Exponential Maps in Characteristic \(p \) (featuring: One-Parameter Subgroups of Reductive Groups)

Paul Sobaje

University of Southern California

October 25, 2014
Preliminaries:

- **k** - algebraically closed field.
- **G** - affine algebraic group over k.
- **\mathbb{G}_a** - k as an algebraic group under addition.
- One-parameter subgroup of G is a homomorphism from \mathbb{G}_a to G.
- **\mathfrak{g}** - Lie algebra of G.
- **\mathcal{N}** - nilpotent variety of \mathfrak{g}.
- **\mathcal{U}** - unipotent variety of G.
Preliminaries:

- k - algebraically closed field.
- G - affine algebraic group over k.
- \mathbb{G}_a - k as an algebraic group under addition.
- one-parameter subgroup of G is a homomorphism from \mathbb{G}_a to G.
- \mathfrak{g} - Lie algebra of G.
- \mathcal{N} - nilpotent variety of \mathfrak{g}.
- \mathcal{U} - unipotent variety of G.

In characteristic $p > 0$

There is a p-mapping on \mathfrak{g}, $X \mapsto X^{[p]}$. We set $\mathcal{N}_p \subseteq \mathcal{N}$ to be $\{X : X^{[p]} = 0\}$.

Similarly, let $\mathcal{U}_p \subseteq \mathcal{U}$ be $\{u : u^p = 1\}$.
More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho : G \rightarrow GL_n$.

$X \in g$ is **nilpotent** if $d\rho(X)$ is a nilpotent matrix.

$u \in G$ is **unipotent** if $\rho(u) - I_n$ is a nilpotent matrix.
More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho : G \to GL_n$.

$X \in g$ is nilpotent if $d\rho(X)$ is a nilpotent matrix.

$u \in G$ is unipotent if $\rho(u) - I_n$ is a nilpotent matrix.

In char. $p > 0$, $d\rho(X^p) = d\rho(X)^p$.
For GL_n, clear that \exists a GL_n-equivariant isomorphism $N \xrightarrow{\sim} U$ given by
$$X \mapsto I_n + X,$$
however, in characteristic 0...

The Exponential Map is Better
$$X \mapsto \exp(X) = I_n + X + \frac{X^2}{2} + \cdots,$$ better respects group structure of GL_n:

- For all $c \in G$ a, the map $c \mapsto \exp(cX)$ defines one-parameter subgroup of GL_n.
- If G a closed subgroup, $X \in g \subseteq \mathfrak{gl}_n$, then $\exp(X) \in G$.
- If $X, Y \in N$ in same Borel subalgebra, then $\log(\exp(X)\exp(Y)) = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] + \cdots$ (Baker-Campbell-Hausdorff formula)

This formulation doesn’t work in positive characteristic.
For GL_n, clear that \exists a GL_n-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$ given by

$$X \mapsto I_n + X,$$

however, in characteristic 0...
For GL_n, clear that \exists a GL_n-equivariant isomorphism $N \xrightarrow{\sim} U$ given by

$$X \mapsto I_n + X,$$

however, in characteristic 0...

The Exponential Map is Better

$X \mapsto \exp(X) = I_n + X + X^2/2 + \cdots X^{n-1}/(n-1)!$ better respects group structure of GL_n:

- For all $c \in \mathbb{G}_a$, the map $c \mapsto \exp(cX)$ defines one-parameter subgroup of GL_n.
- If G closed subgroup, $X \in g \subseteq gl_n$, then $\exp(X) \in G$.
- If $X, Y \in N$ in same Borel subalgebra, then $\log(\exp(X)\exp(Y)) = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \cdots$

(Baker-Campbell-Hausdorff formula)
For GL_n, clear that \exists a GL_n-equivariant isomorphism $N \sim U$ given by

$$X \mapsto I_n + X,$$

however, in characteristic 0...

