Deligne’s tensor category $\text{Rep\ } \text{GL}(t)$ and general linear supergroups

Vera Serganova

UC Berkeley

AMS meeting, San Francisco, October 2014
Interplay between supersymmetry and tensor categories

Supergroups \(\rightarrow\) tensor categories.
- Almost all examples of rigid symmetric tensor categories come from representation theory of superalgebras.
- Give rise to universal tensor categories.

Tensor categories \(\rightarrow\) supergroups.
- Classification of representations.
Interplay between supersymmetry and tensor categories

Supergroups \rightarrow tensor categories.
- Almost all examples of rigid symmetric tensor categories come from representation theory of superalgebras.
- Give rise to universal tensor categories.

Tensor categories \rightarrow supergroups.
- Classification of representations.
Formalization of tensor product \rightsquigarrow Tensor categories

- \mathcal{A} is abelian and k-linear (morphisms are k-vector spaces);
- \mathcal{A} is equipped with tensor product \otimes, i.e. an exact functor $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, k-linear in both variables, with (functorial) isomorphism $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$;
- \mathcal{A} has a unit object 1 such that End(1) = k;
- Symmetry: functorial isomorphism $s : X \otimes Y \to Y \otimes X$ such that the composition

$$X \otimes Y \overset{s}{\to} Y \otimes X \overset{s}{\to} X \otimes Y$$

is the identity. (Braiding \rightsquigarrow sign rule in supercase.) Warning: no braid groups.
Formalization of tensor product \rightsquigarrow Tensor categories

- \mathcal{A} is abelian and k-linear (morphisms are k-vector spaces);
- \mathcal{A} is equipped with tensor product \otimes, i.e. an exact functor $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, k-linear in both variables, with (functorial) isomorphism $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$;
- \mathcal{A} has a unit object 1 such that $\text{End}(1) = k$;
- **Symmetry:** functorial isomorphism $s : X \otimes Y \to Y \otimes X$ such that the composition

$$X \otimes Y \xrightarrow{s} Y \otimes X \xrightarrow{s} X \otimes Y$$

is the identity. (Braiding \rightsquigarrow sign rule in supercase.) Warning: no braid groups.
Formalization of tensor product \rightsquigarrow Tensor categories

- \mathcal{A} is abelian and k-linear (morphisms are k-vector spaces);
- \mathcal{A} is equipped with tensor product \otimes, i.e. an exact functor $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, k-linear in both variables, with (functorial) isomorphism $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$;
- \mathcal{A} has a unit object 1 such that $\text{End}(1) = k$;
- **Symmetry**: functorial isomorphism $s : X \otimes Y \to Y \otimes X$ such that the composition

$$X \otimes Y \xrightarrow{s} Y \otimes X \xrightarrow{s} X \otimes Y$$

is the identity. (Braiding \rightsquigarrow sign rule in supercase.) Warning: no braid groups.
Formalization of tensor product \(\sim \) Tensor categories

- \(\mathcal{A} \) is abelian and \(k \)-linear (morphisms are \(k \)-vector spaces);
- \(\mathcal{A} \) is equipped with tensor product \(\otimes \), i.e. an exact functor \(\mathcal{A} \times \mathcal{A} \to \mathcal{A} \), \(k \)-linear in both variables, with (functorial) isomorphism \((X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z) \);
- \(\mathcal{A} \) has a unit object \(1 \) such that \(\text{End}(1) = k \);

- Symmetry: functorial isomorphism \(s : X \otimes Y \to Y \otimes X \) such that the composition

\[
X \otimes Y \xrightarrow{s} Y \otimes X \xrightarrow{s} X \otimes Y
\]

is the identity. (Braiding \(\sim \) sign rule in supercase.) Warning: no braid groups.
Formalization of tensor product \rightsquigarrow Tensor categories

- \mathcal{A} is abelian and k-linear (morphisms are k-vector spaces);
- \mathcal{A} is equipped with tensor product \otimes, i.e. an exact functor $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, k-linear in both variables, with (functorial) isomorphism $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$;
- \mathcal{A} has a unit object 1 such that $\text{End}(1) = k$;

- **Symmetry**: functorial isomorphism $s : X \otimes Y \to Y \otimes X$ such that the composition

 \[
 X \otimes Y \xrightarrow{s} Y \otimes X \xrightarrow{s} X \otimes Y
 \]

 is the identity. (Braiding \rightsquigarrow sign rule in supercase.) **Warning**: no braid groups.
Formalization of tensor product \rightsquigarrow Tensor categories

- \mathcal{A} is abelian and k-linear (morphisms are k-vector spaces);
- \mathcal{A} is equipped with tensor product \otimes, i.e. an exact functor $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, k-linear in both variables, with (functorial) isomorphism $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$;
- \mathcal{A} has a unit object 1 such that $\text{End}(1) = k$;

- **Symmetry**: functorial isomorphism $s : X \otimes Y \to Y \otimes X$ such that the composition

$$X \otimes Y \xrightarrow{s} Y \otimes X \xrightarrow{s} X \otimes Y$$

is the identity. (Braiding \rightsquigarrow sign rule in supercase.) **Warning**: no braid groups.
Contravariant duality functor $\ast : \mathcal{A} \to \mathcal{A}$, $X \mapsto X^*$;

Natural maps: identity $e : 1 \to X \otimes X^*$;

Contraction (trace) $c : X^* \otimes X \to 1$;

Compositions

\[
X \xrightarrow{e \otimes 1} X \otimes X^* \otimes X \xrightarrow{1 \otimes c} X
\]

and

\[
X^* \xrightarrow{1 \otimes e} X^* \otimes X \otimes X^* \xrightarrow{c \otimes 1} X^*
\]

are both equal to the identity 1_X.

