KAC WAKIMOTO CONJECTURE FOR LIE SUPERALGEBRAS

VERA SERGANOVA

AMS meeting, January 16, 2010

V.SERGANOVA

1. INTRODUCTION

Definition 1.1. A \mathbb{Z}_2 graded vector space \mathfrak{g} with even bracket $[\bullet, \bullet] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ is a Lie superalgebra iff the following conditions hold

$$\begin{split} [a,b] &= -(-1)^{p(a)p(b)}[b,a]; \\ [a,[b,c]] &= [[a,b],c] + (-1)^{p(a)p(b)}[a,[b,c]]. \end{split}$$

V.SERGANOVA

1. INTRODUCTION

Definition 1.1. A \mathbb{Z}_2 graded vector space \mathfrak{g} with even bracket $[\bullet, \bullet] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ is a Lie superalgebra iff the following conditions hold

$$[a,b] = -(-1)^{p(a)p(b)}[b,a];$$

$$[a,[b,c]] = [[a,b],c] + (-1)^{p(a)p(b)}[a,[b,c]].$$

Example 1.2. Lie superalgebra $\mathfrak{gl}(m,n)$ is the algebra of matrices of size m + n with \mathbb{Z} -grading

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 = \left(\frac{0 \mid B}{0 \mid 0}\right) \oplus \left(\frac{A \mid 0}{0 \mid D}\right) \oplus \left(\frac{0 \mid 0}{C \mid 0}\right)$$

and the bracket defined by $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

V.SERGANOVA

1. INTRODUCTION

Definition 1.1. A \mathbb{Z}_2 graded vector space \mathfrak{g} with even bracket $[\bullet, \bullet] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ is a Lie superalgebra iff the following conditions hold

$$[a,b] = -(-1)^{p(a)p(b)}[b,a];$$

$$[a,[b,c]] = [[a,b],c] + (-1)^{p(a)p(b)}[a,[b,c]].$$

Example 1.2. Lie superalgebra $\mathfrak{gl}(m,n)$ is the algebra of matrices of size m + n with \mathbb{Z} -grading

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 = \left(\frac{0 \mid B}{0 \mid 0}\right) \oplus \left(\frac{A \mid 0}{0 \mid D}\right) \oplus \left(\frac{0 \mid 0}{C \mid 0}\right)$$

and the bracket defined by $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

Let k be an algebraically closed field of characteristic zero. All simple Lie superalgebras were classified by V. Kac. He divided them in three types

• Contragredient

(a) classical: $(\mathfrak{p})\mathfrak{sl}(m,n), \mathfrak{osp}(m,2n);$

(b) exceptional: $D(2, 1, \alpha)$, G_3 and F_4 .

• Strange: P(n) and Q(n).

• Cartan type W(n), S(n), S'(n) and H(n).

In this talk \mathfrak{g} is a contragredient finite-dimensional almost simple superalgebra, i.e. the quotient of $[\mathfrak{g}, \mathfrak{g}]$ by the center is simple. Our main example is $\mathfrak{gl}(m, n)$.

As in classical case \mathfrak{g} has a root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta \subset \mathfrak{h}^*} \mathfrak{g}_{\alpha},$$

where

$$\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} | [h, x] = \alpha(h)x\}.$$

For every root $\alpha \in \Delta$ we have dim $\mathfrak{g}_{\alpha} = 1$. So either $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{0}$ or $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{1}$. Depending on this we call a root α even or odd. We denote by Δ_{0} (resp. Δ_{1}) the set of even (resp. odd roots).

The invariant bilinear symmetric form on \mathfrak{g} induces the form on (\bullet, \bullet) on \mathfrak{h}^* but it is not positive definite on the root lattice. A root α is isotropic if $(\alpha, \alpha) = 0$.

By a choice of a generic hyperplane in \mathfrak{h}^* one fixes the sets positive and negative roots $\Delta = \Delta^+ \cup \Delta^-$ and a triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
, where $\mathfrak{n}^{\pm} = \bigoplus \mathfrak{g}_{\alpha}$, for all $\alpha \in \Delta^{\pm}$.

