Colored tangle invariants and quantum \mathfrak{sl}_2 categorification

Igor Frenkel
Catharina Stroppel
Joshua Sussan*

January 15, 2010

Categorifications of the Reshetikhin-Turaev invariant

The R-T invariant for $\mathcal{U}_q(\mathfrak{sl}_2)$ assigns a $\mathcal{U}_q(\mathfrak{sl}_2)-$ homomorphism to an oriented, framed tangle whose components are labeled by representations.

- ▶ Using a certain diagram algebra, Khovanov constructed a categorification when the labels of the tangle are V_1 .
- Bernstein-Frenkel-Khovanov outlined a categorification for this invariant using category O.
- Stroppel proved the conjectures of [BFK].
- Cautis-Kamnitzer gave a geometric categorification of this invariant.

- ► For the colored Jones polynomial, Khovanov constructed a categorification using a certain cabling procedure.
- ▶ Frenkel-Khovanov-Stroppel categorified $V_{d_1} \otimes \cdots \otimes V_{d_r}$ using categories of Harish-Chandra bimodules.
- ▶ Goal: Extend the [FKS] construction to a tangle invariant.
- Webster accomplishes this (and more) using a modification of the Khovanov-Lauda-Rouquier algebra.

$\mathcal{U}_q(\mathfrak{sl}_2)$

 $\mathcal{U}_q(\mathfrak{sl}_2)$ is the $\mathbb{C}(q)$ algebra generated by E,F,K,K^{-1} with relations:

- \triangleright $KE = q^2 EK$
- \triangleright $KF = q^{-2}FK$
- $KK^{-1} = 1 = K^{-1}K$
- ► $EF FE = \frac{K K^{-1}}{q q^{-1}}$.

Let V_n be the (n+1)- dimensional irreducible representation with basis $\{v_0,\ldots,v_n\}$ such that

- $\triangleright E v_k = [k+1] v_{k+1}$
- $Fv_k = [n-k+1]v_{k-1}$
- $K^{\pm 1}v_k = q^{\pm(2k-n)}v_k$.

Cup, cap and crossing intertwiners

There is a cap morphism $\cap \colon V_1^{\otimes 2} o \mathbb{C}(q)$ given by

This gives rise to the map $\cap_{i,n} \colon V_1^{\otimes n} \to V_1^{\otimes n-2}$.

There is a cup morphism $\cup\colon \mathbb{C}(q) o V_1^{\otimes 2}$ given by

 $\blacktriangleright \cup (1) = v_1 \otimes v_0 - qv_0 \otimes v_1.$

This gives rise to the map $\cup_{i,n} \colon V_1^{\otimes n} \to V_1^{\otimes n+2}$.

Crossings

There is a crossing map $\Pi\colon V_1^{\otimes 2} o V_1^{\otimes 2}$ given by

$$\Pi = -q^2 \operatorname{Id} - q(\cup \circ \cap).$$

This gives rise to the map $\Pi_{i,n} \colon V_1^{\otimes n} \to V_1^{\otimes n}$.

There is a crossing map $\Omega\colon V_1^{\otimes 2} o V_1^{\otimes 2}$ given by

$$\Omega = -q^{-2}\operatorname{Id} - q^{-1}(\cup \circ \cap).$$

This gives rise to the map $\Omega_{i,n}\colon V_1^{\otimes n} \to V_1^{\otimes n}$.

Reshetikhin-Turaev invariant

Theorem (Reshetikhin-Turaev)

Let T be an oriented tangle from n points to m points. Let D_1 and D_2 be two diagrams of the tangle. Then

$$\phi(D_1), \phi(D_2) \colon V_1^{\otimes n} \to V_1^{\otimes m} \text{ and } q^{3\gamma(D_1)}\phi(D_1) = q^{3\gamma(D_2)}\phi(D_2).$$

Inclusions and projections

Let

$$ightharpoonup \mathbf{d} = (d_1, \ldots, d_n)$$

$$|\mathbf{d}| = d_1 + \cdots + d_n$$

▶
$$I_1(d) = |\{(i, j); 1 \le i < j \le n, d_i > d_j\}|$$

The inclusion map $\iota_n \colon V_n \to V_1^{\otimes n}$ is given by:

$$v_k \mapsto \Sigma_{\mathbf{d},|\mathbf{d}|=k} q^{l_1(\mathbf{d})} v_{d_1} \otimes v_{d_n}.$$

The projection map $\pi_n \colon V_1^{\otimes n} \to V_n$ is given by:

$$v_{d_1} \otimes \cdots \otimes v_{d_n} \mapsto q^{-l_2(\mathbf{d})} \begin{bmatrix} n \\ \mathbf{d} \end{bmatrix}^{-1} v_{|\mathbf{d}|}.$$

