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2 V.SERGANOVA

1. Introduction

Definition 1.1. A Z2 graded vector space g with even bracket [•, •] : g ⊗ g → g is a
Lie superalgebra iff the following conditions hold

[a, b] = −(−1)p(a)p(b)[b, a];

[a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[a, [b, c]].
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(

0 B
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⊕

(

A 0
0 D

)

⊕

(

0 0
C 0

)

and the bracket defined by [X,Y ] = XY − (−1)p(X)p(Y )Y X.

Let k be an algebraically closed field of characteristic zero. All simple Lie superalgebras
were classified by V. Kac. He divided them in three types
• Contragredient
(a) classical: (p)sl(m,n), osp(m, 2n);
(b) exceptional: D(2, 1, α), G3 and F4.
• Strange: P (n) and Q(n).
• Cartan type W (n), S(n), S ′(n) and H(n).
In this talk g is a contragredient finite-dimensional almost simple superalgebra, i.e. the

quotient of [g, g] by the center is simple. Our main example is gl(m,n).
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As in classical case g has a root decomposition

g = h⊕
⊕

α∈∆⊂h∗

gα,

where
gα = {x ∈ g|[h, x] = α(h)x}.

For every root α ∈ ∆ we have dim gα = 1. So either gα ⊂ g0 or gα ⊂ g1. Depending on
this we call a root α even or odd. We denote by ∆0 (resp. ∆1) the set of even (resp. odd
roots).
The invariant bilinear symmetric form on g induces the form on (•, •) on h∗ but it is not

positive definite on the root lattice. A root α is isotropic if (α, α) = 0.
By a choice of a generic hyperplane in h∗ one fixes the sets positive and negative roots

∆ = ∆+ ∪∆− and a triangular decomposition

g = n− ⊕ h⊕ n+, where n± =
⊕

gα, for all α ∈ ∆±.
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this we call a root α even or odd. We denote by ∆0 (resp. ∆1) the set of even (resp. odd
roots).
The invariant bilinear symmetric form on g induces the form on (•, •) on h∗ but it is not

positive definite on the root lattice. A root α is isotropic if (α, α) = 0.
By a choice of a generic hyperplane in h∗ one fixes the sets positive and negative roots

∆ = ∆+ ∪∆− and a triangular decomposition

g = n− ⊕ h⊕ n+, where n± =
⊕

gα, for all α ∈ ∆±.

Example 1.3. Let g = gl(m,n). Then h is the subalgebra of diagonal matrices, n±

is the subalgebra of strictly upper (low) triangular matrices, the roots in the standard
basis are

∆1 = {(εi − δj)|i ≤ m, j ≤ n}
∆0 = {(εi − εj)|i, j ≤ m} ∪ {(δi − δj)|i, j ≤ n}.

The invariant form

(εi, δj) = 0, (εi, εj) = δij, (δi, δj) = −δij.
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2. Highest weight theory

Theorem 2.1. (Kac) Let b = h⊕ n+, λ ∈ h∗. A Verma module with highest weight λ

M(λ) = U (g)⊗U(b) Cλ

has a unique simple quotient Lλ. Every finite-dimensional simple g-module is isomor-
phic to Lλ or Π(Lλ) for some λ.
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Let ρ = 1
2

∑
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The defect of g (def(g)) is the maximal number of linearly independent isotropic roots.
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2. Highest weight theory

Theorem 2.1. (Kac) Let b = h⊕ n+, λ ∈ h∗. A Verma module with highest weight λ

M(λ) = U (g)⊗U(b) Cλ

has a unique simple quotient Lλ. Every finite-dimensional simple g-module is isomor-
phic to Lλ or Π(Lλ) for some λ.

Let ρ = 1
2

∑

α∈∆+(−1)p(α)α.

Definition 2.2.The degree of atypicality of λ (at(λ)) is the maximal number of linearly
independent isotropic roots α such that (λ + ρ, α) = 0.
The defect of g (def(g)) is the maximal number of linearly independent isotropic roots.

def(gl(m,n)) = m− n, for m ≥ n.
For a Z2-graded space sdimV = dimV0 − dimV1.

Conjecture 2.3. (Kac Wakimoto). sdimL(λ) 6= 0 if and only if at(λ) =def(g).
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Example 2.4. g = sl(1, 1). The basis

X =

(

0 1
0 0

)

, Y =

(

0 0
1 0

)

, C =

(

1 0
0 1

)

.

