The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

University of Southern California

AMS Fall Western Sectional Meeting
October 26th, 2014
Some research into the value of pictures

1 picture = 1,000 words\(^1\)

Average speaking rate = 150 words per minute\(^2\)

1 talk = 20 minutes\(^3\)

\(^1\)Source: on good authority
\(^2\)Source: the internet
\(^3\)Source: the organizers
Some research into the value of pictures

1 picture = 1,000 words1

Average speaking rate = 150 words per minute2

1 talk = 20 minutes3

Theorem (W, last week)

\[1 \text{ picture} = \frac{1}{3} \text{ talk} \]

1Source: on good authority
2Source: the internet
3Source: the organizers
Some research into the value of pictures

1 picture = 1,000 words\(^1\)

Average speaking rate = 150 words per minute\(^2\)

1 talk = 20 minutes\(^3\)

Theorem (W, last week)

\[
1 \text{ picture} = \frac{1}{3} \text{ talk}
\]

Proof:

\[
1 \text{ picture} = 1 \text{ picture} \cdot \frac{1000 \text{ wds}}{1 \text{ picture}} \cdot \frac{1 \text{ min}}{150 \text{ wds}} \cdot \frac{1 \text{ talk}}{20 \text{ min}} = \frac{1}{3} \text{ talk}
\]

\(^1\)Source: on good authority
\(^2\)Source: the internet
\(^3\)Source: the organizers
What’s the big idea?

Finite Groups (Quillen’s focus)
What’s the big idea?

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Finite Groups (Quillen’s focus)

Restricted Lie algebras
What’s the big idea?

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Finite Groups (Quillen’s focus) Springer isomorphism Restricted Lie algebras
What’s the big idea?

Information about groups translates to the setting of Lie algebras.

Finite Groups (Quillen’s focus) \[\Rightarrow\] Springer isomorphism \[\Rightarrow\] Restricted Lie algebras
Let Γ be a finite group, and let p be a prime number.

The category of elementary abelian p-subgroups (Quillen, 1971)

Let $\mathcal{E}(\Gamma)$ denote the category whose objects are the elementary abelian p-subgroups of Γ and in which a morphism from E to E' is defined to be a composition of group homomorphisms of the following form:

- Inclusions: $E \hookrightarrow E'$
- Conjugations: $E \xrightarrow{\sim} g^{-1}Eg$
Let Γ be a finite group, and let p be a prime number.

The category of elementary abelian p-subgroups (Quillen, 1971)

Let $\mathcal{E}(\Gamma)$ denote the category whose objects are the elementary abelian p-subgroups of Γ and in which a morphism from E to E' is defined to be a composition of group homomorphisms of the following form:

- **Inclusions:** $E \hookrightarrow E'$
- **Conjugations:** $E \sim \rightarrow g^{-1}Eg$

Note 1: $\text{Hom}_{\mathcal{E}(\Gamma)}(E, E') \neq \emptyset$ if and only if E is conjugate to a subgroup of E'.

Note 2: $\text{Hom}_{\mathcal{E}(\Gamma)}(E, E) \cong N_G(E)/C_G(E)$.

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application
For k an algebraically closed field of characteristic p, let

$$H(\Gamma) := \begin{cases} H^\text{ev}(\Gamma, k) & p \neq 2 \\ H^\ast(\Gamma, k) & p = 2 \end{cases}$$

and $$X_\Gamma := \text{Spec } H(\Gamma)$$
\(\mathcal{E}(\Gamma) \) in cohomology

For \(k \) an algebraically closed field of characteristic \(p \), let

\[
H(\Gamma) := \begin{cases}
H^{\text{ev}}(\Gamma, k) & p \neq 2 \\
H^*(\Gamma, k) & p = 2
\end{cases}
\]

and \(X_{\Gamma} := \text{Spec} \ H(\Gamma) \).