A tensor category \mathcal{A} with duality is called rigid.
Formalization of duality

- Contravariant duality functor $*: \mathcal{A} \to \mathcal{A}$, $X \mapsto X^*$;
- Natural maps: identity $e: 1 \to X \otimes X^*$;
- Contraction (trace) $c: X^* \otimes X \to 1$;
- compositions

\[
X \xrightarrow{e \otimes 1} X \otimes X^* \otimes X \xrightarrow{1 \otimes c} X
\]

and

\[
X^* \xrightarrow{1 \otimes e} X^* \otimes X \otimes X^* \xrightarrow{c \otimes 1} X^*
\]

are both equal to the identity 1_X.

A tensor category \mathcal{A} with duality is called rigid.
Formalization of duality

- Contravariant duality functor \(* : \mathcal{A} \rightarrow \mathcal{A}, \ X \mapsto X^*; \)
- Natural maps: identity \(e : 1 \rightarrow X \otimes X^*; \)
- Contraction (trace) \(c : X^* \otimes X \rightarrow 1; \)
- Compositions

\[
X \xrightarrow{e \otimes 1} X \otimes X^* \otimes X \xrightarrow{1 \otimes c} X
\]

and

\[
X^* \xrightarrow{1 \otimes e} X^* \otimes X \otimes X^* \xrightarrow{c \otimes 1} X^*
\]

are both equal to the identity \(1_X. \)

A tensor category \(\mathcal{A} \) with duality is called rigid.
Formalization of duality

- Contravariant duality functor $\star : \mathcal{A} \to \mathcal{A}$, $X \mapsto X^*$;
- Natural maps: identity $e : 1 \to X \otimes X^*$;
- **Contraction (trace)** $c : X^* \otimes X \to 1$;
- compositions

$$X \xrightarrow{\text{e} \otimes 1} X \otimes X^* \otimes X \xrightarrow{1 \otimes \text{c}} X$$

and

$$X^* \xrightarrow{1 \otimes \text{e}} X^* \otimes X \otimes X^* \xrightarrow{\text{c} \otimes 1} X^*$$

are both equal to the identity 1_X.

A tensor category \mathcal{A} with duality is called **rigid**.
Main Examples

The category Vect of finite-dimensional vector spaces.

- $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$, $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$, $1 = k$;
- $s : X \otimes Y \to Y \otimes X$, $s(x \otimes y) := y \otimes x$;
- $c : X^* \otimes X \to 1$, $c(f \otimes x) := f(x)$;
- $e : 1 \to X \otimes X^*$, $e(1) := \sum e_i \otimes f_i$.

The category SVect of finite-dimensional vector superspaces.

- Objects are \mathbb{Z}_2-graded vector spaces $X = X_0 \oplus X_1$.
- The main difference with Vect:

$$s : X \otimes Y \to Y \otimes X, \quad s(x \otimes y) := (-1)^{\bar{x}\bar{y}} y \otimes x.$$

- c and e are defined by the same formulas as for usual vector spaces.
Symmetric rigid tensor categories
Deligne categories and classical supergroups

Main Examples

The category Vect of finite-dimensional vector spaces.

- $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$, $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$, $1 = k$;
- $s : X \otimes Y \to Y \otimes X$, $s(x \otimes y) := y \otimes x$;
- $c : X^* \otimes X \to 1$, $c(f \otimes x) := f(x)$;
- $e : 1 \to X \otimes X^*$, $e(1) := \sum e_i \otimes f_i$.

The category SVect of finite-dimensional vector superspaces.

- Objects are \mathbb{Z}_2-graded vector spaces $X = X_0 \oplus X_1$.
- The main difference with Vect:

 $$s : X \otimes Y \to Y \otimes X, \quad s(x \otimes y) := (-1)^{\bar{x} \bar{y}} y \otimes x.$$

- c and e are defined by the same formulas as for usual vector spaces.
Main Examples

The category Vect of finite-dimensional vector spaces.

- $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$, \quad $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$, \quad $1 = k$;
- $s : X \otimes Y \to Y \otimes X$, \quad $s(x \otimes y) := y \otimes x$;
- $c : X^* \otimes X \to 1$, \quad $c(f \otimes x) := f(x)$;
- $e : 1 \to X \otimes X^*$, \quad $e(1) := \sum e_i \otimes f_i$.

The category SVect of finite-dimensional vector superspaces.

- Objects are \mathbb{Z}_2-graded vector spaces $X = X_0 \oplus X_1$.
- The main difference with Vect:
 \[s : X \otimes Y \to Y \otimes X, \quad s(x \otimes y) := (-1)^{\bar{x}\bar{y}} y \otimes x. \]

- c and e are defined by the same formulas as for usual vector spaces.
Main Examples

The category Vect of finite-dimensional vector spaces.

- $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$, $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$, $1 = k$;
- $s : X \otimes Y \to Y \otimes X$, $s(x \otimes y) := y \otimes x$;
- $c : X^* \otimes X \to 1$, $c(f \otimes x) := f(x)$;
- $e : 1 \to X \otimes X^*$, $e(1) := \sum e_i \otimes f_i$.

The category SVect of finite-dimensional vector superspaces.

- Objects are \mathbb{Z}_2-graded vector spaces $X = X_0 \oplus X_1$.
- The main difference with Vect:

 $$s : X \otimes Y \to Y \otimes X, \quad s(x \otimes y) := (-1)^{\bar{x} \bar{y}} y \otimes x.$$

- c and e are defined by the same formulas as for usual vector spaces.
Main Examples

The category \(\text{Vect} \) of finite-dimensional vector spaces.
- \((X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)\), \((x \otimes y) \otimes z \mapsto x \otimes (y \otimes z) \), \(1 = k \);
- \(s : X \otimes Y \to Y \otimes X \), \(s(x \otimes y) := y \otimes x \);
- \(c : X^* \otimes X \to 1 \), \(c(f \otimes x) := f(x) \);
- \(e : 1 \to X \otimes X^* \), \(e(1) := \sum e_i \otimes f_i \).