Then dim M(λ) = (1, 1), the action is given by

X =

(

0 1
0 0

)

, Y =

(

0 0
c 0

)

, C =

(

c 0
0 c

)

.

For c 6= 0, M(λ) is simple. If c = 0, then at(λ) = 1 and sdim L(λ) = ±1.
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(

0 1
0 0

)

, Y =

(

0 0
1 0

)

, C =

(

1 0
0 1

)

.

Then dim M(λ) = (1, 1), the action is given by

X =

(

0 1
0 0

)

, Y =

(

0 0
c 0

)

, C =

(

c 0
0 c

)

.

For c 6= 0, M(λ) is simple. If c = 0, then at(λ) = 1 and sdim L(λ) = ±1.

Theorem 2.5. (a)(Duflo, S.) If at(λ) <def(g), then sdimL(λ) = 0;
(b) (S.) Kac-Wakimoto conjecture holds for gl(m,n) and osp(m, 2n).

Geometric methods

• Associated variety
• Geometric induction.
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3. center of universal enveloping algebra

Let Z(g) denote the center of universal enveloping algebra. As in classical case we have the
Harish-Chandra homomorphism Z(g) → U (h) = Pol(h∗), which induces a homomorphism

Φ : h → Hom(Z(g), k), Φ(λ) = χλ.

The center Z(g) was described by Kac and Sergeev independently. We need only the
following

Corollary 3.1. If χλ = χµ, then at(λ) =at(µ). Hence at(χ) is well defined.

Let F be the category of all finite-dimensional g-modules semisimple over g0, and Fχ be
the subcategory of modules which admit generalized central character χ. We have a block
decomposition F =

⊕

Fχ.
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Harish-Chandra homomorphism Z(g) → U (h) = Pol(h∗), which induces a homomorphism

Φ : h → Hom(Z(g), k), Φ(λ) = χλ.

The center Z(g) was described by Kac and Sergeev independently. We need only the
following

Corollary 3.1. If χλ = χµ, then at(λ) =at(µ). Hence at(χ) is well defined.

Let F be the category of all finite-dimensional g-modules semisimple over g0, and Fχ be
the subcategory of modules which admit generalized central character χ. We have a block
decomposition F =

⊕

Fχ.

Theorem 3.2. If k =at(χ). Then the block Fχ is equivalent to the block F0 containing
a trivial module for one of the superalgebras gl(k, k), osp(2k+1, 2k), osp(2k, 2k), osp(2k+
2, 2k).
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4. Associated variety

Definition 4.1. Let
X = {x ∈ g1|[x, x] = 0}.

For any g-module M and x ∈ X define

Mx = kerx/imx

and
XM = {x ∈ X|Mx 6= 0)}.

XM is called the associated variety of M .

If M is finite-dimensional, XM is a G0-invariant closed subvariety in X .
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• M is projective if and only if XM = 0
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Definition 4.1. Let
X = {x ∈ g1|[x, x] = 0}.

For any g-module M and x ∈ X define

Mx = kerx/imx

and
XM = {x ∈ X|Mx 6= 0)}.

XM is called the associated variety of M .

If M is finite-dimensional, XM is a G0-invariant closed subvariety in X .
Properties of XM

• sdimM =sdimMx for any x ∈ X
• XM⊕N = XM ∪XN

• XM⊗N = XM ∩XN

• M is projective if and only if XM = 0
For any g satisfying our assumptions X has finitely many G0-orbits. One can introduce

rk: X → N such that rk(x)=rk(y) implies dim G0x = dim G0y, and rk(x) is maximal iff
G0x is open.
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Theorem 4.2. Let M ∈ Fχ and at(χ) <def(g). Then XM 6= X, hence sdim M = 0.
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If g = gl(m,n), then gx = gl(m− k, n− k) and ḡ = gl(k, k) if k =rk(x).
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If g = gl(m,n), then gx = gl(m− k, n− k) and ḡ = gl(k, k) if k =rk(x).
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Theorem 4.4. Fix x ∈ X. If M ∈ Fχ, then Mx is a gx-module with central character
whose degree of atypicality is at(χ)−rk(x).

Corollary 4.5. Let g 6= osp(2m, 2n) with m > n. If at(χ) =def(g) and x belongs to an
open G0-orbit, then there exists a simple finite-dimensional gx-module V such that Mx

is a direct sum of several copies of V and Π(V ) for any M ∈ Fχ. If g = osp(2m, 2n)
with m > n, then gx = o(2m − 2n) and Mx is a direct sum of several copies of V ,
V σ, Π(V ) and Π(V σ), where σ is an involution induced by the symmetry of Dynkin
diagram of o(2m− 2n).
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or a Lie superalgebra with semisimple category of finite-dimensional modules.