Inclusions \(\iota : E \hookrightarrow \Gamma \) induce continuous maps \(\iota_E : X_E \to X_{\Gamma} \) with the following properties:

- \(\iota_E(X_E) \subset \iota_{E'}(X_{E'}) \) if and only if \(\text{Hom}_{\mathcal{E}(\Gamma)}(E, E') \neq \emptyset \).
- The group \(\text{Hom}_{\mathcal{E}(\Gamma)}(E, E) \) determines precisely when two points \(p, q \in X_E \) satisfy \(\iota_E(p) = \iota_E(q) \).
\[H(\Gamma) := \begin{cases} H^{ev}(\Gamma, k) & p \neq 2 \\ H^*(\Gamma, k) & p = 2 \end{cases} \quad \text{and} \quad X_\Gamma := \text{Spec } H(\Gamma) \]

For \(k \) an algebraically closed field of characteristic \(p \), let

\[X_\Gamma \cong \lim_{E \in \mathcal{E}(\Gamma)} X_E \]

Inclusions \(\iota : E \hookrightarrow \Gamma \) induce continuous maps \(\iota_E : X_E \rightarrow X_\Gamma \) with the following properties:

- \(\iota_E(X_E) \subset \iota_{E'}(X_{E'}) \) if and only if \(\text{Hom}_{\mathcal{E}(\Gamma)}(E, E') \neq \emptyset \).
- The group \(\text{Hom}_{\mathcal{E}(\Gamma)}(E, E) \) determines precisely when two points \(p, q \in X_E \) satisfy \(\iota_E(p) = \iota_E(q) \).
Restricted Lie algebras

Let \((\mathfrak{g}, [-, -], (-)^[p])\) be a restricted Lie algebra over \(k\).

Definition - elementary subalgebra

A subalgebra \(\epsilon \subset \mathfrak{g}\) is called **elementary** if

- \([\epsilon, \epsilon] = 0\) and
- \(\epsilon[p] = 0\).
Let \((\mathfrak{g}, [\cdot, \cdot], (-)^{[p]})\) be a restricted Lie algebra over \(k\).

Definition - elementary subalgebra

A subalgebra \(\mathfrak{e} \subseteq \mathfrak{g}\) is called **elementary** if

- \([\mathfrak{e}, \mathfrak{e}] = 0\) and
- \(\mathfrak{e}^{[p]} = 0\).

Suppose further that \(\mathfrak{g}\) is the Lie algebra of an algebraic group \(G\) over \(k\). For any \(g \in G\), the derivative of the map

\[
\text{Int}_g : G \rightarrow G \\
a \mapsto g^{-1}ag
\]

gives the adjoint action of \(G\) on \(\mathfrak{g}\): \(\text{Ad}_g := d(\text{Int}_g) : \mathfrak{g} \rightarrow \mathfrak{g}\).
Category of elementary subalgebras

Let $\mathcal{E}(g)$ denote the category whose objects are the elementary subalgebras of g and in which a morphism from ϵ to ϵ' is defined to be a composition of Lie algebra homomorphisms of the following form:

- Inclusions: $\epsilon \hookrightarrow \epsilon'$
- Conjugations: $\epsilon \sim \rightarrow \text{Ad}_g(\epsilon)$

Note 1: $\text{Hom}_{\mathcal{E}(g)}(\epsilon, \epsilon') \neq \emptyset$ if and only if $\text{Ad}_g(\epsilon) \subset \epsilon'$ for some $g \in G$.

Note 2: $\text{Hom}_{\mathcal{E}(g)}(\epsilon, \epsilon') \sim = N_G(\epsilon) / C_G(\epsilon)$.
Let $\mathcal{E}(\mathfrak{g})$ denote the category whose objects are the elementary subalgebras of \mathfrak{g} and in which a morphism from ϵ to ϵ' is defined to be a composition of Lie algebra homomorphisms of the following form:

Inclusions: $\epsilon \hookrightarrow \epsilon'$
Conjugations: $\epsilon \xrightarrow{\sim} \text{Ad}_g(\epsilon)$

Note 1: $\text{Hom}_{\mathcal{E}(\mathfrak{g})}(\epsilon, \epsilon') \neq \emptyset$ if and only if $\text{Ad}_g(\epsilon) \subset \epsilon'$ for some $g \in G$.

Note 2: $\text{Hom}_{\mathcal{E}(\mathfrak{g})}(\epsilon, \epsilon) \cong N_G(\epsilon)/C_G(\epsilon)$.
Category of \mathbb{F}_q-expressible subalgebras

Let $q = p^d$ and suppose that G is defined over \mathbb{F}_q, so that $G = G_0 \times \mathbb{F}_q k$ for some algebraic group G_0 over \mathbb{F}_q and $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{F}_q k$ for $\mathfrak{g}_0 := \text{Lie}(G_0)$.

