Modular representations of bismash products

Susan Montgomery 2014

Modular group representations: Brauer

G finite group, k algebraically closed of char p > 2. **Idea**: Study G-reps over k by using G-reps over \mathbb{C} .

 $(\mathbb{K}, R, \mathbb{k})$ is a p -modular system for G if $R \supset \mathbb{Z}$ is a complete DVR with fraction field \mathbb{K} , \mathbb{K} splits G, π is a generator for the maximal ideal P of R and $\mathbb{k} = R/\pi R$.

If $|G| = p^{\alpha}m$ for $p \nmid m$, then R contains ω , a primitive mth root of 1.

Under the quotient map $f: R \to \mathbb{k} = R/\pi R$, $\bar{\omega} = f(\omega)$ is a primitive mth root of 1 in \mathbb{k} .

Let $G_{p'}:=\{x\in G\mid p\nmid o(x)\}$. For $x\in G_{p'}$ and any irreducible $\Bbbk G$ -rep W, the eigenvalues of x on W may be written as $\{\bar{\omega}^{i_1},\ldots,\bar{\omega}^{i_t}\}$.

The Brauer character $\phi:G_{p'}\to\mathbb{K}$ of G afforded by W is given by

$$\phi(x) = \omega^{i_1} + \dots + \omega^{i_t}.$$

The decomposition map is a homomorphism of abelian groups

$$d: G_0(\mathbb{K}G) \to G_0(\mathbb{k}G)$$

taking a class [V] in $G_0(\mathbb{K}G)$ to $[\overline{M}]$ in $G_0(\mathbb{k}G)$, where M is any RG-lattice in V with $\overline{M} := M/\pi M$.

Moreover if χ is the \mathbb{K} -character for V, then $\chi|_{G_{p'}}$ is the Brauer character of $[\overline{M}]$.

Let V_1,\ldots,V_n be irred \mathbb{K} -reps of G with characters χ_i , and W_1,\ldots,W_d the irred \mathbb{k} -reps of G with Brauer characters ϕ_j . Then the $\{\phi_j\}$ are a basis for the \mathbb{K} -valued class functions on $G_{p'}$. Thus

$$\chi_i|_{G_{p'}} = \sum_j d_{ij}\phi_j$$
, for $d_{ij} \in \mathbb{Z}$.

The d_{ij} are the decomposition numbers, $D = [d_{ij}]$ is the decomposition matrix, and $C = D^tD$ is the $d \times d$ Cartan matrix.

Theorem(Brauer) Det(C) is a power of p.

Bismash Products

Let L = FG be a factorizable group; that is, $F, G \subset L$, $F \cap G = 1$, and L = FG. Then also L = GF, and so for any $a \in F$, $x \in G$, there exist unique $a' \in F$, $x' \in G$ such that $xa = a'x' = (x \triangleright a)(x \triangleleft a)$.

Example: For |G| = n, $G \hookrightarrow S_n$ by left multiplication on G itself. Also $S_{n-1} \subset S_n$ by fixing the last element of G. Then $G \cap S_{n-1} = 1$ and $S_n = S_{n-1}G$ is a factorization.

F does **not** act as automorphisms of G: using $S_4 = S_3 C_4$, let $x = (1234)^2 \in C_4$, $a = (12) \in S_3$. Then $xa = (321)(1234)^{-1}$, and so $x \triangleright (12) = (321)$.

For any field \mathbb{E} , the function algebra $\mathbb{E}^G = (\mathbb{E}G)^*$ is also a Hopf algebra, as is \mathbb{E}^F , using the transpose maps. \mathbb{E}^G has a basis $\{p_g \mid g \in G\}$ dual to the basis of group elements for $\mathbb{E}G$. The actions \triangleright and \triangleleft induce group actions of F on \mathbb{E}^G and of G on \mathbb{E}^F .

Let $H:=\mathbb{E}^G \rtimes \mathbb{E} F$ be the semidirect product algebra. Similarly $H^*=\mathbb{E}^F \rtimes \mathbb{E} G$ is an algebra.

 $H = H(L, F, G) = \mathbb{E}^G \# \mathbb{E} F$ is a Hopf algebra, called the **bismash product**.

Its coalgebra structure is obtained by dualizing the algebra structure of H^* ; thus $\Delta_H = (m_{H^*})^*$.