As in classical case \mathfrak{g} has a root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta \subset \mathfrak{h}^*} \mathfrak{g}_{\alpha},$$

where

$$\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} | [h, x] = \alpha(h)x\}.$$

For every root $\alpha \in \Delta$ we have dim $\mathfrak{g}_{\alpha} = 1$. So either $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{0}$ or $\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{1}$. Depending on this we call a root α even or odd. We denote by Δ_{0} (resp. Δ_{1}) the set of even (resp. odd roots).

The invariant bilinear symmetric form on \mathfrak{g} induces the form on (\bullet, \bullet) on \mathfrak{h}^* but it is not positive definite on the root lattice. A root α is isotropic if $(\alpha, \alpha) = 0$.

By a choice of a generic hyperplane in \mathfrak{h}^* one fixes the sets positive and negative roots $\Delta = \Delta^+ \cup \Delta^-$ and a triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
, where $\mathfrak{n}^{\pm} = \bigoplus \mathfrak{g}_{\alpha}$, for all $\alpha \in \Delta^{\pm}$.

Example 1.3. Let $\mathfrak{g} = \mathfrak{gl}(m, n)$. Then \mathfrak{h} is the subalgebra of diagonal matrices, \mathfrak{n}^{\pm} is the subalgebra of strictly upper (low) triangular matrices, the roots in the standard basis are

$$\Delta_1 = \{ (\varepsilon_i - \delta_j) | i \le m, j \le n \}$$
$$\Delta_0 = \{ (\varepsilon_i - \varepsilon_j) | i, j \le m \} \cup \{ (\delta_i - \delta_j) | i, j \le n \}.$$

The invariant form

$$(\varepsilon_i, \delta_j) = 0, \ (\varepsilon_i, \varepsilon_j) = \delta_{ij}, \ (\delta_i, \delta_j) = -\delta_{ij}.$$

Theorem 2.1. (Kac) Let $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$, $\lambda \in \mathfrak{h}^*$. A Verma module with highest weight λ $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{\lambda}$

has a unique simple quotient L_{λ} . Every finite-dimensional simple \mathfrak{g} -module is isomorphic to L_{λ} or $\Pi(L_{\lambda})$ for some λ .

Theorem 2.1. (Kac) Let $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$, $\lambda \in \mathfrak{h}^*$. A Verma module with highest weight λ $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{\lambda}$

has a unique simple quotient L_{λ} . Every finite-dimensional simple \mathfrak{g} -module is isomorphic to L_{λ} or $\Pi(L_{\lambda})$ for some λ .

Let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta +} (-1)^{p(\alpha)} \alpha$.

Definition 2.2. The degree of atypicality of λ (at(λ)) is the maximal number of linearly independent isotropic roots α such that ($\lambda + \rho, \alpha$) = 0.

The defect of \mathfrak{g} (def(\mathfrak{g})) is the maximal number of linearly independent isotropic roots.

Theorem 2.1. (Kac) Let $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$, $\lambda \in \mathfrak{h}^*$. A Verma module with highest weight λ $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{\lambda}$

has a unique simple quotient L_{λ} . Every finite-dimensional simple \mathfrak{g} -module is isomorphic to L_{λ} or $\Pi(L_{\lambda})$ for some λ .

Let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta +} (-1)^{p(\alpha)} \alpha$.

Definition 2.2. The degree of atypicality of λ (at(λ)) is the maximal number of linearly independent isotropic roots α such that ($\lambda + \rho, \alpha$) = 0.

The defect of \mathfrak{g} (def(\mathfrak{g})) is the maximal number of linearly independent isotropic roots.