The Exponential Map is Better

$$X \mapsto \exp(X) = I_n + X + X^2/2 + \cdots X^{n-1}/(n-1)!$$

better respects group structure of GL_n:

- For all $c \in \mathbb{G}_a$, the map $c \mapsto \exp(cX)$ defines one-parameter subgroup of GL_n.
- If G closed subgroup, $X \in g \subseteq gl_n$, then $\exp(X) \in G$.
- If X, $Y \in N$ in same Borel subalgebra, then $\log(\exp(X)\exp(Y)) = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \cdots$

(Baker-Campbell-Hausdorff formula)

This formulation doesn’t work in positive characteristic.
Let characteristic $k = p > 0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \sim \rightarrow \mathcal{U}$. Such a map is called a Springer isomorphism. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Moral: for some applications, any two Springer isomorphisms are equally useful. For others, we'd like one which is “more similar” to the exponential map (i.e. respecting group properties).
Let characteristic $k = p > 0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:
Let characteristic \(k = p > 0 \).

Springer (1969)

If \(G \) is semisimple, simply-connected, and char. is good for \(G \), then there exists a \(G \)-equivariant isomorphism \(N \sim \rightarrow U \).

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent \(G \)-orbits. In fact:

Serre (1999)

Every Springer isomorphism for \(G \) determines the same bijection between nilpotent and unipotent orbits.
Let characteristic $k = p > 0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \sim \to U$.

Such a map is called a **Springer isomorphism**. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Moral: for some applications, any two Springer isomorphisms are equally useful. For others, we’d like one which is “more similar” to the exponential map (i.e. respecting group properties).
More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:
More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U = R_u(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism

$$\varepsilon_P : \text{Lie}(U) \to U$$

which essentially comes from base-changing exponential map in characteristic 0. We require that σ restricts on U to ε_P for all such P.
More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U = R_u(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism $\varepsilon_P : \text{Lie}(U) \to U$ which essentially comes from base-changing exponential map in characteristic 0. We require that σ restricts on U to ε_P for all such P.

Carlson-Lin-Nakano (2008), McNinch (2005)

If $p \geq h$, the Coxeter number of G, then there is precisely one Springer isomorphism σ for G satisfying Property 1.
Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when $p < h$ there are unipotent elements in G of order p^r, $r > 1$ (for example, if $p = 2$ then SL_3 has elements of order 4), so we can’t expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a.

Let W_m be the group of truncated Witt vectors. As a variety, $W_m \cong A_m$. It is an abelian unipotent group, and has elements of maximal order p^m. We require:

If $X \neq 0$, and m is the least integer such that $X[p^m] = 0$, then σ defines an embedding $A_m \to G$ given by $(a_0, a_1, \ldots, a_{m-1}) \mapsto \sigma(a_0 X) \sigma(a_1 X[p]) \cdots \sigma(a_{m-1} X[p^{m-1}])$, the image of which is a closed subgroup of G isomorphic to W_m.

Paul Sobaje
One-Parameter Subgroups of Reductive Groups
Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when $p < h$ there are unipotent elements in G of order p^r, $r > 1$ (for example, if $p = 2$ then SL_3 has elements of order 4), so we can’t expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a.

Let \mathcal{W}_m be the group of truncated Witt vectors. As a variety, $\mathcal{W}_m \cong \mathbb{A}^m$. It is an abelian unipotent group, and has elements of maximal order p^m.
Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_a$ has order p. However, when $p < h$ there are unipotent elements in G of order p^r, $r > 1$ (for example, if $p = 2$ then SL_3 has elements of order 4), so we can’t expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_a.

Let \mathcal{W}_m be the group of truncated Witt vectors. As a variety, $\mathcal{W}_m \cong \mathbb{A}^m$. It is an abelian unipotent group, and has elements of maximal order p^m.

We require: If $X \neq 0$, and m is the least integer such that $X[p^m] = 0$, then σ defines an embedding $\mathbb{A}^m \to G$ given by

$$(a_0, a_1, \ldots, a_{m-1}) \mapsto \sigma(a_0 X)\sigma(a_1 X^p) \cdots \sigma(a_{m-1} X^{[p^{m-1}]})$$

the image of which is a closed subgroup of G isomorphic to \mathcal{W}_m.
Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma : \mathcal{N} \sim \rightarrow \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\exp : \mathcal{N}_p \sim \rightarrow \mathcal{U}_p$.

