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• Turing machines, Lambda calculus, logic… 

• Semantics : syntax :: representations : group 

• Homotopy type theory (Awodey, Voevodsky 2012) 

• Girard “Towards a Geometry of Interaction” (1989)



Sense & Denotation

• Frege “On sense and denotation” (1892) 

• A sentence denotes or refers to some external 
object, and expresses its sense, which is the ‘mode 
of presentation’ of its denotation.

same denotation, different sense

2⇥ 2 = 4



Sense as algorithm

mult2(2) = 4

2⇥ 2 = 4

Turing machine input output

4
computation

2

mult2



where 20 is the proof in (3.14). We feed 2 as input to mult2 by cutting:

2
...

` intA

mult2
...

intA ` intA
cut

` intA

intA

(4.5)

We denote this cut of the two proofs by mult2 | 2. Not surprisingly, the cut-free normalisa-
tion of mult2 | 2 is the Church numeral 4. Each of the proof transformations generated by
the cut-elimination algorithm applied to mult2 | 2 (given in Appendix A) yields a new proof
with the same denotation, and this sequence of proofs represents a particular sequence of
manipulations of the string diagram.

We now enumerate these diagrammatic transformations. From (4.5) the first step is to
use naturality of the Hom-tensor adjunction, as in the manipulation from (4.1) to (4.2).
Then we are in the position of (4.3), with ⇡2 a part of 2 and ⇡1 the promoted Church
numeral. The manipulation from (4.3) to (4.4) is to take the left leg and feed it as an
input to the right leg. This yields the first equality below. The second equality follows
from the fact that a promotion box represents a morphism of coalgebras, and thus can be
commuted past the coproduct whereby it is duplicated:

(4.5) = =
(4.6)
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4

At this point the promotions cancel with the derelictions by the identity (3.6), “releasing”
the pair of Church numerals contained in the promotion boxes. This yields the first
equality below, while the second is an application of the general form of the identity
represented by the transformation of diagrams in (4.3) – (4.4):

(4.6) = =

This last diagram is the denotation of 4, so we conclude that (at least at the level of the
denotations) the output of the program mult2 on the input 2 is 4. See Appendix A for
references to the precise proof transformations responsible for each of these steps.

5 The geometry of interaction

One of the most interesting aspects of linear logic is Girard’s program to study the se-
mantics of the cut-elimination process. He calls this the geometry of interaction; see [41,
§III] and [38, 39, 40]. The purpose of this section is to explain some of his ideas and how
they have motivated the author’s search for geometric models of computation.

After the work of Turing, Gödel and Church [70] computation has become a funda-
mental concept in mathematics. But what is it, really? One answer is that computation is
what happens when a Turing machine is iterated, or what happens during the �-reduction
process of the �-calculus, or the cut-elimination process of logic. These three models of
computation are all equivalent, but each is tied to specific syntax. What is the common
essence of these processes? This is a question at least as deep as “What is space?” and it
would be absurd to expect a final answer [28]. Nonetheless the search for answers gener-
ates interesting mathematics. At a first approach we notice that common to all three of
the models of computation listed above is a tension between the implicit and the explicit.
Let us use the computation of Example 4.3 to explain.

Consider the proofs mult2 and 2 and their cut mult2 | 2. The latter is equivalent under
cut-elimination to the cut-free proof 4. Since this answer is derived from a deterministic
algorithm – cut-elimination – the knowledge is certainly implicit in the proof mult2 | 2.
But some work was necessary to convert this implicit truth into explicit truth. Although
this example is a trivial one, the reader can easily imagine a similar calculation whose
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mult2(2)

Sense as topology
2⇥ 2 = 4

2

proof-nets = diagrammatics of linear logic



Sense as algebra
T = Z2-graded triangulated category [1] � [1] = id

End⇤T (Y ) = HomT (Y, Y )�HomT (Y, Y [1])

C = Z2-graded algebra

A C-module in T is a morphism C �! End

⇤
T (Y )



T •
= Cn-modules in T for n � 0

= kha, a†i with a2 = (a†)2 = 0, aa† + a†a = 1

Example. C1 = Endk(k � k[1])
a =

✓
0 1
0 0

◆
a† =

✓
0 0
1 0

◆
Example

Cn = kha1, . . . , an, a†1, . . . , a†ni with Cli↵ord relations

T = Z2-graded triangulated category [1] � [1] = id

C0 = k



Sense as algebra

A C1-module in T is (Y, a, a†)

Y ⇠= X �X[1] X = Im(aa†)

T = Z2-graded triangulated category

(Y, a, a†) ⇠= X 2⇥ 2 = 4

same denotation, di↵erent sense



• A bicategory has objects, 1-morphisms and 2-
morphisms, and composition functors

B(b, c)⇥ B(a, b) �! B(a, c)

• A cut system is similar, except it has cut functors

B(b, c)⇥ B(a, b) �! B(a, c)•

2

mult2
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4(mult2, 2) 7! 4 = X

(mult2, 2) 7! (Y, a, a†)

(computable)



Theorem
• There is a bicategorical semantics of intuitionistic 

propositional linear logic in the cocompletion of a 
cut system     defined on the bicategory of Landau-
Ginzburg models (hypersurface singularities and 
matrix factorisations). 

