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Age

V = Cn, (·, ·) standard Hermitian form
||v || =

√
(v , v)

S1 = {λ ∈ C | |λ| = 1}

Definition 1.1 (M. Reid)

Let g ∈ GU(V ) be conjugate to

diag(e2πir1 , . . . ,e2πirn), 0 ≤ rj < 1.

age(g) =
∑n

j=1 rj .

g is junior if 0 < age(g) ≤ 1.
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Examples of non-scalar junior elements

• Reflections: g ∼ (−1,1, . . . ,1), age = 1/2

• Bireflections: g ∼ (−1,−1,1, . . . ,1), age = 1

• Complex reflections (c.r.):

g ∼ (α,1, . . . ,1), 1 6= α ∈ S1, 0 < age < 1

• Complex bireflections:

g ∼ (α, α−1,1, . . . ,1), 1 6= α ∈ S1, age = 1

• Complex reflection groups (c.r.g.’s): classified by
Shephard-Todd (1954)
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Problem 1.2 (Kollár-Larsen)

Describe finite irreducible subgroups G < GL(V ) which are
generated, up to scalars, by elements of age < 1 (resp. of
age ≤ 1).

In a sense, the description of finite subgroups G < GL(V )
containing a non-scalar element of age < 1 (resp. of age ≤ 1)
reduces to Problem 1.2.
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Crepant resolutions. I

f : X → Y a resolution =⇒ KX = f ∗KY +
∑

i aiEi
(sum over irreducible exceptional divisors)

ai > 0, ∀i =⇒ terminal

ai ≥ 0, ∀i =⇒ canonical

ai = 0, ∀i =⇒ crepant

Criterion 1.3 (Reid-Tai)
Assume G < GL(V ) contains no complex reflections. Then the
singularity V/G is terminal, resp. canonical, if for all 1 6= g ∈ G,
age(g) > 1, resp. age(g) ≥ 1.
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Crepant resolutions. II

Corollary 1.4 (Ito-Reid)

Assume G < GL(V ) is finite and f : X → V/G is a crepant
resolution. Then G contains junior elements.

Crepant resolutions are important in algebraic geometry:

Minimal models in Mori’s program

Mirror symmetry: Crepant resolutions of X/G, X a Calabi-Yau
variety

String theory:
If f : X → Y is a crepant resolution, then the string theories on
X and Y are “the same”
(i.e. same quantum cohomologies: Ruan, Bryan-Graber)
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Quotients of Calabi-Yau varieties

Kollár-Larsen: X a smooth Calabi-Yau variety, G finite

Kodaira dimension of X/G is controlled by whether Stabx(G)
contains g 6= 1 with age < 1 while acting on TxX for x ∈ X .
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Kollár-Larsen conjecture

For simplicity we skip the results for small n.

Theorem 2.1

Let V = Cn with n ≥ 11 and let G < GL(V ) be a finite
irreducible subgroup. Assume that, up to scalars, G is
generated by its elements with age ≤ 1. Then G contains a
complex bireflection of order 2 or 3, and one of the following
statements holds.
(i) Z (G)× An+1 ≤ G ≤ (Z (G)× An+1) · 2.
(ii) G preserves a decomposition V = V1 ⊕ . . .⊕ Vn, with
dim(Vi) = 1 and G inducing either Sn or An while permuting the
n subspaces V1, . . . ,Vn.
(iii) 2|n, and G = D : Sn/2 < GL2(C) o Sn/2, a split extension of
D < GL2(C)n/2 by Sn/2.
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Theorem 2.2

Let V = Cn with n ≥ 9 and let G < GL(V ) be a finite irreducible
subgroup. Assume that, up to scalars, G is generated by its
elements with age < 1. Then G contains a scalar multiple of a
complex reflection, and either (i) or (ii) of Theorem 2.1 holds.

Corollary 2.3

Let n ≥ 11 and let G < GLn(C) be a finite irreducible, primitive,
tensor indecomposable subgroup. Assume that Cn/G is not
terminal (for instance, it has a crepant resolution). Then one of
the following statements holds.
(i) Z (G)× An+1 ≤ G ≤ (Z (G)× An+1) · 2.
(ii) All junior elements of G are central, and |Z (G)| ≥ n.
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Theorem 2.4

Let n > 4 and let G < GLn(C) be a finite irreducible subgroup.
Assume that G contains non-central elements g with age < 1,
and that G = 〈gG〉 for any such g. Then, up to scalars, G is a
complex reflection group, and so known by Shephard-Todd.

Fails for n = 4:
C3 × 2Am < GL4(C) with m = 6,7.
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More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

More about age

age(g) = age(g|U) + age(g|V/U) if U ⊆ V is g-stable
age(diag(g,h)) = age(g) + age(h)

age(gh) ≤ age(g) + age(h) if gh = hg
But: age(g−1) 6= age(g), age(αg) 6= age(g) if α ∈ S1.
Inconvenient to work with age !

R. M. Guralnick and P. H. Tiep Kollár-Larsen Problem and Crepant Resolutions



Introduction
Main Results

Age and Deviation
Main Ingredients of the Proofs

Further Results

Properties of age
L2-deviation

Chen-Ruan inequality

Theorem 3.1 (Chen-Ruan)

age(g) + age(h)− age(gh) ≥ dim CV (gh)− dim CV (g,h).

Proof 1 (Chen-Ruan). Use the existence of a cohomology
theory for orbifolds.

Proof 2 (G-T) (following suggestions of Katz and Tao).
Use interlacing properties of eigenvalues.
Write g as a product of m commuting c.r.’s and induct on m.
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Key remedy

Work with an L2-deviation instead of age !

B the collection of all orthonormal bases of V .

Definition 3.2
For T ∈ GU(V ),

d2(T ) = inf
λ∈S1, B∈B

(∑
v∈B

||T (b)− λb||2
)1/2

.
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Properties of Deviation

d2(αT ) = d2(T ) for α ∈ S1

d2(ATA−1) = d2(T ) for A ∈ GU(V )

d2(T−1) = d2(T )

More importantly, d2(T )2 = 2(dim V − |Tr(T )|)

Hence one can invoke character theory.

d2(T )2 ≤ (2.9)π · age(T ).
9 can be attained.
If age(T ) ≤ 1 then d2(T )2 ≤ 9.111
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Aschbacher’s Theorem: to reduce to the
almost-quasi-simple case

Bounds on character ratios:

Gluck’s bound: |χ(g)/χ(1)| < 19/20

Larsen-Shalev-T: |χ(g)/χ(1)| is small if g has big enough
support.

Classification of low-dimensional representations of
quasi-simple groups

Character-theoretic version of Blichfeldt’s Theorem: lower
bounds for χ(1)− |χ(g)|
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Further applications

• Description of linear groups generated by elements of
bounded deviation:

G < GL(V ), G = 〈g | d2(g) ≤ C〉

• Locally symmetric spaces GU(V )/G with shortest closed
geodesics of bounded length
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