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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Interplay between supersymmetry and tensor
categories

Supergroups $$$...−−−−−−−→ tensor categories.
Almost all examples of rigid symmetric tensor categories come
from representation theory of superalgebras.
Give rise to universal tensor categories.

Tensor categories $$$...−−−−−−−→ supergroups.
Classification of representations.
Calculations of characters and dimensions of some natural
representations. Comes–Wilson, Brundan–Stroppel.
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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Formalization of tensor product  Tensor
categories

A is abelian and k-linear (morphisms are k-vector spaces);
A is equipped with tensor product ⊗, i.e. an exact functor
A×A → A, k-linear in both variables, with (functorial)
isomorphism (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z );
A has a unit object 1 such that End(1) = k ;

Symmetry: functorial isomorphism s : X ⊗ Y → Y ⊗ X such
that the composition

X ⊗ Y s−→ Y ⊗ X s−→ X ⊗ Y

is the identity. (Braiding  sign rule in supercase.) Warning:
no braid groups.
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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Formalization of duality

Contravariant duality functor ∗ : A → A, X 7→ X ∗;
Natural maps: identity e : 1→ X ⊗ X ∗;
Contraction (trace) c : X ∗ ⊗ X → 1;
compositions

X e⊗1−−→ X ⊗ X ∗ ⊗ X 1⊗c−−→ X

and
X ∗ 1⊗e−−→ X ∗ ⊗ X ⊗ X ∗ c⊗1−−→ X ∗

are both equal to the identity 1X .

A tensor category A with duality is called rigid.
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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Main Examples

The category Vect of finite-dimensional vector spaces.
(X⊗Y )⊗Z ' X⊗(Y⊗Z ), (x⊗y)⊗z 7→ x⊗(y⊗z), 1 = k ;
s : X ⊗ Y → Y ⊗ X , s(x ⊗ y) := y ⊗ x ;
c : X ∗ ⊗ X → 1, c(f ⊗ x) := f (x);
e : 1→ X ⊗ X ∗, e(1) :=

∑
ei ⊗ fi .

The category SVect of finite-dimensional vector superspaces.
Objects are Z2-graded vector spaces X = X0 ⊕ X1.
The main difference with Vect:

s : X ⊗ Y → Y ⊗ X , s(x ⊗ y) := (−1)x̄ ȳy ⊗ x .

c and e are defined by the same formulas as for usual vector
spaces.
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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Trace and dimension

Using the rigidity axiom one can construct a canonical isomorphism

δ : End(X )
∼−→ Hom(1,X ⊗ X ∗)

and define the trace:

tr : End(X )→ End(1) = k

as the composition

1
δ(ϕ)−−→ X ⊗ X ∗ s−→ X ∗ ⊗ X c−→ 1.

By definition
dim X = tr 1X .
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Symmetric rigid tensor categories
Deligne categories and classical supergroups

Vector spaces: dimension and trace are as usual.
Vector superspaces: the (super)trace of a linear operator is

str
(

A B
C D

)
= tr A− tr D.

and the (super)dimension

sdim X = dim X0 − dim X1.

In general, the dimension of an object in a symmetric rigid
tensor category can be any element of k
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G algebraic group (over k), for example, GL(n). The category
Rep G of finite-dimensional representations of G is a
symmetric rigid tensor category.
A functor F : Rep G → Vect (forgetting the G -action). Tensor
functor, i.e., preserves all structures of tensor categories,
faithful (injective on morphisms), exact.

An exact faithful tensor functor F : A → Vect is called a fiber
functor.
A finitely generated symmetric rigid tensor category which has
a fiber functor is equivalent to Rep G for some algebraic group
G . (Tannakian categories  affine group schemes).
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Supertannakian formalism

Example. GL(n) may be a group G and may be supergroup Gsuper.
Rep Gsuper has twice as many objects as Rep G :

V ←→ ΠV , V0
xxV1

Deligne’s trick (Halving the category):

G is a supergroup, fix g ∈ G0.
Rep(G , g) is the subcategory of Rep G , consisting of
representations V satisfying g(v) = (−1)v̄v .
Rep(G , g) is a tensor category.
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Theorem (Deligne, 2002)

A tensor category A is equivalent to some Rep(G , g) if and only if
There exists a fiber functor A → SVect;
A is finitely generated.
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Schur functor

Consider a tensor category A.
For any object X in A consider X⊗n.
σi ,i+1 7→ 1⊗i−1 ⊗ s⊗ 1⊗n−i−1  Sn → Aut(X⊗n).