• Lambda calculus embeds in intuitionistic linear logic 

• The Clifford actions are derived from Atiyah classes 
of matrix factorisations (homological perturbation 
lemma under the hood).

B



(Y, a, a†) ⇠= X 2⇥ 2 = 4

int1

mult22
int

(Y, a, a†)

X = 4

Cut system B

• Universal examples of same denotation, different 
sense: Turing machines, proof-nets, Clifford 
representations in triangulated categories (?)



approach to proof-nets is Melliès [59, 58].

Let V denote the category of k-vector spaces (not necessarily finite dimensional). Then
V is symmetric monoidal and for each object V the functor V ⌦� has a right adjoint

V ( � := Homk(V,�) .

In addition to the usual diagrammatics of a symmetric monoidal category, we draw the
counit V ⌦ (V ( W ) �! W as

W

V V ( W

(3.1)

The adjoint Y �! X ( Z of a morphism � : X ⌦ Y �! Z is depicted as follows:9

X ( Z

�

Y

X

Z

(3.2)

Next we present the categorical construct corresponding to the exponential modality in
terms of an adjunction, following Benton [13], see also [59, §7]. Let C denote the category
of counital, coassociative, cocommutative coalgebras in V . In this paper whenever we say
coalgebra we mean an object of C. This is a symmetric monoidal category in which the
tensor product (inherited from V) is cartesian, see [71, Theorem 6.4.5], [8] and [59, §6.5].

By results of Sweedler [71, Chapter 6] the forgetful functor L : C �! V has a right
adjoint R and we set ! = L �R, as in the following diagram:10

C

L //
V

R
oo ! = L �R .

9This is somewhat against the spirit of the diagrammatic calculus, since the loop labelled X is not
“real” and is only meant as a “picture” to be placed at a vertex between a strand labelled Y and a strand
labelled X ( Z. This should not cause confusion, because we will never manipulate this strand on its
own. The idea is that if X were a finite-dimensional vector space, so that X ( Z ⇠= X_

⌦ Z, the above
diagram would be absolutely valid, and we persist with the same notation even when X is not dualisable.
In our judgement the clarity achieved by this slight cheat justifies a little valour in the face of correctness.

10The existence of a right adjoint to the forgetful functor can also be seen to hold more generally as a
consequence of the adjoint functor theorem [8].
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Both L and its adjoint R are monoidal functors.
For each V there is a coalgebra !V and a counit of adjunction d : !V �! V . Since

this map will end up being the interpretation of the dereliction rule in linear logic, we
refer to it as the dereliction map. In string diagrams it is represented by an empty circle.
Although it is purely decorative, it is convenient to represent coalgebras in string diagrams
drawn in V by thick lines, so that for !V the dereliction, coproduct and counit are drawn
respectively as follows:

V

!V

!V !V

!V
!V

(3.3)

In this paper our string diagrams involve both V and C and our convention is that white
regions represent V and gray regions stand for C. A standard way of representing monoidal
functors between monoidal categories is using coloured regions [59, §5.7]. The image under
L of a morphism ↵ : C1 �! C2 in C is drawn as a vertex in a grey region embedded into
a white region. The image of a morphism � : V1 �! V2 under R is drawn using a white
region embedded in a gray plane. For example, the diagrams representing L(↵), R(�) and
!� = LR(�) are respectively

LC2

LC1

↵

C2

C1

RV2

RV1

�

V2

V1

!V2 = LRV2

!V1 = LRV1

�

RV2

RV1

The adjunction between R and L means that for any coalgebra C and linear map � :
C �! V there is a unique morphism of coalgebras � : C �! !V making

C
�

//

�

  

V

!V

d

OO (3.4)

16

!V = universal coalgebra over V



For example

|⌫i↵ 7�! |⌫i↵ ⌦ |oi↵ + |oi↵ ⌦ |⌫i↵ 7�! ↵ � ⌫ + ⌫ � ↵ = {⌫,↵} .

The final step in the proof of 2 consists of moving the !(A ( A) to the right side of the
sequent, which yields the final diagram:

intA

A A ( A

A ( A
A

A

A ( A!(A ( A)

(3.16)

The denotation of this morphism is the map in (2.22). The reader might like to compare
this style of diagram for 2 to the corresponding proof-net in [36, §5.3.2].