The category \(\text{SVect} \) of finite-dimensional vector superspaces.
- Objects are \(\mathbb{Z}_2 \)-graded vector spaces \(X = X_0 \oplus X_1 \).
- The main difference with \(\text{Vect} \):

\[
s : X \otimes Y \to Y \otimes X, \quad s(x \otimes y) := (-1)^{\bar{x} \bar{y}} y \otimes x.
\]

- \(c \) and \(e \) are defined by the same formulas as for usual vector spaces.
Using the rigidity axiom one can construct a canonical isomorphism

$$\delta : \text{End}(X) \xrightarrow{\sim} \text{Hom}(1, X \otimes X^*)$$

and define the trace:

$$\text{tr} : \text{End}(X) \to \text{End}(1) = k$$

as the composition

$$1 \xrightarrow{\delta(\varphi)} X \otimes X^* \xrightarrow{s} X^* \otimes X \xrightarrow{c} 1.$$

By definition

$$\dim X = \text{tr} 1_X.$$
Using the rigidity axiom one can construct a canonical isomorphism
\[\delta : \text{End}(X) \xrightarrow{\sim} \text{Hom}(1, X \otimes X^*) \]
and define the **trace**:
\[\text{tr} : \text{End}(X) \rightarrow \text{End}(1) = k \]
as the composition
\[1 \xrightarrow{\delta(\varphi)} X \otimes X^* \xrightarrow{s} X^* \otimes X \xrightarrow{c} 1. \]

By definition
\[\dim X = \text{tr} 1_X. \]
Trace and dimension

Using the rigidity axiom one can construct a canonical isomorphism

\[\delta : \text{End}(X) \xrightarrow{\sim} \text{Hom}(1, X \otimes X^*) \]

and define the trace:

\[\text{tr} : \text{End}(X) \rightarrow \text{End}(1) = k \]

as the composition

\[1 \xrightarrow{\delta(\varphi)} X \otimes X^* \xrightarrow{s} X^* \otimes X \xrightarrow{c} 1. \]

By definition

\[\dim X = \text{tr} 1_X. \]
Trace and dimension

Using the rigidity axiom one can construct a canonical isomorphism

$$\delta : \text{End}(X) \xrightarrow{\sim} \text{Hom}(\mathbf{1}, X \otimes X^*)$$

and define the trace:

$$\text{tr} : \text{End}(X) \rightarrow \text{End}(\mathbf{1}) = k$$

as the composition

$$\mathbf{1} \xrightarrow{\delta(\varphi)} X \otimes X^* \xrightarrow{s} X^* \otimes X \xrightarrow{c} \mathbf{1}.$$

By definition

$$\dim X = \text{tr} 1_X.$$
• Vector spaces: dimension and trace are as usual.
• Vector superspaces: the (super)trace of a linear operator is

\[
\text{str} \left(\begin{array}{c|c}
A & B \\
C & D
\end{array} \right) = \text{tr} A - \text{tr} D.
\]

and the (super)dimension

\[
s\text{dim} X = \text{dim} X_0 - \text{dim} X_1.
\]

• In general, the dimension of an object in a symmetric rigid tensor category can be any element of \(k\).
Vector spaces: dimension and trace are as usual.

Vector superspaces: the (super)trace of a linear operator is

\[
\text{str} \left(\begin{array}{c|c}
A & B \\
C & D \\
\end{array} \right) = \text{tr} A - \text{tr} D.
\]

and the (super)dimension

\[
\text{sdim} \ X = \dim X_0 - \dim X_1.
\]

In general, the dimension of an object in a symmetric rigid tensor category can be any element of \(k \).
• Vector spaces: dimension and trace are as usual.
• Vector superspaces: the (super)trace of a linear operator is

\[\text{str} \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) = \text{tr} A - \text{tr} D. \]

and the (super)dimension

\[\text{sdim } X = \dim X_0 - \dim X_1. \]

• In general, the dimension of an object in a symmetric rigid tensor category can be any element of \(k \).
Vector spaces: dimension and trace are as usual.

Vector superspaces: the (super)trace of a linear operator is

$$\operatorname{str} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{tr} A - \operatorname{tr} D.$$

and the (super)dimension

$$\operatorname{sdim} X = \dim X_0 - \dim X_1.$$

In general, the dimension of an object in a symmetric rigid tensor category can be any element of k.
G algebraic group (over k), for example, $GL(n)$. The category Rep G of finite-dimensional representations of G is a symmetric rigid tensor category.

A functor $F : \text{Rep } G \to \text{Vect}$ (forgetting the G-action). Tensor functor, i.e., preserves all structures of tensor categories, faithful (injective on morphisms), exact.

An exact faithful tensor functor $F : \mathcal{A} \to \text{Vect}$ is called a fiber functor.

A finitely generated symmetric rigid tensor category which has a fiber functor is equivalent to Rep G for some algebraic group G. (Tannakian categories \leadsto affine group schemes).
- G algebraic group (over k), for example, $GL(n)$. The category $\text{Rep } G$ of finite-dimensional representations of G is a symmetric rigid tensor category.

- A functor $F : \text{Rep } G \to \text{Vect}$ (forgetting the G-action). Tensor functor, i.e., preserves all structures of tensor categories, faithful (injective on morphisms), exact.

- An exact faithful tensor functor $F : A \to \text{Vect}$ is called a fiber functor.

- A finitely generated symmetric rigid tensor category which has a fiber functor is equivalent to $\text{Rep } G$ for some algebraic group G. (Tannakian categories \leftrightarrow affine group schemes).
G algebraic group (over \(k \)), for example, \(GL(n) \). The category Rep \(G \) of finite-dimensional representations of \(G \) is a symmetric rigid tensor category.

- A functor \(F : \text{Rep} \ G \rightarrow \text{Vect} \) (forgetting the \(G \)-action). Tensor functor, i.e., preserves all structures of tensor categories, faithful (injective on morphisms), exact.

- An exact faithful tensor functor \(F : \mathcal{A} \rightarrow \text{Vect} \) is called a *fiber functor*.

- A finitely generated symmetric rigid tensor category which has a fiber functor is equivalent to \(\text{Rep} \ G \) for some algebraic group \(G \). (Tannakian categories \(\leadsto \) affine group schemes).

