X ) ∈ G .

• If X ,Y ∈ N in same Borel subalgebra, then log(exp(X )exp(Y )) =

X + Y +
1

2
[X ,Y ] +

1

12
([X , [X ,Y ]] + [Y , [Y ,X ]]) + · · ·

(Baker-Campbell-Hausdorff formula)

This formulation doesn’t work in positive characteristic.
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Springer Isomorphisms

Let characteristic k = p > 0.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G , then there
exists a G -equivariant isomorphism N ∼−→ U .

Such a map is called a Springer isomorphism. One application is that
there is a bijection between nilpotent and unipotent G -orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between
nilpotent and unipotent orbits.

Moral: for some applications, any two Springer isomorphisms are equally
useful. For others, we’d like one which is “more similar” to the exponential
map (i.e. respecting group properties).
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Springer Isomorphisms

More precisely, if σ is to fill the role of the exponential map in
characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if P ≤ G parabolic with U = Ru(P) having nilpotence
class less than p, then ∃ a P-equivariant isomorphism

εP : Lie(U)→ U

which essentially comes from base-changing exponential map in character-
istic 0. We require that σ restricts on U to εP for all such P.

Carlson-Lin-Nakano (2008), McNinch (2005)

If p ≥ h, the Coxeter number of G , then there is precisely one Springer
isomorphism σ for G satisfying Property 1.
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Springer Isomorphisms

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every e 6= g ∈ Ga has order p. However, when p < h
there are unipotent elements in G of order pr , r > 1 (for example, if p = 2
then SL3 has elements of order 4), so we can’t expect every unipotent
element to lie inside closed group isomorphic to Ga.

Let Wm be the group of truncated Witt vectors. As a variety, Wm
∼= Am.

It is an abelian unipotent group, and has elements of maximal order pm.

We require: If X 6= 0, and m is the least integer such that X [pm] = 0, then
σ defines an embedding Am → G given by

(a0, a1, . . . , am−1) 7→ σ(a0X )σ(a1X
[p]) · · ·σ(am−1X

[pm−1]),

the image of which is a closed subgroup of G isomorphic to Wm.
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Main Result

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good
for G . Then ∃ a Springer isomorphism σ : N ∼−→ U satisfying Properties 1
and 2.

These properties do not uniquely specify an isomorphism, but every Springer
isomorphism satisfying Property 1 restricts to the same isomorphism
exp : Np

∼−→ Up.

Ingredient and Application: Abelian Unipotent Overgroups

Let u ∈ U . Question: what is minimal connected subgroup containing it?
Studied extensively by Testerman, Seitz, McNinch, and Proud, an applica-
tion given by Serre.

Our proof relies in particular on result of Seitz: take X a regular nilpotent
element, T the image of an associated cocharacter of X , and consider T -
decomposition of CG (X )0.
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Main Result

In characteristic 0, the exponential isomorphism given explicitly by
exponential series (once G embedded into GLn).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

Ep(t) = exp

(
t +

tp

p
+

tp
2

p2
+

tp
3

p3
+ · · ·

)

One can show that Ep(t) ∈ Z(p)JtK ⊆ QJtK.

If G is a classical matrix group (GLn,SOn,Spn), then one choice of σ is
given by

σ(X ) = Ep(X )

This does not work for arbitrary embeddings of G semisimple into GLn.
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Applications

Applications - the map
exp : Np

∼−→ Up
has been useful in support variety theory, and problems related to support
varieties. One application will be seen tomorrow in Jared Warner’s talk.

Comparing Support Varieties over G (Fp) and g

G -mod

yy &&
g-mod G (Fp)-mod

Carlson-Lin-Nakano used the existence of exp (p ≥ h) to compare the
support varieties of a rational G -module M over G (Fp) and g.
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Applications

Suslin-Friedlander-Bendel (1997)

Let G be an infinitesimal group scheme over k of height r , H•(G, k) its coho-
mology ring. Then the variety corresponding to H•(G, k) is homeomorphic
to the variety of group scheme homomorphisms from Homgs/k(Ga(r),G).

Suslin-Friedlander-Bendel (1997), McNinch (2001), S. (2014)

If G is semisimple, simply-connected, and p good for G , then
Homgs/k(Ga(r),G(r)) identifies canonically with commuting r -tuples of ele-
ments in Np.
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Applications

Support varieties for rational G -modules

In recent work, Eric Friedlander has studied support varieties for rational
G -modules, where G is a linear algebraic group, via the space

Homgs/k(Ga,G ).

The group G must be assumed to have a structure of exponential type.
For G semisimple, simply-connected, and p ≥ h (probably p good), such a
structure can be given by exp.
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The Future

An interesting and (seemingly) related question:

Exponentiating Representations

If G semisimple, when does a representation for g extend to one for G?
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