Theorem 4.4. Fix x ∈ X. If M ∈ Fχ, then Mx is a gx-module with central character
whose degree of atypicality is at(χ)−rk(x).

Corollary 4.5. Let g 6= osp(2m, 2n) with m > n. If at(χ) =def(g) and x belongs to an
open G0-orbit, then there exists a simple finite-dimensional gx-module V such that Mx

is a direct sum of several copies of V and Π(V ) for any M ∈ Fχ. If g = osp(2m, 2n)
with m > n, then gx = o(2m − 2n) and Mx is a direct sum of several copies of V ,
V σ, Π(V ) and Π(V σ), where σ is an involution induced by the symmetry of Dynkin
diagram of o(2m− 2n).

Corollary 4.6. If M is a simple g-module and XM = X then the degree of atypicality
of M equals def(g).

Conjecture 4.7. If M is simple, then Mx is either a sum of several copies of V or a
sum of several copies of Π(V ).
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5. geometric induction

Geometric induction

Fix a parabolic subalgebra p ⊂ g. We construct a functor Γ from the category of finite-
dimensional p-modules to the category of g-modules by putting Γ(V ) to be the maximal
finite-dimensional quotient of the induced module U (g)⊗U(p) V . It is easy to see that Γ is
not exact and one can define a derived functor Γi.
If L(V ) = G×P V , then

Γi(V ) = H i(G/P,L(V ∗))∗.
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Fix a parabolic subalgebra p ⊂ g. We construct a functor Γ from the category of finite-
dimensional p-modules to the category of g-modules by putting Γ(V ) to be the maximal
finite-dimensional quotient of the induced module U (g)⊗U(p) V . It is easy to see that Γ is
not exact and one can define a derived functor Γi.
If L(V ) = G×P V , then

Γi(V ) = H i(G/P,L(V ∗))∗.

Definition 5.1. V is stable if Γi(V ) = 0 for i > 0.

Theorem 5.2. (Penkov)
∑

(−1)ich(Γi(V )) =
∑

w∈W

(−1)ww(
chV eρ

∏

α∈∆1(g/p)
1 + eα

),

where

D =

∏

α∈∆+
1
eα/2 + e−α/2

∏

α∈∆+
0
eα/2 − e−α/2

.
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Geometric induction

Fix a parabolic subalgebra p ⊂ g. We construct a functor Γ from the category of finite-
dimensional p-modules to the category of g-modules by putting Γ(V ) to be the maximal
finite-dimensional quotient of the induced module U (g)⊗U(p) V . It is easy to see that Γ is
not exact and one can define a derived functor Γi.
If L(V ) = G×P V , then

Γi(V ) = H i(G/P,L(V ∗))∗.

Definition 5.1. V is stable if Γi(V ) = 0 for i > 0.

Theorem 5.2. (Penkov)
∑
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∑

w∈W

(−1)ww(
chV eρ

∏
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),

where

D =

∏
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1
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∏
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0
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.

The proof is based on supergeometry: one can consider a filtration of L(V ) by vector
bundles on the underlying variety G0/P0 and use the usual Borel-Weil-Bott theorem.
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Theorem 5.3. Here g = gl(m,n) or osp(2m + 1, 2n). Let at χ =def(g) and x ∈ X
belong to an open G0-orbit, then F is equivalent to the most atypical block F0 of ḡ,
and Mx = V ⊗ M̄x where M̄ is the image of M under the functor Fχ → F0.

Idea of the proof. Chose p with reductive part gx ⊕ ḡ. Using translation functor
M → (M ⊗ E)η which establish an equivalence between Fχ and Fη several times, make
M stable. Then set M̄ = Mn where n is the nil-radical of p.
A simple observation that sdimV 6= 0 implies the following
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Corollary 5.4. If Kac-Wakimoto conjecture holds for ḡ, it holds for g.
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Theorem 5.3. Here g = gl(m,n) or osp(2m + 1, 2n). Let at χ =def(g) and x ∈ X
belong to an open G0-orbit, then F is equivalent to the most atypical block F0 of ḡ,
and Mx = V ⊗ M̄x where M̄ is the image of M under the functor Fχ → F0.