V. Serganova

Deligne's tensor category Rep \(GL(t) \) and general linear supergroups
G algebraic group (over k), for example, $GL(n)$. The category $\text{Rep } G$ of finite-dimensional representations of G is a symmetric rigid tensor category.

A functor $F : \text{Rep } G \rightarrow \text{Vect}$ (forgetting the G-action). Tensor functor, i.e., preserves all structures of tensor categories, faithful (injective on morphisms), exact.

An exact faithful tensor functor $F : \mathcal{A} \rightarrow \text{Vect}$ is called a fiber functor.

A finitely generated symmetric rigid tensor category which has a fiber functor is equivalent to $\text{Rep } G$ for some algebraic group G. (Tannakian categories \rightsquigarrow affine group schemes).

V. Serganova

Deligne's tensor category $\text{Rep } GL(t)$ and general linear supergroups
Example. $GL(n)$ may be a group G and may be supergroup G_{super}. $\text{Rep } G_{\text{super}}$ has twice as many objects as $\text{Rep } G$:

$$V \leftrightarrow \Pi V, \quad V_0 \otimes V_1$$

Deligne’s trick (Halving the category):

- G is a supergroup, fix $g \in G_0$.
- $\text{Rep}(G, g)$ is the subcategory of $\text{Rep } G$, consisting of representations V satisfying $g(v) = (-1)^\bar{v}v$.
- $\text{Rep}(G, g)$ is a tensor category.
Example. $GL(n)$ may be a group G and may be supergroup G_{super}. $\text{Rep } G_{\text{super}}$ has twice as many objects as $\text{Rep } G$:

$$V \leftrightarrow \Pi V, \quad V_0 \uplus V_1$$

Deligne’s trick (Halving the category):

- G is a supergroup, fix $g \in G_0$.
- $\text{Rep}(G, g)$ is the subcategory of $\text{Rep } G$, consisting of representations V satisfying $g(v) = (-1)^\bar{v} v$.
- $\text{Rep}(G, g)$ is a tensor category.
Supertannakian formalism

Example. $GL(n)$ may be a group G and may be supergroup G_{super}. $\text{Rep} \ G_{\text{super}}$ has twice as many objects as $\text{Rep} \ G$:

$$V \leftrightarrow \prod V, \quad V_0 \ominus V_1$$

Deligne’s trick (Halving the category):

- G is a supergroup, fix $g \in G_0$.
- $\text{Rep}(G, g)$ is the subcategory of $\text{Rep} \ G$, consisting of representations V satisfying $g(v) = (-1)^\bar{v} v$.
- $\text{Rep}(G, g)$ is a tensor category.
Theorem (Deligne, 2002)

A tensor category \mathcal{A} is equivalent to some $\text{Rep}(G, g)$ if and only if

- There exists a fiber functor $\mathcal{A} \to \text{SVect}$;
- \mathcal{A} is finitely generated.
Theorem (Deligne, 2002)

A tensor category \mathcal{A} is equivalent to some $\text{Rep}(G, g)$ if and only if

- There exists a fiber functor $\mathcal{A} \rightarrow SVect$;
- \mathcal{A} is finitely generated.
Schur functor

- Consider a tensor category \(\mathcal{A} \).
- For any object \(X \) in \(\mathcal{A} \) consider \(X^{\otimes n} \).
- \(\sigma_{i,i+1} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{\otimes n-i-1} \mapsto S_n \rightarrow \text{Aut}(X^{\otimes n}) \).

Schur–Weyl duality:

\[
X^{\otimes n} = \bigoplus_{|\lambda|=n} V_\lambda \otimes S_\lambda(X).
\]

Definition

\(X \mapsto S_\lambda(X) \) is called the Schur functor \(S_\lambda : \mathcal{A} \rightarrow \mathcal{A} \).
Consider a tensor category \mathcal{A}.

For any object X in \mathcal{A} consider $X \otimes^n$.

$\sigma_{i,i+1} \mapsto 1 \otimes i^{-1} \otimes s \otimes 1 \otimes n-i-1 \sim S_n \to \text{Aut}(X \otimes^n)$.

Schur–Weyl duality:

$$X \otimes^n = \bigoplus_{|\lambda|=n} V_\lambda \otimes S_\lambda(X).$$

Definition

$X \mapsto S_\lambda(X)$ is called the Schur functor $S_\lambda : \mathcal{A} \to \mathcal{A}$.
Consider a tensor category \mathcal{A}.
For any object X in \mathcal{A} consider $X^{\otimes n}$.
$\sigma_{i,i+1} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{\otimes n-i-1} \leadsto S_n \rightarrow \text{Aut}(X^{\otimes n})$.

Schur–Weyl duality:

$$X^{\otimes n} = \bigoplus_{|\lambda|=n} V_\lambda \otimes S_\lambda(X).$$

Definition

$X \mapsto S_\lambda(X)$ is called the Schur functor $S_\lambda : \mathcal{A} \rightarrow \mathcal{A}$.
Schur functor

- Consider a tensor category \mathcal{A}.
- For any object X in \mathcal{A} consider $X^\otimes n$.
- $\sigma_{i,i+1} \mapsto 1^\otimes i \otimes s \otimes 1^\otimes n-i-1 \sim S_n \to \text{Aut}(X^\otimes n)$.

Schur–Weyl duality:

$$X^\otimes n = \bigoplus_{|\lambda|=n} V_\lambda \otimes S_\lambda(X).$$

Definition

$X \mapsto S_\lambda(X)$ is called the Schur functor $S_\lambda : \mathcal{A} \to \mathcal{A}$.
Consider a tensor category \mathcal{A}.

For any object X in \mathcal{A} consider $X^\otimes n$.

$\sigma_{i,i+1} \mapsto 1^\otimes i^{-1} \otimes s \otimes 1^\otimes n-i^{-1} \mapsto S_n \to \text{Aut}(X^\otimes n)$.