The category of \mathbb{F}_q-expressible subalgebras

Let $\mathcal{E}_q(\mathfrak{g})$ be the subcategory of $\mathcal{E}(\mathfrak{g})$ whose objects are subalgebras of the form $\epsilon = \epsilon_0 \otimes \mathbb{F}_q k$ for elementary $\epsilon_0 \subset \mathfrak{g}_0$. The morphisms in $\mathcal{E}_q(\mathfrak{g})$ are inclusion composed with Ad_g for some $g \in G_0(\mathbb{F}_q)$.
Let $q = p^d$ and suppose that G is defined over \mathbb{F}_q, so that $G = G_0 \times_{\mathbb{F}_q} k$ for some algebraic group G_0 over \mathbb{F}_q and $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{F}_q} k$ for $\mathfrak{g}_0 := \text{Lie}(G_0)$.

The category of \mathbb{F}_q-expressible subalgebras

Let $\mathcal{E}_q(\mathfrak{g})$ be the subcategory of $\mathcal{E}(\mathfrak{g})$ whose objects are subalgebras of the form $\epsilon = \epsilon_0 \otimes_{\mathbb{F}_q} k$ for elementary $\epsilon_0 \subset \mathfrak{g}_0$. The morphisms in $\mathcal{E}_q(\mathfrak{g})$ are inclusion composed with Ad_g for some $g \in G_0(\mathbb{F}_q)$.

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_q. If $p > h(G)$, then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If $p = q$, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.
Define

\[\mathcal{N}(\mathfrak{g}) := \{ x \in \mathfrak{g} \mid x^{[p]t} = 0 \text{ for some } t \in \mathbb{Z}_{\geq 0} \} \]

\[\mathcal{U}(G) := \{ g \in G \mid g^{p^t} = 1 \text{ for some } t \in \mathbb{Z}_{\geq 0} \} \]

to be the nullcone of \(\mathfrak{g} \) and the unipotent variety of \(G \), respectively. Notice that both varieties are equipped with natural \(G \)-actions.

Definition - Springer isomorphism

A Springer isomorphism is a \(G \)-equivariant isomorphism of varieties \(\sigma : \mathcal{N}(\mathfrak{g}) \to \mathcal{U}(G) \).
Define

\[\mathcal{N}(g) := \{ x \in g \mid x^{[p]^t} = 0 \text{ for some } t \in \mathbb{Z}^{\geq 0} \} \]
\[\mathcal{U}(G) := \{ g \in G \mid g^{pt} = 1 \text{ for some } t \in \mathbb{Z}^{\geq 0} \} \]

to be the nullcone of g and the unipotent variety of G, respectively. Notice that both varieties are equipped with natural G-actions.

Definition - Springer isomorphism

A Springer isomorphism is a G-equivariant isomorphism of varieties $\sigma : \mathcal{N}(g) \to \mathcal{U}(G)$.

Theorem (Springer, 1969)

If p is very good for G, then Springer isomorphisms exist.
A canonical Springer isomorphism

Example (Springer isomorphisms are not unique)

Let $G := SL_n$. Then for any $(a_1, \ldots, a_{n-1}) \in k^{n-1}$ with $a_1 \neq 0$ the map

$$\sigma(x) := 1 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

is a Springer isomorphism.
A canonical Springer isomorphism

Example (Springer isomorphisms are not unique)

Let $G := SL_n$. Then for any $(a_1, \ldots, a_{n-1}) \in k^{n-1}$ with $a_1 \neq 0$ the map

$$\sigma(x) := 1 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$$

is a Springer isomorphism.

(McNinch, 2005), (Carlson-Lin-Nakano, 2008), (Sobaje, 2014)

If $p > h(G)$, there is a canonical Springer isomorphism σ, defined over \mathbb{F}_q, which satisfies the following properties (among others):

- $[x, y] = 0$ if and only if $(\sigma(x), \sigma(y)) = 1$
- If $[x, y] = 0$, then $\sigma(x + y) = \sigma(x)\sigma(y)$
Proof of theorem

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_p. If $p > h(G)$, then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If $p = q$, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

Question: Which $E \in G_0(\mathbb{F}_q)$ lie in the image of F?
Proof of theorem

Theorem (W, 2014)

Let \(G \) be a reductive, connected group defined over \(\mathbb{F}_p \). If \(p > h(G) \), then the category \(\mathcal{E}_q(g) \) is isomorphic to a full subcategory of \(\mathcal{E}(G_0(\mathbb{F}_q)) \). If \(p = q \), then \(\mathcal{E}_p(g) \cong \mathcal{E}(G_0(\mathbb{F}_p)) \).

