Exponential Maps In Characteristic p (featuring: One-Parameter Subgroups of Reductive Groups)

Paul Sobaje

University of Southern California

October 25, 2014

Preliminaries:

- *k* algebraically closed field.
- G affine algebraic group over k.
- \mathbb{G}_a k as an algebraic group under addition.
- one-parameter subgroup of G is a homomorphism from \mathbb{G}_a to G.
- g Lie algebra of G.
- \mathcal{N} nilpotent variety of \mathfrak{g} .
- *U* unipotent variety of *G*.

Preliminaries:

- *k* algebraically closed field.
- G affine algebraic group over k.
- \mathbb{G}_a k as an algebraic group under addition.
- one-parameter subgroup of G is a homomorphism from \mathbb{G}_a to G.
- g Lie algebra of G.
- \mathcal{N} nilpotent variety of \mathfrak{g} .
- *U* unipotent variety of *G*.

In characteristic p > 0

There is a p-mapping on \mathfrak{g} , $X \mapsto X^{[p]}$. We set $\mathcal{N}_p \subseteq \mathcal{N}$ to be $\{X : X^{[p]} = 0\}$.

Similarly, let $\mathcal{U}_p \subseteq \mathcal{U}$ be $\{u : u^p = 1\}$.

More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho: G o GL_n$.

 $X \in \mathfrak{g}$ is **nilpotent** if $d\rho(X)$ is a nilpotent matrix.

 $u \in G$ is **unipotent** if $\rho(u) - I_n$ is a nilpotent matrix.

More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho: G o GL_n$.

 $X \in \mathfrak{g}$ is **nilpotent** if $d\rho(X)$ is a nilpotent matrix.

 $u \in G$ is **unipotent** if $\rho(u) - I_n$ is a nilpotent matrix.

In char. p > 0, $d\rho(X^{[p]}) = d\rho(X)^p$.

$$X \mapsto I_n + X$$
,

$$X \mapsto I_n + X$$
,

however, in characteristic 0...

$$X \mapsto I_n + X$$

however, in characteristic 0...

The Exponential Map is Better

 $X \mapsto \exp(X) = I_n + X + X^2/2 + \cdots + X^{n-1}/(n-1)!$ better respects group structure of GL_n :

- For all $c \in \mathbb{G}_a$, the map $c \mapsto \exp(cX)$ defines one-parameter subgroup of GL_n .
- If G closed subgroup, $X \in \mathfrak{g} \subseteq \mathfrak{gl}_n$, then $\exp(X) \in G$.
- If $X, Y \in \mathcal{N}$ in same Borel subalgebra, then $\log(\exp(X)\exp(Y)) =$

$$X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \cdots$$

(Baker-Campbell-Hausdorff formula)

$$X \mapsto I_n + X$$

however, in characteristic 0...

The Exponential Map is Better

 $X \mapsto \exp(X) = I_n + X + X^2/2 + \cdots + X^{n-1}/(n-1)!$ better respects group structure of GL_n :

- For all $c \in \mathbb{G}_a$, the map $c \mapsto \exp(cX)$ defines one-parameter subgroup of GL_n .
- If G closed subgroup, $X \in \mathfrak{g} \subseteq \mathfrak{gl}_n$, then $\exp(X) \in G$.
- If $X, Y \in \mathcal{N}$ in same Borel subalgebra, then $\log(\exp(X)\exp(Y)) =$

$$X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \cdots$$

(Baker-Campbell-Hausdorff formula)

This formulation doesn't work in positive characteristic.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent *G*-orbits. In fact:

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent *G*-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Moral: for some applications, any two Springer isomorphisms are equally useful. For others, we'd like one which is "more similar" to the exponential map (i.e. respecting group properties).

Springer Isomorphisms

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U = R_u(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism

$$\varepsilon_P$$
: Lie(U) $\to U$

which essentially comes from base-changing exponential map in characteristic 0. We require that σ restricts on U to ε_P for all such P.

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U = R_u(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism

$$\varepsilon_P : \mathsf{Lie}(U) \to U$$

which essentially comes from base-changing exponential map in characteristic 0. We require that σ restricts on U to ε_P for all such P.

Carlson-Lin-Nakano (2008), McNinch (2005)

If $p \ge h$, the Coxeter number of G, then there is precisely one Springer isomorphism σ for G satisfying Property 1.

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when p < h there are unipotent elements in G of order $p^r, r > 1$ (for example, if p = 2 then SL_3 has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a .

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when p < h there are unipotent elements in G of order $p^r, r > 1$ (for example, if p = 2 then SL_3 has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a .

Let W_m be the group of truncated Witt vectors. As a variety, $W_m \cong \mathbb{A}^m$. It is an abelian unipotent group, and has elements of maximal order p^m .