Schur–Weyl duality:

$$X^\otimes n = \bigoplus_{|\lambda|=n} V_\lambda \otimes S_\lambda(X).$$

Definition

$X \mapsto S_\lambda(X)$ is called the **Schur functor** $S_\lambda : \mathcal{A} \to \mathcal{A}$.
Theorem (A. Sergeev, 1982)

Let V be an $(m|n)$-dimensional superspace. Then $S_{\lambda}(V) \neq 0$ if and only if λ can be covered by an (m, n)-hook, or equivalently, λ does not contain a rectangular diagram of size $(m + 1) \times (n + 1)$.

Theorem (P. Deligne, 2002)

Let A be a finitely generated rigid symmetric tensor category. The following conditions are equivalent:
(a) Every generator is annihilated by some Schur functor.
(b) A is equivalent to $\text{Rep}(G, g)$ for some algebraic supergroup G.
Theorem (A. Sergeev, 1982)

Let V be an $(m|n)$-dimensional superspace. Then $S_{\lambda}(V) \neq 0$ if and only if λ can be covered by an (m,n)-hook, or equivalently, λ does not contain a rectangular diagram of size $(m + 1) \times (n + 1)$.

Theorem (P. Deligne, 2002)

Let A be a finitely generated rigid symmetric tensor category. The following conditions are equivalent:

(a) Every generator is annihilated by some Schur functor.

(b) A is equivalent to $\text{Rep}(G,g)$ for some algebraic supergroup G.
Universal tensor categories

- Consider tensor categories generated by one object X;
- Want to construct a universal one;
- Analogy: free ring with two generators X and X^*;
- Deligne’s category $\text{Rep } GL(t)$, $t = \dim X$.

- Abelianization: a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!
- The subtle point. Karoubization: adding kernels and images of all projectors ($p^2 = p$). It exists!
- $\text{Rep } GL(t)$ is a result of Karoubization. Not abelian.
Consider tensor categories generated by one object X;
- Want to construct a **universal** one;
- Analogy: free ring with two generators X and X^*;
- Deligne’s category $\text{Rep } GL(t)$, $t = \dim X$.

Abelianization: a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!

The subtle point. Karoubization: adding kernels and images of all projectors ($p^2 = p$). It exists!

$\text{Rep } GL(t)$ is a result of Karoubization. Not abelian.
Universal tensor categories

- Consider tensor categories generated by one object X;
- Want to construct a \textit{universal} one;
- Analogy: free ring with two generators X and X^*;
- Deligne’s category $\text{Rep} \ GL(t)$, $t = \dim X$.

- Abelianization: a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!
- The subtle point. Karoubization: adding kernels and images of all projectors ($p^2 = p$). It exists!
- $\text{Rep} \ GL(t)$ is a result of Karoubization. Not abelian.
Universal tensor categories

- Consider tensor categories generated by one object X;
- Want to construct a universal one;
- Analogy: free ring with two generators X and X^*;
- Deligne’s category $\text{Rep GL}(t)$, $t = \dim X$.

Abelianization: a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!

The subtle point. Karoubization: adding kernels and images of all projectors ($p^2 = p$). It exists!

$\text{Rep GL}(t)$ is a result of Karoubization. Not abelian.
Consider tensor categories generated by one object X;
Want to construct a universal one;
Analogy: free ring with two generators X and X^*;
Deligne’s category $\text{Rep} GL(t)$, $t = \text{dim } X$.

Abelianization: a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!

The subtle point. Karoubization: adding kernels and images of all projectors ($p^2 = p$). It exists!

$\text{Rep} GL(t)$ is a result of Karoubization. Not abelian.
Universal tensor categories

- Consider tensor categories generated by one object X;
- Want to construct a universal one;
- Analogy: free ring with two generators X and X^*;
- Deligne’s category $\text{Rep} \ GL(t)$, $t = \dim X$.

- **Abelianization:** a way to extend a category to abelian by forcefully adding kernels and images of all morphisms. There is no such bliss!
- **The subtle point. Karoubization:** adding kernels and images of all projectors ($p^2 = p$). It exists!
- $\text{Rep} \ GL(t)$ is a result of Karoubization. Not abelian.
Ingredients of construction

- Skeleton category.
 - objects: $X^\otimes m \otimes (X^*)^\otimes n$,
 - morphisms: $\text{Hom}(X^\otimes m \otimes (X^*)^\otimes n, X^\otimes k \otimes (X^*)^\otimes l) = \text{walled Brauer diagrams}$.

- Additive closure (adding direct sums).
- Karoubian envelope (adding kernels of all projectors).
Properties of Deligne’s categories

- \(\text{Rep } GL(t) \) is **semisimple** and therefore abelian if and only if \(t \notin \mathbb{Z} \).
- Indecomposable objects in \(\text{Rep } GL(t) \) are enumerated by pairs of partitions: \((\lambda, \mu) \leftrightarrow Y_{\lambda, \mu} \).
- \(Y_{\lambda, \mu}^* \cong Y_{\mu, \lambda} \).
- \(\dim Y_{\lambda, \mu} \) is a polynomial in \(t \).
Properties of Deligne’s categories

- $\text{Rep } GL(t)$ is **semisimple** and therefore abelian if and only if $t \notin \mathbb{Z}$.
- **Indecomposable objects** in $\text{Rep } GL(t)$ are enumerated by pairs of partitions: $(\lambda, \mu) \leftrightarrow Y_{\lambda, \mu}$.
- $Y_{\lambda, \mu}^* \simeq Y_{\mu, \lambda}$.
- $\dim Y_{\lambda, \mu}$ is a polynomial in t.
Rep $GL(t)$ is **semisimple** and therefore abelian if and only if $t \notin \mathbb{Z}$.

Indecomposable objects in $\text{Rep } GL(t)$ are enumerated by pairs of partitions: $(\lambda, \mu) \leftrightarrow Y_{\lambda, \mu}$.

$Y_{\lambda, \mu}^* \simeq Y_{\mu, \lambda}$.