 $def(\mathfrak{gl}(m,n)) = m - n, \text{ for } m \ge n.$ For a \mathbb{Z}_2 -graded space $\operatorname{sdim} V = \operatorname{dim} V_0 - \operatorname{dim} V_1.$

Theorem 2.1. (Kac) Let $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$, $\lambda \in \mathfrak{h}^*$. A Verma module with highest weight λ $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{\lambda}$

has a unique simple quotient L_{λ} . Every finite-dimensional simple \mathfrak{g} -module is isomorphic to L_{λ} or $\Pi(L_{\lambda})$ for some λ .

Let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta +} (-1)^{p(\alpha)} \alpha$.

Definition 2.2. The degree of atypicality of λ (at(λ)) is the maximal number of linearly independent isotropic roots α such that ($\lambda + \rho, \alpha$) = 0.

The defect of \mathfrak{g} (def(\mathfrak{g})) is the maximal number of linearly independent isotropic roots.

 $def(\mathfrak{gl}(m,n)) = m - n$, for $m \ge n$. For a \mathbb{Z}_2 -graded space $sdimV = \dim V_0 - \dim V_1$.

Conjecture 2.3. (*Kac Wakimoto*). $sdimL(\lambda) \neq 0$ if and only if $at(\lambda) = def(\mathfrak{g})$.

Example 2.4. $\mathfrak{g} = \mathfrak{sl}(1,1)$. The basis

$$X = \left(\frac{0|1}{0|0}\right), Y = \left(\frac{0|0}{1|0}\right), C = \left(\frac{1|0}{0|1}\right)$$

Then dim $M(\lambda) = (1, 1)$, the action is given by

$$X = \left(\frac{0 \mid 1}{0 \mid 0}\right), Y = \left(\frac{0 \mid 0}{c \mid 0}\right), C = \left(\frac{c \mid 0}{0 \mid c}\right).$$

For $c \neq 0$, $M(\lambda)$ is simple. If c = 0, then $at(\lambda) = 1$ and $sdim L(\lambda) = \pm 1$.

Example 2.4. $\mathfrak{g} = \mathfrak{sl}(1,1)$. The basis

$$X = \left(\frac{0|1}{0|0}\right), Y = \left(\frac{0|0}{1|0}\right), C = \left(\frac{1|0}{0|1}\right)$$

Then dim $M(\lambda) = (1, 1)$, the action is given by

$$X = \left(\frac{0|1}{0|0}\right), Y = \left(\frac{0|0}{c|0}\right), C = \left(\frac{c|0}{0|c}\right)$$

For $c \neq 0$, $M(\lambda)$ is simple. If c = 0, then $at(\lambda) = 1$ and $sdim L(\lambda) = \pm 1$.

Theorem 2.5. (a)(Duflo, S.) If $at(\lambda) < def(\mathfrak{g})$, then $sdimL(\lambda) = 0$; (b) (S.) Kac-Wakimoto conjecture holds for $\mathfrak{gl}(m,n)$ and $\mathfrak{osp}(m,2n)$.

Geometric methods

- Associated variety
- Geometric induction.

3. CENTER OF UNIVERSAL ENVELOPING ALGEBRA

Let $Z(\mathfrak{g})$ denote the center of universal enveloping algebra. As in classical case we have the Harish-Chandra homomorphism $Z(\mathfrak{g}) \to U(\mathfrak{h}) = \operatorname{Pol}(\mathfrak{h}^*)$, which induces a homomorphism $\Phi: \mathfrak{h} \to \operatorname{Hom}(Z(\mathfrak{g}), k), \ \Phi(\lambda) = \chi_{\lambda}.$

The center $Z(\mathfrak{g})$ was described by Kac and Sergeev independently. We need only the following

Corollary 3.1. If $\chi_{\lambda} = \chi_{\mu}$, then $at(\lambda) = at(\mu)$. Hence $at(\chi)$ is well defined.

Let \mathcal{F} be the category of all finite-dimensional \mathfrak{g} -modules semisimple over \mathfrak{g}_0 , and \mathcal{F}^{χ} be the subcategory of modules which admit generalized central character χ . We have a block decomposition $\mathcal{F} = \bigoplus \mathcal{F}^{\chi}$.