Schur–Weyl duality:

X⊗n =
⊕
|λ|=n

Vλ ⊗ Sλ(X ).

Definition
X 7→ Sλ(X ) is called the Schur functor Sλ : A → A.
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Theorem (A. Sergeev,1982)

Let V be an (m|n)-dimensional superspace. Then Sλ(V ) 6= 0 if and
only if λ can be covered by an (m, n)-hook, or equivalently, λ does
not contain a rectangular diagram of size (m + 1)× (n + 1).

Theorem (P. Deligne, 2002)

Let A be a finitely generated rigid symmetric tensor category. The
following conditions are equivalent:
(a) Every generator is annihilated by some Schur functor.
(b) A is equivalent to Rep(G , g) for some algebraic supergroup G.
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Universal tensor categories

Consider tensor categories generated by one object X ;
Want to construct a universal one;
Analogy: free ring with two generators X and X ∗;
Deligne’s category Rep GL(t), t = dim X .

Abelianization: a way to extend a category to abelian by
forcefully adding kernels and images of all morphisms. There is
no such bliss!
The subtle point. Karoubization: adding kernels and images of
all projectors (p2 = p). It exists!
Rep GL(t) is a result of Karoubization. Not abelian.
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Ingredients of construction

Skeleton category.
objects: X⊗m ⊗ (X ∗)⊗n,
morphisms: Hom(X⊗m ⊗ (X ∗)⊗n,X⊗k ⊗ (X ∗)⊗l) = walled
Brauer diagrams.

Additive closure (adding direct sums).
Karoubian envelope (adding kernels of all projectors).
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Properties of Deligne’s categories

Rep GL(t) is semisimple and therefore abelian if and only if
t /∈ Z.
Indecomposable objects in Rep GL(t) are enumerated by pairs
of partitions: (λ, µ)↔ Yλ,µ.
Y ∗λ,µ ' Yµ,λ.
dim Yλ,µ is a polynomial in t.
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Semisimple quotient

If t = n ∈ Z, the Deligne categories have canonical semisimple
quotients.
Semisimple quotients of Rep GL(t):

Rep(GL(n), 1) for n > 0;
Rep(GL(−n),−1) for n < 0.

Universality

Theorem (P. Deligne, 2002)

Let A be a symmetric rigid k-linear category, and V be an object
of dimension t. There exists a unique (up to isomorphism) tensor
functor F : Rep GL(t)→ A such that F (X ) = V .
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Towards abelianization: building blocks

t = m − n = m′ − n′

Rep GL(t)

Fm′,n′ **TTTTTTTTTTTTTTTT

Fm,n // Rep GL(m, n)

Rep GL(m′, n′)

Tensor functor Em,n : Rep GL(m, n)→ Rep GL(m − 1, n − 1).

Rep GL(t)

Fm−1,n−1 **UUUUUUUUUUUUUUUUUU
Fm,n // Rep GL(m, n)

Em,n

��
Rep GL(m − 1, n − 1)

V.Serganova Deligne’s tensor category Rep GL(t) and general linear supergroups



Symmetric rigid tensor categories
Deligne categories and classical supergroups

Towards abelianization: building blocks

t = m − n = m′ − n′

Rep GL(t)

Fm′,n′ **TTTTTTTTTTTTTTTT

Fm,n // Rep GL(m, n)

Rep GL(m′, n′)

Tensor functor Em,n : Rep GL(m, n)→ Rep GL(m − 1, n − 1).