Oriented cabling

A map for tangles with colors

Let T be an elementary, oriented, framed tangle from r points to s points such that each strand is labeled by a natural number. This naturally gives the r points colors (d_1, \ldots, d_r) and the s points colors (e_1, \ldots, e_s) . We define a map for a diagram D of T:

$$\phi_{\mathsf{col}}(D) \colon V_{d_1} \otimes \cdots \otimes V_{d_r} \to V_{e_1} \otimes \cdots \otimes V_{e_s}$$

$$\phi_{\mathsf{col}}(D) = (\pi_{\mathsf{e}_1} \otimes \cdots \otimes \pi_{\mathsf{e}_s}) \circ \phi(\mathsf{cab}(D)) \circ (\iota_{d_1} \otimes \cdots \otimes \iota_{d_r})$$

where $\mathsf{cab}(D)$ is an oriented cabling of D and $\phi(\mathsf{cab}(D)) \colon V_1^{\otimes (d_1 + \dots + d_r)} \to V_1^{\otimes (e_1 + \dots + e_s)}$.

Invariant for colored tangles

Theorem (Reshetikhin-Turaev)

Let D_1 and D_2 be two diagrams for an oriented, framed, colored tangle T from r points labeled (d_1, \ldots, d_r) to s points labeled (e_1, \ldots, e_s) . Then

$$q^{3\gamma(\operatorname{\mathsf{cab}}(D_1))}\phi_{\operatorname{\mathsf{col}}}(D_1) = q^{3\gamma(\operatorname{\mathsf{cab}}(D_2))}\phi_{\operatorname{\mathsf{col}}}(D_2).$$

Category \mathcal{O}

Let $\mathfrak{b}\subset\mathfrak{gl}_n$ where $\mathfrak{b}=\mathfrak{h}+\mathfrak{n}^+$ is a sum of diagonal and strictly upper triangular matrices.

Let $\mathcal{O}(\mathfrak{gl}_n)$ be the full subcategory of $\mathcal{U}(\mathfrak{gl}_n)-$ modules with objects which are

- Finitely generated
- ▶ h- diagonalizable
- ► U(b)- locally finite.

Let \mathcal{O}_i denote the block of \mathcal{O} consisting of modules having a generalized central character corresponding to a weight λ_i whose stabilizer under the Weyl group is $S_i \times S_{n-i}$.

There are $\binom{n}{i}$ simple objects in each of these blocks.

An action of the quantum group

 $\mathcal{O}_i \cong \operatorname{mod} - A_i$ (finitely generated) where A_i is the endomorphism algebra of a projective generator. Soergel shows how to equip this algebra with a grading so we may consider the category of finitely generated, graded modules $\mathbb{Z}\mathcal{O}_i(\mathfrak{gl}_n)$.

Proposition

$$\mathbb{C}(q) \otimes_{\mathbb{Z}[q,q^{-1}]} [\oplus_{i=0}^n \mathbb{Z} \mathcal{O}_i(\mathfrak{gl}_n)] \cong V_1^{\otimes n}$$

This follows from the fact that there are $\binom{n}{i}$ simple objects in each category.

Theorem (Bernstein-Frenkel-Khovanov-Stroppel)

There exists functors

- $\blacktriangleright \ \mathcal{E}_i \colon {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n) \to {}^{\mathbb{Z}}\mathcal{O}_{i+1}(\mathfrak{gl}_n)$
- $\blacktriangleright \ \mathcal{F}_i \colon {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n) \to {}^{\mathbb{Z}}\mathcal{O}_{i-1}(\mathfrak{gl}_n)$
- $\blacktriangleright \ \mathcal{K}_i, \mathcal{K}_i^{-1} \colon {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n) \to {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n),$

such that

- $\blacktriangleright \mathcal{K}_{i+1}\mathcal{E}_i \cong \mathcal{E}_i \mathcal{K}_i \langle 2 \rangle$
- $\mathcal{K}_{i-1}\mathcal{F}_i\cong\mathcal{F}_i\mathcal{K}_i\langle -2\rangle$
- $\triangleright \mathcal{K}_i \mathcal{K}_i^{-1} \cong Id \cong \mathcal{K}_i^{-1} \mathcal{K}_i$
- $\mathcal{E}_{i-1}\mathcal{F}_i \oplus \bigoplus_{j=0}^{n-i-1} Id\langle n-2i-1-2j\rangle \cong \mathcal{F}_{i+1}\mathcal{E}_i \oplus \bigoplus_{i=0}^{i-1} Id\langle 2i-n-1-2j\rangle$

Categorification of cups and caps

Theorem (Bernstein-Frenkel-Khovanov-Stroppel)

There exists functors

$$\blacktriangleright \ \widetilde{\cap}_{j,n} \colon D^b(\oplus_i {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n)) \to D^b(\oplus_i {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_{n-2}))$$

$$\blacktriangleright \ \widetilde{\cup}_{j,n} \colon D^b(\oplus_i{}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n)) \to D^b(\oplus_i{}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_{n+2}))$$

such that

- $ightharpoonup [\widetilde{\cap}_{j,n}] = \cap_{j,n}$
- $\blacktriangleright \ [\widetilde{\cup}_{j,n}] = \cup_{j,n}.$

These functors are compositions of inclusion, Zuckerman, induction, and restriction functors.