3. CENTER OF UNIVERSAL ENVELOPING ALGEBRA

Let $Z(\mathfrak{g})$ denote the center of universal enveloping algebra. As in classical case we have the Harish-Chandra homomorphism $Z(\mathfrak{g}) \to U(\mathfrak{h}) = \operatorname{Pol}(\mathfrak{h}^*)$, which induces a homomorphism $\Phi: \mathfrak{h} \to \operatorname{Hom}(Z(\mathfrak{g}), k), \ \Phi(\lambda) = \chi_{\lambda}.$

The center $Z(\mathfrak{g})$ was described by Kac and Sergeev independently. We need only the following

Corollary 3.1. If $\chi_{\lambda} = \chi_{\mu}$, then $at(\lambda) = at(\mu)$. Hence $at(\chi)$ is well defined.

Let \mathcal{F} be the category of all finite-dimensional \mathfrak{g} -modules semisimple over \mathfrak{g}_0 , and \mathcal{F}^{χ} be the subcategory of modules which admit generalized central character χ . We have a block decomposition $\mathcal{F} = \bigoplus \mathcal{F}^{\chi}$.

Theorem 3.2. If $k = at(\chi)$. Then the block \mathcal{F}^{χ} is equivalent to the block \mathcal{F}_0 containing a trivial module for one of the superalgebras $\mathfrak{gl}(k, k)$, $\mathfrak{osp}(2k+1, 2k)$, $\mathfrak{osp}(2k, 2k)$, $\mathfrak{osp}(2k+2, 2k)$.

4. Associated variety

Definition 4.1. Let

 $X = \{ x \in \mathfrak{g}_1 | [x, x] = 0 \}.$

For any \mathfrak{g} -module M and $x \in X$ define

$$M_x = \mathbf{ker} x / \mathbf{im} x$$

and

$$X_M = \{x \in X | M_x \neq 0\}\}$$

 X_M is called the associated variety of M.

If M is finite-dimensional, X_M is a G_0 -invariant closed subvariety in X.

4. Associated variety

Definition 4.1. Let

 $X = \{ x \in \mathfrak{g}_1 | [x, x] = 0 \}.$

For any \mathfrak{g} -module M and $x \in X$ define

$$M_x = \mathbf{ker} x / \mathbf{im} x$$

and

$$X_M = \{x \in X | M_x \neq 0\}\}$$

 X_M is called the associated variety of M.

If M is finite-dimensional, X_M is a G_0 -invariant closed subvariety in X. **Properties of** X_M

- $\operatorname{sdim} M = \operatorname{sdim} M_x$ for any $x \in X$
- $X_{M\oplus N} = X_M \cup X_N$
- $X_{M\otimes N} = X_M \cap X_N$
- M is projective if and only if $X_M = 0$

4. Associated variety

Definition 4.1. Let

 $X = \{ x \in \mathfrak{g}_1 | [x, x] = 0 \}.$

For any \mathfrak{g} -module M and $x \in X$ define

$$M_x = \mathbf{ker} x / \mathbf{im} x$$

and

$$X_M = \{ x \in X | M_x \neq 0 \}$$

 X_M is called the associated variety of M.

If M is finite-dimensional, X_M is a G_0 -invariant closed subvariety in X. **Properties of** X_M

- $\operatorname{sdim} M = \operatorname{sdim} M_x$ for any $x \in X$
- $X_{M\oplus N} = X_M \cup X_N$
- $X_{M\otimes N} = X_M \cap X_N$
- M is projective if and only if $X_M = 0$

For any \mathfrak{g} satisfying our assumptions X has finitely many G_0 -orbits. One can introduce rk: $X \to \mathbb{N}$ such that $\operatorname{rk}(x) = \operatorname{rk}(y)$ implies dim $G_0 x = \dim G_0 y$, and $\operatorname{rk}(x)$ is maximal iff $G_0 x$ is open.