Rep GL(t)

Fm−1,n−1 **UUUUUUUUUUUUUUUUUU
Fm,n // Rep GL(m, n)

Em,n

��
Rep GL(m − 1, n − 1)

V.Serganova Deligne’s tensor category Rep GL(t) and general linear supergroups



Symmetric rigid tensor categories
Deligne categories and classical supergroups

Tensor functor Fx (Duflo, V.S.)

g Lie superalgebra;
x ∈ g1 such that [x , x ] = 2x2 = 0;
If M is a representation of g, then x2M = 0;
Set Mx = kerx/imx , gx = ker adx /im adx (cohomology);
Mx is a representation of gx ;
Fx : Rep g→ Rep gx (Fx(M) := Mx) is a tensor functor.

Our case: g = gl(m, n), x is an odd matrix of rank 1,
gx = gl(m − 1, n − 1). Notation Fx = Em,n
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Towards abelianization: filtration

Lemma
A filtration on Rep GL(m, n) (tensor rank ≥ k)

F1 Rep GL(m, n) ⊂ · · · ⊂ Fk Rep GL(m, n) ⊂ . . . ,

Fk Rep GL(m, n)⊗F l Rep GL(m, n)→ Fk+l Rep GL(m, n);
Em,n preserves this filtration;
If m, n� k then

Em,n : Fk Rep GL(m, n)→ Fk Rep GL(m − 1, n − 1)

is an equivalence of abelian categories.
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. . . . . .y y
Em,n←−−−− Fk Rep GL(m,n)

Em+1,n+1←−−−−− Fk Rep GL(m+1,n+1)
Em+2,n+2←−−−−−y y

Em,n←−−−− Fk+1 Rep GL(m,n)
Em+1,n+1←−−−−− Fk+1 Rep GL(m+1,n+1)

Em+2,n+2←−−−−−y y
. . . . . .

First, horizontal inverse limit, then vertical direct limit.
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Let t ∈ Z be fixed and m − n = t.
For every k > 0 one can define an abelian category

Repk GL(t) := lim
←
Fk Rep GL(m, n).

Lemma (Abelianization)

(a)
Rep GL(t) := lim

→
Repk GL(t)

is a symmetric rigid tensor category (abelian!).
(b) There exists a fully faithful functor H : Rep GL(t)→ Rep GL(t).
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Theorem

Let A be a symmetric rigid tensor category and F : Rep GL(t)→ A
be a tensor functor.
(a) V = F (X ) is annihilated by some Schur functor ⇒ ∃Φ

Rep GL(t)

F
**TTTTTTTTTTTTTTTTTTT

Fm,n // Rep GL(m, n)

Φ

��
A

(b) V = F (X ) is not annihilated by any Schur functor ⇒ ∃Φ

Rep GL(t)

F
))TTTTTTTTTTTTTTTTT

H // Rep GL(t)

Φ

��
A
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The category Rep gl(∞)

g = gl(∞) = lim
→

gl(n).

Let V and V∗ be natural and conatural modules.

Definition
A subalgebra k ⊂ g is a finite corank subalgebra if there exist finite
dimensional subspaces W ⊂ V and W ′ ⊂ V∗ such that k
annihilates every vector in W ,W ′.

We define Rep gl(∞) as a full subcategory of g-modules whose
objects M satisfy the following conditions

M is integrable;
For every m ∈ M the annihilator of m in g has finite corank;
M has finite length.
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Rep gl(∞) is symmetric, monoidal and universal in this class.
(Penkov–Dan-Cohen –S., Sam–Snowden)
There exists a faithful tensor functor K : Rep gl(∞)→ Rep GL(t).

Rep GL(t)
H−→ Rep GL(t)

K←− Rep gl(∞).

Rep GL(t) is symmetric rigid, but not abelian.
Rep gl(∞) is symmetric abelian but not rigid.
Rep GL(t) is a locally highest weight category
Simple objects in Rep gl(∞) 7→standard objects in Rep GL(t).
Indecomposable objects in Rep GL(t) 7→ tilting objects in
Rep GL(t).
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Open problems

Ideals in the Deligne category Rep GL(t).
J. Comes (2012): thick ideals come from gl(m, n).
Deligne conjecture.
Kazhdan–Lusztig theory for Rep.
Conjecture: Fx is semisimple.
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