In Example 2.4 we sketched how to recover the function ↵ 7! ↵2 from the denotation
of the Church numeral 2, but now we can put this on a firmer footing. The translation
of the �-calculus into linear logic encourages us to think of a proof ⇡ of a sequent !B ` C
as a program whose input of type B may be used multiple times. There is a priori no
linear map JBK �! JCK associated to ⇡ but there is a function J⇡Knl defined on P 2 JBK
by lifting to !JBK and then applying J⇡K:

k
P //

|oiP %%

JBK JCK

!JBK
d

OO

J⇡K

88 . (3.17)

That is,

Definition 3.6.The function J⇡Knl : JBK �! JCK is defined by J⇡Knl(P ) = J⇡K|oiP .

The discussion above shows that, with V = JAK,

Lemma 3.7. J2Knl : Endk(V ) �! Endk(V ) is the map ↵ 7! ↵2
.

22

2

intA = !(A ( A) ( (A ( A) ↵ 7! ↵2



2 : !(A ( A) �! (A ( A)

e2 : !(A ( A) �! !(A ( A)

where 20 is the proof in (3.14). We feed 2 as input to mult2 by cutting:

2
...

` intA

mult2
...

intA ` intA
cut

` intA

intA

(4.5)

We denote this cut of the two proofs by mult2 | 2. Not surprisingly, the cut-free normalisa-
tion of mult2 | 2 is the Church numeral 4. Each of the proof transformations generated by
the cut-elimination algorithm applied to mult2 | 2 (given in Appendix A) yields a new proof
with the same denotation, and this sequence of proofs represents a particular sequence of
manipulations of the string diagram.

We now enumerate these diagrammatic transformations. From (4.5) the first step is to
use naturality of the Hom-tensor adjunction, as in the manipulation from (4.1) to (4.2).
Then we are in the position of (4.3), with ⇡2 a part of 2 and ⇡1 the promoted Church
numeral. The manipulation from (4.3) to (4.4) is to take the left leg and feed it as an
input to the right leg. This yields the first equality below. The second equality follows
from the fact that a promotion box represents a morphism of coalgebras, and thus can be
commuted past the coproduct whereby it is duplicated:

(4.5) = =
(4.6)
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At this point the promotions cancel with the derelictions by the identity (3.6), “releasing”
the pair of Church numerals contained in the promotion boxes. This yields the first
equality below, while the second is an application of the general form of the identity
represented by the transformation of diagrams in (4.3) – (4.4):

(4.6) = =

This last diagram is the denotation of 4, so we conclude that (at least at the level of the
denotations) the output of the program mult2 on the input 2 is 4. See Appendix A for
references to the precise proof transformations responsible for each of these steps.

5 The geometry of interaction

One of the most interesting aspects of linear logic is Girard’s program to study the se-
mantics of the cut-elimination process. He calls this the geometry of interaction; see [41,
§III] and [38, 39, 40]. The purpose of this section is to explain some of his ideas and how
they have motivated the author’s search for geometric models of computation.

After the work of Turing, Gödel and Church [70] computation has become a funda-
mental concept in mathematics. But what is it, really? One answer is that computation is
what happens when a Turing machine is iterated, or what happens during the �-reduction
process of the �-calculus, or the cut-elimination process of logic. These three models of
computation are all equivalent, but each is tied to specific syntax. What is the common
essence of these processes? This is a question at least as deep as “What is space?” and it
would be absurd to expect a final answer [28]. Nonetheless the search for answers gener-
ates interesting mathematics. At a first approach we notice that common to all three of
the models of computation listed above is a tension between the implicit and the explicit.
Let us use the computation of Example 4.3 to explain.

Consider the proofs mult2 and 2 and their cut mult2 | 2. The latter is equivalent under
cut-elimination to the cut-free proof 4. Since this answer is derived from a deterministic
algorithm – cut-elimination – the knowledge is certainly implicit in the proof mult2 | 2.
But some work was necessary to convert this implicit truth into explicit truth. Although
this example is a trivial one, the reader can easily imagine a similar calculation whose

27

At this point the promotions cancel with the derelictions by the identity (3.6), “releasing”
the pair of Church numerals contained in the promotion boxes. This yields the first
equality below, while the second is an application of the general form of the identity
represented by the transformation of diagrams in (4.3) – (4.4):

(4.6) = =

This last diagram is the denotation of 4, so we conclude that (at least at the level of the
denotations) the output of the program mult2 on the input 2 is 4. See Appendix A for
references to the precise proof transformations responsible for each of these steps.

5 The geometry of interaction

One of the most interesting aspects of linear logic is Girard’s program to study the se-
mantics of the cut-elimination process. He calls this the geometry of interaction; see [41,
§III] and [38, 39, 40]. The purpose of this section is to explain some of his ideas and how
they have motivated the author’s search for geometric models of computation.
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