8

$$\mathfrak{g}_x = C_{\mathfrak{g}}(x)/[x,\mathfrak{g}], \overline{\mathfrak{g}} = C_{\mathfrak{g}}(\mathfrak{g}_x).$$

If $\mathfrak{g} = \mathfrak{gl}(m,n)$, then $\mathfrak{g}_x = \mathfrak{gl}(m-k,n-k)$ and $\overline{\mathfrak{g}} = \mathfrak{gl}(k,k)$ if $k = \operatorname{rk}(x).$

$$\mathfrak{g}_x = C_\mathfrak{g}(x)/[x,\mathfrak{g}], \overline{\mathfrak{g}} = C_\mathfrak{g}(\mathfrak{g}_x).$$

If $\mathfrak{g} = \mathfrak{gl}(m,n)$, then $\mathfrak{g}_x = \mathfrak{gl}(m-k,n-k)$ and $\overline{\mathfrak{g}} = \mathfrak{gl}(k,k)$ if $k = \operatorname{rk}(x)$.

Remark 4.3. If rk(x) is maximal, then $rk(x) = def(\mathfrak{g})$, and \mathfrak{g}_x is a reductive Lie algebra or a Lie superalgebra with semisimple category of finite-dimensional modules.

$$\mathfrak{g}_x = C_{\mathfrak{g}}(x)/[x,\mathfrak{g}], \overline{\mathfrak{g}} = C_{\mathfrak{g}}(\mathfrak{g}_x).$$

If $\mathfrak{g} = \mathfrak{gl}(m,n)$, then $\mathfrak{g}_x = \mathfrak{gl}(m-k,n-k)$ and $\overline{\mathfrak{g}} = \mathfrak{gl}(k,k)$ if $k = \operatorname{rk}(x).$

Remark 4.3. If rk(x) is maximal, then $rk(x) = def(\mathfrak{g})$, and \mathfrak{g}_x is a reductive Lie algebra or a Lie superalgebra with semisimple category of finite-dimensional modules.

Theorem 4.4. Fix $x \in X$. If $M \in \mathcal{F}^{\chi}$, then M_x is a \mathfrak{g}_x -module with central character whose degree of atypicality is $at(\chi) - rk(x)$.

$$\mathfrak{g}_x = C_{\mathfrak{g}}(x)/[x,\mathfrak{g}], \overline{\mathfrak{g}} = C_{\mathfrak{g}}(\mathfrak{g}_x).$$
$$= \mathfrak{gl}(m,n), \text{ then } \mathfrak{g}_x = \mathfrak{gl}(m-k,n-k) \text{ and } \overline{\mathfrak{g}} = \mathfrak{gl}(k,k) \text{ if } k = \operatorname{rk}(x)$$

Remark 4.3. If rk(x) is maximal, then $rk(x) = def(\mathfrak{g})$, and \mathfrak{g}_x is a reductive Lie algebra or a Lie superalgebra with semisimple category of finite-dimensional modules.

Theorem 4.4. Fix $x \in X$. If $M \in \mathcal{F}^{\chi}$, then M_x is a \mathfrak{g}_x -module with central character whose degree of atypicality is $at(\chi) - rk(x)$.

Corollary 4.5. Let $\mathfrak{g} \neq \mathfrak{osp}(2m, 2n)$ with m > n. If $at(\chi) = def(\mathfrak{g})$ and x belongs to an open G_0 -orbit, then there exists a simple finite-dimensional \mathfrak{g}_x -module V such that M_x is a direct sum of several copies of V and $\Pi(V)$ for any $M \in \mathcal{F}^{\chi}$. If $\mathfrak{g} = \mathfrak{osp}(2m, 2n)$ with m > n, then $\mathfrak{g}_x = o(2m - 2n)$ and M_x is a direct sum of several copies of V, V^{σ} , $\Pi(V)$ and $\Pi(V^{\sigma})$, where σ is an involution induced by the symmetry of Dynkin diagram of o(2m - 2n).