Idea of the proof. Chose p with reductive part gx ⊕ ḡ. Using translation functor
M → (M ⊗ E)η which establish an equivalence between Fχ and Fη several times, make
M stable. Then set M̄ = Mn where n is the nil-radical of p.
A simple observation that sdimV 6= 0 implies the following

Corollary 5.4. If Kac-Wakimoto conjecture holds for ḡ, it holds for g.

Let ḡ = gl(n, n). Choose now the maximal parabolic subalgebra q with reductive part
gl(1)⊕ gl(n− 1, n).

Lemma 5.5.
∑

(−1)isdimΓi(V ) = 0.
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Assume that at(χ) > 0, then we may assume without loss of generality that a highest
weight λ of L(λ) ∈ Fχ is integral. On the lattice Λ of all integral weights one can introduce
the parity p : Λ → Z2. We assume that the parity of the highest vector in L(λ) equals p(λ).
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the parity p : Λ → Z2. We assume that the parity of the highest vector in L(λ) equals p(λ).

Theorem 5.6. If i > 0, then

Γi(Lq(λ)) =
⊕

(L(ν)),

and p(λ + ν) = p(i + 1) for all ν appearing in the direct sum.
If i = 0, then we have the following exact sequence

0 →
⊕

L(µ) → Γ0(Lq(λ)) → L(λ) → 0,

and p(µ) = p(λ) + 1 for all µ appearing in the left term.
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weight λ of L(λ) ∈ Fχ is integral. On the lattice Λ of all integral weights one can introduce
the parity p : Λ → Z2. We assume that the parity of the highest vector in L(λ) equals p(λ).

Theorem 5.6. If i > 0, then

Γi(Lq(λ)) =
⊕

(L(ν)),

and p(λ + ν) = p(i + 1) for all ν appearing in the direct sum.
If i = 0, then we have the following exact sequence

0 →
⊕

L(µ) → Γ0(Lq(λ)) → L(λ) → 0,

and p(µ) = p(λ) + 1 for all µ appearing in the left term.

Corollary 5.7. There is some linear order on Λ such that

sdimL(λ) =
∑

µ<λ

(−1)p(µ+λ)sdimL(µ).

This implies sdim L(λ) is positive for even λ and negative for odd λ! Hence Kac-Wakimoto
conjecture.
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Now let M be a finite-dimensional g-module and h ∈ h. Write

chM (h) = strM
(

eh
)

.

Obviously, chM is W -invariant analytic function on h. We can write Taylor series for chM
at h = 0

chM (h) =
∞
∑

i=0

pi (h) ,

where pi (h) is a homogeneous polynomial of degree i on h. The order of chM at zero is by
definition the minimal i such that pi 6≡ 0.
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Obviously, chM is W -invariant analytic function on h. We can write Taylor series for chM
at h = 0

chM (h) =
∞
∑

i=0

pi (h) ,

where pi (h) is a homogeneous polynomial of degree i on h. The order of chM at zero is by
definition the minimal i such that pi 6≡ 0.

Theorem 5.8. (Duflo, S.) Assume that all odd roots of g are isotropic. Let M be a
finite-dimensional g-module, s be the codimension of XM in X. The order of chM at
zero is greater or equal than s. Moreover, the polynomial ps (h) in Taylor series for
chM is determined uniquely up to proportionality.
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Now let M be a finite-dimensional g-module and h ∈ h. Write

chM (h) = strM
(

eh
)

.

Obviously, chM is W -invariant analytic function on h. We can write Taylor series for chM
at h = 0

chM (h) =
∞
∑

i=0

pi (h) ,

where pi (h) is a homogeneous polynomial of degree i on h. The order of chM at zero is by
definition the minimal i such that pi 6≡ 0.

Theorem 5.8. (Duflo, S.) Assume that all odd roots of g are isotropic. Let M be a
finite-dimensional g-module, s be the codimension of XM in X. The order of chM at
zero is greater or equal than s. Moreover, the polynomial ps (h) in Taylor series for
chM is determined uniquely up to proportionality.

Remark 5.9. In fact, the above theorem gives a hint how to define the “superdimen-
sion” for a block which is not maximal atypical. One can try to define it as a coefficient
of ps for some suitable normalization of ps. We conjecture that it is possible to find a
normalization so that the superdimension of every simple object is integral and non-
zero.
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Open questions and remarks

• Check the conjecture for exceptional cases (defect is always 1)
• As it follows from the proof sdim is the same for almost all simple objects in a block
• Get a formula for superdimension
• Modules of superdimension zero form an ideal in the tensor category F . Study the

quotient.