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it?

Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Our proof relies in particular on result of Seitz: take X a regular nilpotent element, T the image of an associated cocharacter of X, and consider T-decomposition of $C_G(X)_0$.

Paul Sobaje

One-Parameter Subgroups of Reductive Groups
Main Result

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma : \mathcal{N} \sim \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism \(\exp : \mathcal{N}_p \sim \mathcal{U}_p \).

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.
Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then there exists a Springer isomorphism $\sigma : N \sim \rightarrow U$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\exp : N_p \sim \rightarrow U_p$.

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in U$. **Question:** what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Our proof relies in particular on result of Seitz: take X a regular nilpotent element, T the image of an associated cocharacter of X, and consider T-decomposition of $C_G(X)^0$.
In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).
In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -
In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$E_p(t) = \exp\left(t + \frac{t^p}{p} + \frac{t^{p^2}}{p^2} + \frac{t^{p^3}}{p^3} + \cdots\right)$$

One can show that $E_p(t) \in \mathbb{Z}_p[t] \subseteq \mathbb{Q}[t]$.
In characteristic 0, the exponential isomorphism given explicitly by exponential series (once G embedded into GL_n).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$E_p(t) = \exp \left(t + \frac{t^p}{p} + \frac{t^{p^2}}{p^2} + \frac{t^{p^3}}{p^3} + \cdots \right)$$

One can show that $E_p(t) \in \mathbb{Z}_p[t] \subseteq \mathbb{Q}[t]$.

If G is a classical matrix group (GL_n, SO_n, Sp_n), then one choice of σ is given by

$$\sigma(X) = E_p(X)$$

This does not work for arbitrary embeddings of G semisimple into GL_n.
Applications - the map

$$\exp : \mathcal{N}_p \sim \rightarrow \mathcal{U}_p$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner’s talk.
Applications - the map

\[\exp : \mathcal{N}_p \sim \rightarrow \mathcal{U}_p \]

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner’s talk.

Comparing Support Varieties over \(G(\mathbb{F}_p) \) and \(g \)

\[\begin{align*}
G\text{-mod} & \quad \rightarrow \quad \mathord{\ }

\]
Applications - the map

$$\exp : \mathcal{N}_p \simrightarrow \mathcal{U}_p$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner’s talk.

Comparing Support Varieties over $G(\mathbb{F}_p)$ and \mathfrak{g}

Carlson-Lin-Nakano used the existence of \exp ($p \geq h$) to compare the support varieties of a rational G-module M over $G(\mathbb{F}_p)$ and \mathfrak{g}.
Suslin-Friedlander-Bendel (1997)

Let \mathcal{G} be an infinitesimal group scheme over k of height r, $\mathbb{H}^\bullet(\mathcal{G}, k)$ its cohomology ring. Then the variety corresponding to $\mathbb{H}^\bullet(\mathcal{G}, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\text{Hom}_{gs/k}(\mathbb{G}_a(r), \mathcal{G})$.
Let G be an infinitesimal group scheme over k of height r, $H^\bullet(G, k)$ its cohomology ring. Then the variety corresponding to $H^\bullet(G, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\text{Hom}_{\text{gs}/k}(\mathbb{G}_a(r), G)$.

If G is semisimple, simply-connected, and p good for G, then $\text{Hom}_{\text{gs}/k}(\mathbb{G}_a(r), G(r))$ identifies canonically with commuting r-tuples of elements in \mathcal{N}_p.
Support varieties for rational G-modules

In recent work, Eric Friedlander has studied support varieties for rational G-modules, where G is a linear algebraic group, via the space

$$\text{Hom}_{\text{gs}/k}(\mathbb{G}_a, G).$$

The group G must be assumed to have a structure of exponential type. For G semisimple, simply-connected, and $p \geq h$ (probably p good), such a structure can be given by \exp.
An interesting and (seemingly) related question:
An interesting and (seemingly) related question:

Exponentiating Representations

If G semisimple, when does a representation for g extend to one for G?