$\dim Y_{\lambda, \mu}$ is a polynomial in t.
Properties of Deligne’s categories

- **Rep GL(t)** is **semisimple** and therefore abelian if and only if $t \not\in \mathbb{Z}$.
- **Indecomposable objects** in **Rep GL(t)** are enumerated by pairs of partitions: $(\lambda, \mu) \leftrightarrow Y_{\lambda,\mu}$.
- $Y_{\lambda,\mu}^* \simeq Y_{\mu,\lambda}$.
- $\dim Y_{\lambda,\mu}$ is a polynomial in t.
If $t = n \in \mathbb{Z}$, the Deligne categories have canonical semisimple quotients.

Semisimple quotients of $\text{Rep} \ GL(t)$:
- $\text{Rep}(GL(n), 1)$ for $n > 0$;
- $\text{Rep}(GL(-n), -1)$ for $n < 0$.

Universality

Theorem (P. Deligne, 2002)

Let A be a symmetric rigid k-linear category, and V be an object of dimension t. There exists a unique (up to isomorphism) tensor functor $F : \text{Rep} \ GL(t) \to A$ such that $F(X) = V$.
If $t = n \in \mathbb{Z}$, the Deligne categories have canonical semisimple quotients.

Semisimple quotients of $\text{Rep } GL(t)$:

- $\text{Rep}(GL(n), 1)$ for $n > 0$;
- $\text{Rep}(GL(-n), -1)$ for $n < 0$.

Universality

Theorem (P. Deligne, 2002)

Let A be a symmetric rigid k-linear category, and V be an object of dimension t. There exists a unique (up to isomorphism) tensor functor $F : \text{Rep } GL(t) \to A$ such that $F(X) = V$.

V. Serganova
If $t = n \in \mathbb{Z}$, the Deligne categories have canonical semisimple quotients.

Semisimple quotients of $\text{Rep} \ GL(t)$:
- $\text{Rep}(GL(n), 1)$ for $n > 0$;
- $\text{Rep}(GL(-n), -1)$ for $n < 0$.

Universality

Theorem (P. Deligne, 2002)

*Let A be a symmetric rigid k-linear category, and V be an object of dimension t. There exists a unique (up to isomorphism) tensor functor $F : \text{Rep} \ GL(t) \to A$ such that $F(X) = V$.***
Towards abelianization: building blocks

\[t = m - n = m' - n' \]

\[\text{Rep } GL(t) \xrightarrow{F_{m,n}} \text{Rep } GL(m, n) \]

\[\xrightarrow{F_{m',n'}} \text{Rep } GL(m', n') \]

Tensor functor \(E_{m,n} : \text{Rep } GL(m, n) \rightarrow \text{Rep } GL(m - 1, n - 1) \).
t = m - n = m' - n'

\[
\begin{array}{c}
\text{Rep } GL(t) \xrightarrow{F_{m,n}} \text{Rep } GL(m, n) \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
\text{Rep } GL(m', n')
\end{array}
\]

Tensor functor \(E_{m,n} : \text{Rep } GL(m, n) \rightarrow \text{Rep } GL(m - 1, n - 1). \)
Tensor functor F_x (Duflo, V.S.)

- g Lie superalgebra;
- $x \in g_1$ such that $[x, x] = 2x^2 = 0$;
- If M is a representation of g, then $x^2 M = 0$;
- Set $M_x = \ker x/\im x$, $g_x = \ker \text{ad}_x / \im \text{ad}_x$ (cohomology);
- M_x is a representation of g_x;
- $F_x : \text{Rep } g \rightarrow \text{Rep } g_x$ ($F_x(M) := M_x$) is a tensor functor.

Our case: $g = gl(m, n)$, x is an odd matrix of rank 1, $g_x = gl(m-1, n-1)$. Notation $F_x = E_{m,n}$
Tensor functor F_x (Duflo, V.S.)

- \mathfrak{g} Lie superalgebra;
- $x \in \mathfrak{g}_1$ such that $[x, x] = 2x^2 = 0$;
- If M is a representation of \mathfrak{g}, then $x^2M = 0$;
- Set $M_x = \ker x/\text{im} x$, $\mathfrak{g}_x = \ker \text{ad}_x/\text{im} \text{ad}_x$ (cohomology);
- M_x is a representation of \mathfrak{g}_x;
- $F_x : \text{Rep } \mathfrak{g} \rightarrow \text{Rep } \mathfrak{g}_x$ ($F_x(M) := M_x$) is a tensor functor.

Our case: $\mathfrak{g} = \mathfrak{gl}(m, n)$, x is an odd matrix of rank 1, $\mathfrak{g}_x = \mathfrak{gl}(m - 1, n - 1)$. Notation $F_x = E_{m,n}$
Towards abelianization: filtration

Lemma

A filtration on $\text{Rep} \, GL(m, n)$ (tensor rank $\geq k$)

$$\mathcal{F}^1 \text{Rep} \, GL(m, n) \subset \cdots \subset \mathcal{F}^k \text{Rep} \, GL(m, n) \subset \cdots,$$

- $\mathcal{F}^k \text{Rep} \, GL(m, n) \otimes \mathcal{F}^l \text{Rep} \, GL(m, n) \to \mathcal{F}^{k+l} \text{Rep} \, GL(m, n)$;
- $E_{m,n}$ preserves this filtration;
- If $m, n \gg k$ then

$$E_{m,n} : \mathcal{F}^k \text{Rep} \, GL(m, n) \to \mathcal{F}^k \text{Rep} \, GL(m - 1, n - 1)$$

is an equivalence of abelian categories.
Lemma

A filtration on $\text{Rep} \ GL(m, n)$ (tensor rank $\geq k$)

$\mathcal{F}^1 \text{Rep} \ GL(m, n) \subset \cdots \subset \mathcal{F}^k \text{Rep} \ GL(m, n) \subset \cdots,$

- $\mathcal{F}^k \text{Rep} \ GL(m, n) \otimes \mathcal{F}^l \text{Rep} \ GL(m, n) \rightarrow \mathcal{F}^{k+l} \text{Rep} \ GL(m, n);$
- $E_{m,n}$ preserves this filtration;
- If $m, n \gg k$ then