Fix the basis $\mathcal{B}:=\{p_x\#a\mid x\in G, a\in F\}$ of H. On \mathcal{B} , the antipode is given by $S(p_x\#a)=p_{(x\lhd a)^{-1}}\#(x\triangleright a)^{-1}$, and so $S^2=id$.

Representations of $H = k^G \# kF$: (DPR, Mason for D(G) 1990, KMM 02)

For each orbit \mathcal{O} of F on G, fix $x \in \mathcal{O} = \mathcal{O}_x$ and let $F_x =$ stabilizer of x. Let W_x be an irreducible rep of F_x , and define

$$V_x := \mathbb{C}G \otimes_{\mathbb{C}F_x} W_x.$$

 V_x is an H-representation, all $y \in G, b \in F, w \in W_x$, via

$$p_y \cdot [b \otimes w] = \delta_{y \triangleleft b, x}(b \otimes w).$$

 V_x is irreducible over H and all irreducible modules arise in this way.

Assume as for groups that $(\mathbb{K}, R, \mathbb{k})$ is a p-modular system for F, and thus for the subgroups F_x . To define Brauer characters for H, we use a subset of \mathcal{B} , namely

$$\mathcal{B}_{p'} := \{ p_y \# a \mid y \in G, a \in F_{p'} \cap F_y \}$$

This set is closed under S, since if $a \in F_y$, then $S(p_y\#a) = p_{y^{-1}}\#yay^{-1}$. Thus if $a \in F_{p'} \cap F_y$, then also $yay^{-1} \in F_{p'} \cap F_y$.

Recall for $S_4 = S_3 C_4$, can have $x > (12) = (321) \notin F_{3'}$.

[JM09; N05] Fix a set T_x of right coset reps of F_x in F. If $W=W_x$ is an irred $\Bbbk F_x$ -module with character ψ , then the H_{\Bbbk} -module \widehat{W} has character $\widehat{\psi}$ given by, for all $y\in G,\ a\in F,$

$$\widehat{\psi}(p_y \# a) = \sum_{t \in T_x, \ t^{-1}at \in F_x} \delta_{y \lhd t, x} \ \psi_x(t^{-1}at).$$

[JM 13] If W has classical Brauer character $\phi: \mathbb{K}F_x \to \mathbb{K}$, define the Brauer character $\widehat{\phi}: \mathcal{B}_{p'} \to \mathbb{K}$ of W to be

$$\widehat{\phi}(p_y \# a) = \sum_{t \in T_x, \ t^{-1}at \in F_x} \delta_{y \lhd t, x} \ \phi(t^{-1}at).$$

Let s be the number of distinct orbits \mathcal{O} of F on G and choose $x_q \in \mathcal{O}_q$, for $q = 1, \ldots, s$. For each F_{x_q} :

Let $\{\chi_{x_q,i}\}$ be the irreducible characters of $\mathbb{K}F_{x_q}$. Let $\{\psi_{x_q,j}\}$ be the irreducible characters of $\mathbb{k}F_{x_q}$ and let $\{\phi_{x_q,j}\}$ be their Brauer characters. Let D_{x_q} be the decomposition matrix for the $\chi_{x_q,i}|_{(F_{x_q})_{p'}}$ in terms of the $\phi_{x_q,j}$.

Lifting $\chi_{x_q,i}$ to $\widehat{\chi}_{x_q,i}$ on $H_{\mathbb{K}}$ and $\phi_{x_q,j}$ to $\widehat{\phi}_{x_q,j}$ on $\mathcal{B}_{p'}$, $\widehat{\chi}_{x_q,i}|_{\mathcal{B}_{p'}} = \sum_j \widehat{d_{x_q,ij}} \phi_{x_q,j}, \text{ for } \widehat{d_{x_q,ij}} \in \mathbb{Z}.$

Then $\widehat{D}_{x_q}=[d_{x_q,ij}]$ is the decomposition matrix for the $\widehat{\chi}_{x_q,i}|_{\mathcal{B}_{p'}}$ in terms of the $\widehat{\phi}_{x_q,j}$.

Theorem (1) $\hat{D}_{x_q} = D_{x_q}$

(2) The decomposition matrix for the $\hat{\chi}_i|_{\mathcal{B}_{p'}}$ with respect to the $\hat{\phi}_j$ is the block matrix

$$\widehat{D} = \begin{bmatrix} \widehat{D}_{x_1} & 0 & \cdots & 0 \\ 0 & \widehat{D}_{x_2} & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \widehat{D}_{x_s} \end{bmatrix}$$

where \widehat{D}_{x_q} is the decomposition matrix of $\widehat{\chi}_{x_q,i}|_{\mathcal{B}_{p'}}$ with respect to $\widehat{\phi}_{x_q,j}$.