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when p < h there are unipotent elements in G of order $p^r, r > 1$ (for example, if p = 2 then SL_3 has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a .

Let \mathcal{W}_m be the group of truncated Witt vectors. As a variety, $\mathcal{W}_m \cong \mathbb{A}^m$. It is an abelian unipotent group, and has elements of maximal order p^m .

We require: If $X \neq 0$, and m is the least integer such that $X^{[p^m]} = 0$, then σ defines an embedding $\mathbb{A}^m \to G$ given by

$$(a_0, a_1, \ldots, a_{m-1}) \mapsto \sigma(a_0 X) \sigma(a_1 X^{[p]}) \cdots \sigma(a_{m-1} X^{[p^{m-1}]}),$$

the image of which is a closed subgroup of G isomorphic to \mathcal{W}_m .

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp}: \mathcal{N}_{\mathcal{P}} \xrightarrow{\sim} \mathcal{U}_{\mathcal{P}}.$

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp}: \mathcal{N}_{\mathcal{P}} \xrightarrow{\sim} \mathcal{U}_{\mathcal{P}}.$

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp}:\mathcal{N}_{p}\stackrel{\sim}{\longrightarrow}\mathcal{U}_{p}.$

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Our proof relies in particular on result of Seitz: take X a regular nilpotent element, T the image of an associated cocharacter of X, and consider T-decomposition of $C_G(X)^0$.

Main Result

In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -

In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$E_p(t) = \exp\left(t + \frac{t^p}{p} + \frac{t^{p^2}}{p^2} + \frac{t^{p^3}}{p^3} + \cdots\right)$$

One can show that $E_p(t) \in \mathbb{Z}_{(p)}[\![t]\!] \subseteq \mathbb{Q}[\![t]\!]$.

In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$E_p(t) = \exp\left(t + \frac{t^p}{p} + \frac{t^{p^2}}{p^2} + \frac{t^{p^3}}{p^3} + \cdots\right)$$

One can show that $E_p(t) \in \mathbb{Z}_{(p)}\llbracket t \rrbracket \subseteq \mathbb{Q}\llbracket t \rrbracket$.

If G is a classical matrix group (GL_n, SO_n, Sp_n) , then one choice of σ is given by

$$\sigma(X) = E_p(X)$$

This **does not work** for arbitrary embeddings of G semisimple into GL_n .

Applications - the map

$$\overline{\exp}: \mathcal{N}_p \xrightarrow{\sim} \mathcal{U}_p$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in **Jared Warner's** talk.

Applications - the map

$$\overline{\exp}: \mathcal{N}_p \xrightarrow{\sim} \mathcal{U}_p$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in **Jared Warner's** talk.

Applications - the map

$$\overline{\exp}: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in **Jared Warner's** talk.

Comparing Support Varieties over $G(\mathbb{F}_p)$ and \mathfrak{g}

Carlson-Lin-Nakano used the existence of $\overline{\exp}$ $(p \ge h)$ to compare the support varieties of a rational G-module M over $G(\mathbb{F}_p)$ and \mathfrak{g} .

Suslin-Friedlander-Bendel (1997)

Let \mathcal{G} be an infinitesimal group scheme over k of height r, $H^{\bullet}(\mathcal{G}, k)$ its cohomology ring. Then the variety corresponding to $H^{\bullet}(\mathcal{G}, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\operatorname{Hom}_{gs/k}(\mathbb{G}_{a(r)}, \mathcal{G})$.

Suslin-Friedlander-Bendel (1997)

Let \mathcal{G} be an infinitesimal group scheme over k of height r, $H^{\bullet}(\mathcal{G}, k)$ its cohomology ring. Then the variety corresponding to $H^{\bullet}(\mathcal{G}, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\operatorname{Hom}_{\mathrm{gs}/k}(\mathbb{G}_{a(r)}, \mathcal{G})$.

Suslin-Friedlander-Bendel (1997), McNinch (2001), S. (2014)

If G is semisimple, simply-connected, and p good for G, then $\operatorname{Hom}_{\mathrm{gs/k}}(\mathbb{G}_{a(r)},G_{(r)})$ identifies canonically with commuting r-tuples of elements in \mathcal{N}_p .

Support varieties for rational *G*-modules

In recent work, Eric Friedlander has studied support varieties for rational G-modules, where G is a linear algebraic group, via the space

$$\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{gs}}/k}(\mathbb{G}_a,G).$$

The group G must be assumed to have a structure of **exponential type**. For G semisimple, simply-connected, and $p \ge h$ (probably p good), such a structure can be given by $\overline{\exp}$.

The Future

An interesting and (seemingly) related question:

The Future

An interesting and (seemingly) related question:

Exponentiating Representations

If G semisimple, when does a representation for g extend to one for G?