$E_{m,n} : \mathcal{F}^k \text{Rep} \ GL(m, n) \rightarrow \mathcal{F}^k \text{Rep} \ GL(m - 1, n - 1)$

is an equivalence of abelian categories.
Towards abelianization: filtration

Lemma

A filtration on $\text{Rep GL}(m, n)$ (tensor rank $\geq k$)

$$\mathcal{F}^1 \text{Rep GL}(m, n) \subset \cdots \subset \mathcal{F}^k \text{Rep GL}(m, n) \subset \cdots,$$

- $\mathcal{F}^k \text{Rep GL}(m, n) \otimes \mathcal{F}^l \text{Rep GL}(m, n) \to \mathcal{F}^{k+l} \text{Rep GL}(m, n)$;

- $E_{m,n}$ preserves this filtration;

- If $m, n \gg k$ then

$$E_{m,n} : \mathcal{F}^k \text{Rep GL}(m, n) \to \mathcal{F}^k \text{Rep GL}(m - 1, n - 1)$$

is an equivalence of abelian categories.
First, horizontal inverse limit, then vertical direct limit.
Let $t \in \mathbb{Z}$ be fixed and $m - n = t$. For every $k > 0$ one can define an abelian category

$$
\text{Rep}_k \ GL(t) := \lim \leftarrow F^k \text{Rep} \ GL(m, n).
$$

Lemma (Abelianization)

(a) \quad \text{Rep} \ GL(t) := \lim \rightarrow \text{Rep}_k \ GL(t)

is a symmetric rigid tensor category (abelian!).

(b) There exists a fully faithful functor $H : \text{Rep} \ GL(t) \rightarrow \text{Rep} \ GL(t)$.
Let $t \in \mathbb{Z}$ be fixed and $m - n = t$. For every $k > 0$ one can define an abelian category

$$\overline{\text{Rep}}_k \ GL(t) := \lim \mathcal{F}^k \text{Rep} \ GL(m, n).$$

Lemma (Abelianization)

(a) $\overline{\text{Rep}} GL(t) := \lim \overline{\text{Rep}}_k \ GL(t)$

is a symmetric rigid tensor category (**abelian!**).

(b) There exists a fully faithful functor $H : \overline{\text{Rep}} GL(t) \to \overline{\text{Rep}} GL(t)$.
Theorem

Let \mathcal{A} be a symmetric rigid tensor category and $F : \text{Rep } GL(t) \to \mathcal{A}$ be a tensor functor.

(a) $V = F(X)$ is annihilated by some Schur functor $\Rightarrow \exists \Phi$

(b) $V = F(X)$ is not annihilated by any Schur functor $\Rightarrow \exists \Phi$
The category \(\text{Rep} \, gl(\infty) \)

\[g = gl(\infty) = \lim_{\to} gl(n). \]

Let \(V \) and \(V_\ast \) be natural and conatural modules.

Definition

A subalgebra \(\mathfrak{k} \subset g \) is a finite corank subalgebra if there exist finite dimensional subspaces \(W \subset V \) and \(W' \subset V_\ast \) such that \(\mathfrak{k} \) annihilates every vector in \(W, W' \).

We define \(\text{Rep} \, gl(\infty) \) as a full subcategory of \(g \)-modules whose objects \(M \) satisfy the following conditions

- \(M \) is integrable;
- For every \(m \in M \) the annihilator of \(m \) in \(g \) has finite corank;
- \(M \) has finite length.
The category $\text{Rep} \, \mathfrak{gl}(\infty)$

$$\mathfrak{g} = \mathfrak{gl}(\infty) = \lim_{\to} \mathfrak{gl}(n).$$

Let V and V_* be natural and conatural modules.

Definition

A subalgebra $\mathfrak{k} \subset \mathfrak{g}$ is a finite corank subalgebra if there exist finite dimensional subspaces $W \subset V$ and $W' \subset V_*$ such that \mathfrak{k} annihilates every vector in W, W'.

We define $\text{Rep} \, \mathfrak{gl}(\infty)$ as a full subcategory of \mathfrak{g}-modules whose objects M satisfy the following conditions

- M is integrable;
- For every $m \in M$ the annihilator of m in \mathfrak{g} has finite corank;
- M has finite length.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)

There exists a faithful tensor functor $K : \text{Rep } \mathfrak{gl}(\infty) \to \text{Rep } \text{GL}(t)$.

$$\text{Rep } \text{GL}(t) \xrightarrow{H} \text{Rep } \text{GL}(t) \xleftarrow{K} \text{Rep } \mathfrak{gl}(\infty).$$

- Rep $\text{GL}(t)$ is symmetric rigid, but not abelian.
- Rep $\mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- Rep $\text{GL}(t)$ is a locally highest weight category.
- Simple objects in $\text{Rep } \mathfrak{gl}(\infty)$ correspond to standard objects in $\text{Rep } \text{GL}(t)$.
- Indecomposable objects in $\text{Rep } \text{GL}(t)$ correspond to tilting objects in $\text{Rep } \text{GL}(t)$.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)

There exists a faithful tensor functor $K : \text{Rep} \mathfrak{gl}(\infty) \rightarrow \text{Rep} \, GL(t)$.

\[
\begin{array}{c}
\text{Rep} \, GL(t) \xrightarrow{H} \text{Rep} \, GL(t) \xleftarrow{K} \text{Rep} \mathfrak{gl}(\infty).
\end{array}
\]

- $\text{Rep} \, GL(t)$ is symmetric rigid, but not abelian.
- $\text{Rep} \mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- $\text{Rep} \, GL(t)$ is a locally highest weight category
- Simple objects in $\text{Rep} \mathfrak{gl}(\infty)$ ↦ standard objects in $\text{Rep} \, GL(t)$.
- Indecomposable objects in $\text{Rep} \, GL(t)$ ↦ tilting objects in $\text{Rep} \, GL(t)$.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)
There exists a faithful tensor functor $K : \text{Rep} \mathfrak{gl}(\infty) \to \text{Rep} GL(t)$.

\[
\begin{array}{c}
\text{Rep} GL(t) \xrightarrow{H} \text{Rep} GL(t) \xleftarrow{K} \text{Rep} \mathfrak{gl}(\infty).
\end{array}
\]