Proof: Define \(\mathcal{F} : \mathcal{E}_q(g) \to \mathcal{E}(G_0(\mathbb{F}_q)) \) by

\[
\mathcal{F}(\epsilon) := \sigma(\epsilon_0)
\]

\[
\mathcal{F}(\text{Ad}_g) := \text{Int}_g
\]
Proof of theorem

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_p. If $p > h(G)$, then the category $\mathcal{E}_q(g)$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If $p = q$, then $\mathcal{E}_p(g) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

Proof: Define $\mathcal{F} : \mathcal{E}_q(g) \to \mathcal{E}(G_0(\mathbb{F}_q))$ by

$$\mathcal{F}(\epsilon) := \sigma(\epsilon_0)$$

$$\mathcal{F}(\text{Ad}_g) := \text{Int}_g$$

Question: Which $E \in G_0(\mathbb{F}_q)$ lie in the image of \mathcal{F}?
For any $\lambda \in k$, $g \in \mathcal{U}(G)$, define $g^\lambda := \sigma(\lambda \sigma^{-1}(g))$.

Definition - \mathbb{F}_q-linear subgroup

An elementary abelian subgroup $E \subset G$ is \mathbb{F}_q-linear if $g^\lambda \in E$ for all $g \in E$, $\lambda \in \mathbb{F}_q$.
\mathbb{F}_q-linear subgroups

For any $\lambda \in k$, $g \in U(G)$, define $g^\lambda := \sigma(\lambda \sigma^{-1}(g))$.

Definition - \mathbb{F}_q-linear subgroup

An elementary abelian subgroup $E \subset G$ is \mathbb{F}_q-linear if $g^\lambda \in E$ for all $g \in E$, $\lambda \in \mathbb{F}_q$.

Proposition (W,2014)

- All $E \subset G$ are \mathbb{F}_p-linear.
- Any $E \subset G$ is contained in a canonical \mathbb{F}_q-linear subgroup.
- The rank of all finite \mathbb{F}_q-linear subgroups is divisible by d.
- The image of F is exactly the set of \mathbb{F}_q-linear elementary abelian subgroups of $G_0(\mathbb{F}_q)$.
A non-example

Example of a subgroup that is not \mathbb{F}_q-linear

Let $G = \text{SL}_3$, let $d = 2$, and let $\lambda \in \mathbb{F}_q \setminus \mathbb{F}_p$. In this case, we have $\sigma(X) = I + X + \frac{1}{2}X^2$. The elementary abelian subgroup of rank 2 defined as follows:

$$E = \langle g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rangle$$

is not \mathbb{F}_q-linear.
Application

Let $\mathbb{E}(r, \mathfrak{g})$ denote the set of all r-dimensional elementary subalgebras of \mathfrak{g}.

Theorem (Carlson-Friedlander-Pevtsova, 2012)

The natural embedding $\mathbb{E}(r, \mathfrak{g}) \hookrightarrow \text{Grass}(r, \mathfrak{g})$ is a closed embedding. If $\mathfrak{g} = \text{Lie}(G)$, then $\mathbb{E}(r, \mathfrak{g})$ is a G-variety under Ad.

Remark: Verifying the theorem for all G would require knowledge of elementary abelian subgroups of the \mathbb{F}_q-rational points of the exceptional groups.
Application

Let $E(r, g)$ denote the set of all r-dimensional elementary subalgebras of g.

Theorem (Carlson-Friedlander-Pevtsova, 2012)

The natural embedding $E(r, g) \hookrightarrow \text{Grass}(r, g)$ is a closed embedding. If $g = \text{Lie}(G)$, then $E(r, g)$ is a G-variety under Ad.

Theorem (W, 2014)

Let $g = \text{Lie}(G)$ for G connected and reductive, let $p > h(G)$, and let $R = R(g)$ be the largest integer such that $E(R, g) \neq \emptyset$. If the simple factors of (G, G) are of classical type, then $E(R, \text{Lie}(G))$ is a union of finitely many G-orbits.

Remark: Verifying the theorem for all G would require knowledge of elementary abelian subgroups of the \mathbb{F}_q-rational points of the exceptional groups.
Questions

- What role does the category $E(g)$ play in restricted Lie algebra cohomology à la Quillen?
- What is the cohomological significance of $R = R(g)$?
- What are the closed subsets of $E(r, g)$? When is $E(r, g)$ irreducible?