Twisting functors

Arkhipov introduced a $(\mathcal{U}(\mathfrak{gl}_n),\mathcal{U}(\mathfrak{gl}_n))$ bimodule S_w for every element $w \in S_n$.

Tensoring with this bimodule and twisting by a certain automorphism depending on w is the Arkhipov functor.

Let $T_w : {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n) \to {}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n)$ be the graded version of this functor.

The right adjoint of T_w is the graded Joseph functor J_w . For the simple reflection s_i we denote these functors by T_i and J_i respectively.

Functors for crossings

Proposition (Khomenko-Mazorchuk-Ovsienko-Stroppel)

There are distinguished triangles of functors:

$$LT_i \to Id\langle -2 \rangle \to \widetilde{\cup}_{i,n-2} \circ \widetilde{\cap}_{i,n} \langle -1 \rangle [[1]]$$

$$\blacktriangleright \ \widetilde{\cup}_{i,n-2} \circ \widetilde{\cap}_{i,n} \langle 1 \rangle [[-1]] \to \textit{Id} \langle 2 \rangle \to \textit{RJ}_i.$$

Corollary

- $\blacktriangleright [LT_{i,n}[[1]]] = \Omega_{i,n}$
- ▶ $[RJ_{i,n}[[-1]]] = \Pi_{i,n}$.

Now to any elementary tangle diagram T we may associate a functor $\widetilde{\phi}(T)$.

Categorification of Jones polynomial

Theorem (Stroppel)

Let T be an oriented tangle from n points to m points. Let D_1 and D_2 be two diagrams of T. Let

$$\widetilde{\phi}(D_1), \widetilde{\phi}(D_2) \colon D^b(\oplus_i{}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_n)) \to D^b(\oplus_i{}^{\mathbb{Z}}\mathcal{O}_i(\mathfrak{gl}_m))$$

be the corresponding functors associated to the unoriented tangles. Then

$$\widetilde{\phi}(D_1)\langle 3\gamma(D_1)\rangle \cong \widetilde{\phi}(D_2)\langle 3\gamma(D_2)\rangle.$$

Harish-Chandra bimodules

Let $\mathcal{H}(\mathfrak{gl}_n)$ be the full subcategory of finitely generated, finite length $(\mathcal{U}(\mathfrak{gl}_n),\mathcal{U}(\mathfrak{gl}_n))$ -bimodules which are locally finite with respect to the adjoint action of $\mathcal{U}(\mathfrak{gl}_n)$.

Let $_i^{\mathbb{Z}}\mathcal{H}^1_{\mathbf{d}}(\mathfrak{gl}_n)$ denote the graded version of the full subcategory of modules which with respect to the left action has a generalized central character corresponding to an integral dominant weight λ_i and with respect to the right action has a true central character corresponding to $\lambda_{\mathbf{d}}$ where

- ▶ stabilizer of λ_i is $S_i \times S_{n-i}$
- stabilizer of $\lambda_{\mathbf{d}}$ is $S_{d_1} \times \cdots \times S_{d_r}$.

Categorification of tensor products

Theorem (Frenkel-Khovanov-Stroppel)

- $\blacktriangleright \oplus_{i=0}^n \mathbb{C}(q) \otimes_{\mathbb{Z}[q,q^{-1}]} [\mathbb{I}^{\mathbb{Z}}_{i}\mathcal{H}^1_{\mathbf{d}}(\mathfrak{gl}_n)] \cong V_{d_1} \otimes \cdots \otimes V_{d_r}$
- ▶ There are functors \mathcal{E}_i , \mathcal{F}_i , $\mathcal{K}_i^{\pm 1}$ on this category which satisfy the functorial isomorphisms from earlier.

Bernstein-Gelfand functors

Let $M(\lambda_{\mathbf{d}})$ be the Verma module whose highest weight is $\lambda_{\mathbf{d}}$.