- $\text{Rep} GL(t)$ is symmetric rigid, but not abelian.
- $\text{Rep} \mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- $\text{Rep} GL(t)$ is a locally highest weight category
- Simple objects in $\text{Rep} \mathfrak{gl}(\infty)$ \mapsto standard objects in $\text{Rep} GL(t)$.
- Indecomposable objects in $\text{Rep} GL(t)$ \mapsto tilting objects in $\text{Rep} GL(t)$.
$\text{Rep } \mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class.
(Penkov–Dan-Cohen –S., Sam–Snowden)
There exists a faithful tensor functor $K : \text{Rep } \mathfrak{gl}(\infty) \to \text{Rep } GL(t)$.

$$\text{Rep } GL(t) \xrightarrow{H} \text{Rep } GL(t) \xleftarrow{K} \text{Rep } \mathfrak{gl}(\infty).$$

- $\text{Rep } GL(t)$ is symmetric rigid, but not abelian.
- $\text{Rep } \mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- $\text{Rep } GL(t)$ is a locally highest weight category.
- Simple objects in $\text{Rep } \mathfrak{gl}(\infty)$ ↦ standard objects in $\text{Rep } GL(t)$.
- Indecomposable objects in $\text{Rep } GL(t)$ ↦ tilting objects in $\text{Rep } GL(t)$.
Rep $gl(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)
There exists a faithful tensor functor $K : Rep gl(\infty) \rightarrow Rep GL(t)$.

\[
\begin{array}{c}
Rep GL(t) \xrightarrow{H} Rep GL(t) \xleftarrow{K} Rep gl(\infty).
\end{array}
\]

- $Rep GL(t)$ is symmetric rigid, but not abelian.
- $Rep gl(\infty)$ is symmetric abelian but not rigid.
- $Rep GL(t)$ is a locally highest weight category
- Simple objects in $Rep gl(\infty)$ map to standard objects in $Rep GL(t)$.
- Indecomposable objects in $Rep GL(t)$ map to tilting objects in $Rep GL(t)$.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)
There exists a faithful tensor functor $K : \text{Rep } \mathfrak{gl}(\infty) \to \text{Rep } GL(t)$.

$$\text{Rep } GL(t) \xrightarrow{H} \text{Rep } GL(t) \xleftarrow{K} \text{Rep } \mathfrak{gl}(\infty).$$

- $\text{Rep } GL(t)$ is symmetric rigid, but not abelian.
- $\text{Rep } \mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- $\text{Rep } GL(t)$ is a locally highest weight category
 - Simple objects in $\text{Rep } \mathfrak{gl}(\infty)$ map to standard objects in $\text{Rep } GL(t)$.
 - Indecomposable objects in $\text{Rep } GL(t)$ map to tilting objects in $\text{Rep } GL(t)$.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)

There exists a faithful tensor functor $K : \text{Rep } \mathfrak{gl}(\infty) \to \text{Rep } GL(t)$.

\[\text{Rep } GL(t) \xrightarrow{H} \text{Rep } GL(t) \xleftarrow{K} \text{Rep } \mathfrak{gl}(\infty). \]

- $\text{Rep } GL(t)$ is symmetric rigid, but not abelian.
- $\text{Rep } \mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- $\text{Rep } GL(t)$ is a locally highest weight category
- Simple objects in $\text{Rep } \mathfrak{gl}(\infty)$ map to standard objects in $\text{Rep } GL(t)$.
- Indecomposable objects in $\text{Rep } GL(t)$ map to tilting objects in $\text{Rep } GL(t)$.
Rep $\mathfrak{gl}(\infty)$ is symmetric, monoidal and universal in this class. (Penkov–Dan-Cohen –S., Sam–Snowden)

There exists a faithful tensor functor $K : \text{Rep} \mathfrak{gl}(\infty) \to \text{Rep} \text{GL}(t)$.

\[
\text{Rep} \text{GL}(t) \xrightarrow{H} \text{Rep} \text{GL}(t) \xleftarrow{K} \text{Rep} \mathfrak{gl}(\infty).
\]

- Rep $\text{GL}(t)$ is symmetric rigid, but not abelian.
- Rep $\mathfrak{gl}(\infty)$ is symmetric abelian but not rigid.
- Rep $\text{GL}(t)$ is a locally highest weight category.
- Simple objects in Rep $\mathfrak{gl}(\infty)$ \leftrightarrow standard objects in Rep $\text{GL}(t)$.
- Indecomposable objects in Rep $\text{GL}(t)$ \leftrightarrow tilting objects in Rep $\text{GL}(t)$.
Open problems

- Ideals in the Deligne category $\text{Rep } GL(t)$.
 J. Comes (2012): thick ideals come from $\mathfrak{gl}(m, n)$.
- Deligne conjecture.
- Kazhdan–Lusztig theory for Rep.
- Conjecture: F_x is semisimple.
Open problems

- Ideals in the Deligne category $\text{Rep } GL(t)$.
 J. Comes (2012): thick ideals come from $\text{gl}(m,n)$.
- Deligne conjecture.
- Kazhdan–Lusztig theory for Rep.
- Conjecture: F_x is semisimple.
Open problems

- Ideals in the Deligne category $\text{Rep } GL(t)$. J. Comes (2012): thick ideals come from $\mathfrak{gl}(m, n)$.
- Deligne conjecture.
 - Kazhdan–Lusztig theory for Rep.
 - Conjecture: F_x is semisimple.
Open problems

- Ideals in the Deligne category $\text{Rep } GL(t)$.
 J. Comes (2012): thick ideals come from $\text{gl}(m, n)$.
- Deligne conjecture.
- Kazhdan–Lusztig theory for Rep.
- Conjecture: F_x is semisimple.
Open problems

- Ideals in the Deligne category $\text{Rep } GL(t)$. J. Comes (2012): thick ideals come from $\mathfrak{gl}(m, n)$.
- Deligne conjecture.
- Kazhdan–Lusztig theory for Rep.
- Conjecture: F_x is semisimple.