As for groups, $\hat{C} = \hat{D}^t \hat{D}$ is called the *Cartan matrix*.

Theorem: $Det(\widehat{C})$ is a power of p, so is odd.

Proof: Apply Brauer's theorem to each block \widehat{D}_{x_q} .

Frobenius-Schur indicators

A bilinear form is H-invariant if $\sum \langle h_1 \cdot v, h_2 \cdot w \rangle = \varepsilon(h) \mathbf{1}_{\mathbb{E}} \text{ for all } h \in H, \ v, w \in V.$

Frobenius-Schur (1906) did case of $\mathbb{C}G$. Thompson (1986) case of char p > 0.

Theorem [GM09] Let H be fin dim over \mathbb{E} , split by \mathbb{E} , with $S^2 = id$, and let V be an irred H-module.

Then V has a well-defined Frobenius-Schur indicator $\nu(V) \in \{0,1,-1\}$. Moreover

- (1) $\nu(V) = 0 \iff V^* \ncong V$.
- (2) $\nu(V) = 1$ (respectively -1) $\iff V$ admits a non-degenerate H-invariant symmetric (resp., alternating) bilinear form.

We prove an analog for bismash products of a theorem of J. Thompson (1986).

Theorem: (Jedwab-M 13) Let \mathbb{k} be algebraically closed of characteristic p > 2, L = FG a factorizable group, and $(\mathbb{K}, R, \mathbb{k})$ a p-modular system for F. Consider the bismash products $H_{\mathbb{C}} = \mathbb{C}^G \# \mathbb{C} F$ and $H_{\mathbb{k}} = \mathbb{k}^G \# \mathbb{k} F$.

If $\psi = \psi^*$ is an irreducible $H_{\mathbb{k}}$ -character with Brauer character ϕ , then there is an irreducible \mathbb{K} -character $\chi = \chi^*$ of $H_{\mathbb{K}}$ such that $d(\chi|_{\mathcal{B}_{p'}}, \phi)$ is odd. Moreover for such a χ , $\nu(\chi) = \nu(\psi)$.

Corollary: (Jedwab-M 13) If all irreducible $H_{\mathbb{C}} = \mathbb{C}^G \# \mathbb{C} F$ modules have Schur indicator +1 (respectively ± 1), the same is true for all irreducible $H_{\mathbb{K}}$ -modules.

Theorem: (Timmer 2014) For G of order n, consider $S_n = S_{n-1}G$ as above and let $H = \mathbb{C}^G \# \mathbb{C} S_{n-1}$. Then H is totally orthogonal for all n.

(J-M 09) case of $S_n = S_{n-1}C_n$.

Some ingredients in the proof:

Recall the p-modular system $(\mathbb{K}, R, \mathbb{k})$, where $\mathbb{Q} \subset \mathbb{K}$ and \mathbb{K} splits $H_{\mathbb{Q}}$.

- 1. For V an $H_{\mathbb{K}}$ -module, an $R\mathcal{B}$ -lattice in V is a fin gen $R\mathcal{B}$ -submodule L of V such that $\mathbb{K}L = V$.
- 2. For M a fin gen $H_{\mathbb{E}}$ -module with a non-degen bilinear $H_{\mathbb{E}}$ -invariant symmetric or skew form, let M_1 be max in M with $\langle M_1, M_1 \rangle = 0$, and let $M_1^{\perp} = \{ m \in M | \langle m, M_1 \rangle = 0 \}$.

The Witt kernel of M is $\mathcal{W}(M) := M_1^{\perp}/M_1$.

The blocks in $H_{\mathbb{K}}$ correspond to the blocks in $R\mathcal{B}$, by using the decomposition map and the remark about indecomposable modules.

Problem: Unfortunately $\phi^* = \phi$ does NOT imply $\hat{\phi}^* = \hat{\phi}$, nor conversely.

However if $\phi^* = \phi$, then the block B of $R\mathcal{B}$ containing $\widehat{\phi}$ satisfies $B^* = B$. Thus in the decomposition of any $\widehat{\chi}$ in B, the $\widehat{\phi}$ and $\widehat{\phi}^*$ appear in pairs, unless they are self-dual.

Get that the Cartan matrix for the self-dual $\hat{\chi}_i$'s has odd determinant.