There is a projection functor:

$$_{i}\widetilde{\pi}_{\mathbf{d}}\colon {}^{\mathbb{Z}}\mathcal{O}_{i}(\mathfrak{gl}_{n}) \to {}^{\mathbb{Z}}_{i}\mathcal{H}^{1}_{\mathbf{d}}(\mathfrak{gl}_{n})$$

which is a graded version of the functor defined by:

$$M \mapsto \operatorname{\mathsf{Hom}}_{\mathbb{C}}(M(\lambda_{\mathbf{d}}), M)^{\operatorname{\mathsf{fin}}}.$$

There is an inclusion functor:

$$_{i}\widetilde{\iota}_{\mathbf{d}}: {}_{i}^{\mathbb{Z}}\mathcal{H}_{\mathbf{d}}^{1}(\mathfrak{gl}_{n}) \to {}^{\mathbb{Z}}\mathcal{O}_{i}(\mathfrak{gl}_{n})$$

which is a graded version of the functor defined by:

$$M \mapsto M \otimes_{\mathcal{U}(\mathfrak{gl}_n)} M(\lambda_{\mathbf{d}}).$$

Projectively presented \mathcal{O}

Let ${}^{\mathbb{Z}}\mathcal{O}_{i,\mathbf{d}}(\mathfrak{gl}_n)$ denote the graded version of the full subcategory of $\mathcal{O}_i(\mathfrak{gl}_n)$ of modules M which have projective presentations by projectives indexed by longest double coset representatives in $S_{\mathbf{d}}\backslash S_n/S_i\times S_{n-i}$.

Theorem (Bernstein-Gelfand)

$$_{i}\widetilde{\iota}_{\mathbf{d}}: {}_{i}^{\mathbb{Z}}\mathcal{H}_{\mathbf{d}}^{1}(\mathfrak{gl}_{n}) \to {}^{\mathbb{Z}}\mathcal{O}_{i,\mathbf{d}}(\mathfrak{gl}_{n})$$

is an equivalence of categories with inverse functor $_{i}\widetilde{\pi}_{\mathbf{d}}.$

Frenkel-Khovanov-Stroppel show that on standard objects, these functors categorify inclusion and projection.

Twisting functors on projectively presented $\mathcal O$

Let

▶ **d** =
$$(d_1, ..., d_i, d_{i+1}, ..., d_r)$$

$$ightharpoonup d' = (d_1, \ldots, d_{i+1}, d_i, \ldots, d_r)$$

Let $w_{\mathbf{d},\mathbf{d}'}$ be the element in the symmetric group associated to the cabling of the braid given below.

Proposition

 $LT_{w_{\mathbf{d},\mathbf{d}'}}$ maps a standard object of ${}^{\mathbb{Z}}\mathcal{O}_{i,\mathbf{d}}(\mathfrak{gl}_n)$ to an object of ${}^{\mathbb{Z}}\mathcal{O}_{i,\mathbf{d}'}(\mathfrak{gl}_n)$

Proposition

- ▶ $LT_{\mathsf{W}_{\mathbf{d},\mathbf{d}'}}$ restricts to a functor $D^{<}(\mathbb{Z}\mathcal{O}_{i,\mathbf{d}}(\mathfrak{gl}_n)) \to D^{<}(\mathbb{Z}\mathcal{O}_{i,\mathbf{d}'}(\mathfrak{gl}_n))$
- ▶ $RJ_{w_{\mathbf{d},\mathbf{d}'}}$ restricts to a functor $D^{<}(\mathbb{Z}\mathcal{O}_{i,\mathbf{d}}(\mathfrak{gl}_n)) \to D^{<}(\mathbb{Z}\mathcal{O}_{i,\mathbf{d}'}(\mathfrak{gl}_n))$

Functors for elementary colored tangles

Let D be any elementary colored tangle diagram. We may associate a functor on Harish-Chandra categories, $\widetilde{\phi}_{\text{col}}(D)$, by assigning to it the inclusion B-G functor composed with $\widetilde{\phi}(\text{cab}(D))$ composed with the projection B-G functor.

Theorem

Let T be an oriented, framed, tangle from r points labeled by $\mathbf{d} = (d_1, \ldots, d_r)$ to s points labeled by $\mathbf{e} = (e_1, \ldots, e_s)$. Let D_1 and D_2 be two tangle diagrams for T. Then,

$$\begin{split} \widetilde{\phi}_{col}(D_1) \langle 3\gamma(cab(D_1)) \rangle &\cong \widetilde{\phi}_{col}(D_2) \langle 3\gamma(cab(D_2)) \rangle : \\ \oplus_{i=0}^{|\mathbf{d}|} D^{<}(_i^{\mathbb{Z}}\mathcal{H}^1_{\mathbf{d}}(\mathfrak{gl}_{|\mathbf{d}|})) &\to \oplus_{i=0}^{|\mathbf{e}|} D^{<}(_i^{\mathbb{Z}}\mathcal{H}^1_{\mathbf{e}}(\mathfrak{gl}_{|\mathbf{e}|})). \end{split}$$