If \mathfrak{g}

$$\mathfrak{g}_x = C_{\mathfrak{g}}(x)/[x,\mathfrak{g}], \overline{\mathfrak{g}} = C_{\mathfrak{g}}(\mathfrak{g}_x).$$

If $\mathfrak{g} = \mathfrak{gl}(m,n)$, then $\mathfrak{g}_x = \mathfrak{gl}(m-k,n-k)$ and $\overline{\mathfrak{g}} = \mathfrak{gl}(k,k)$ if $k = \operatorname{rk}(x).$

Remark 4.3. If rk(x) is maximal, then $rk(x) = def(\mathfrak{g})$, and \mathfrak{g}_x is a reductive Lie algebra or a Lie superalgebra with semisimple category of finite-dimensional modules.

Theorem 4.4. Fix $x \in X$. If $M \in \mathcal{F}^{\chi}$, then M_x is a \mathfrak{g}_x -module with central character whose degree of atypicality is $at(\chi) - rk(x)$.

Corollary 4.5. Let $\mathfrak{g} \neq \mathfrak{osp}(2m, 2n)$ with m > n. If $at(\chi) = def(\mathfrak{g})$ and x belongs to an open G_0 -orbit, then there exists a simple finite-dimensional \mathfrak{g}_x -module V such that M_x is a direct sum of several copies of V and $\Pi(V)$ for any $M \in \mathcal{F}^{\chi}$. If $\mathfrak{g} = \mathfrak{osp}(2m, 2n)$ with m > n, then $\mathfrak{g}_x = o(2m - 2n)$ and M_x is a direct sum of several copies of V, V^{σ} , $\Pi(V)$ and $\Pi(V^{\sigma})$, where σ is an involution induced by the symmetry of Dynkin diagram of o(2m - 2n).

Corollary 4.6. If M is a simple \mathfrak{g} -module and $X_M = X$ then the degree of atypicality of M equals $def(\mathfrak{g})$.

Conjecture 4.7. If M is simple, then M_x is either a sum of several copies of V or a sum of several copies of $\Pi(V)$.

Geometric induction

Fix a parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$. We construct a functor Γ from the category of finitedimensional \mathfrak{p} -modules to the category of \mathfrak{g} -modules by putting $\Gamma(V)$ to be the maximal finite-dimensional quotient of the induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$. It is easy to see that Γ is not exact and one can define a derived functor Γ_i .

If $\mathcal{L}(V) = G \times_P V$, then

 $\Gamma_i(V) = H^i(G/P, \mathcal{L}(V^*))^*.$

Geometric induction

Fix a parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$. We construct a functor Γ from the category of finitedimensional \mathfrak{p} -modules to the category of \mathfrak{g} -modules by putting $\Gamma(V)$ to be the maximal finite-dimensional quotient of the induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$. It is easy to see that Γ is not exact and one can define a derived functor Γ_i .

If $\mathcal{L}(V) = G \times_P V$, then

 $\Gamma_i(V) = H^i(G/P, \mathcal{L}(V^*))^*.$

Definition 5.1. V is stable if $\Gamma_i(V) = 0$ for i > 0.

Geometric induction

Fix a parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$. We construct a functor Γ from the category of finitedimensional \mathfrak{p} -modules to the category of \mathfrak{g} -modules by putting $\Gamma(V)$ to be the maximal finite-dimensional quotient of the induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$. It is easy to see that Γ is not exact and one can define a derived functor Γ_i .

If $\mathcal{L}(V) = G \times_P V$, then

 $\Gamma_i(V) = H^i(G/P, \mathcal{L}(V^*))^*.$

Definition 5.1. V is stable if $\Gamma_i(V) = 0$ for i > 0.

Theorem 5.2. (Penkov)

$$\sum_{w \in W} (-1)^i ch(\Gamma_i(V)) = \sum_{w \in W} (-1)^w w(\frac{chVe^{\rho}}{\prod_{\alpha \in \Delta_1(\mathfrak{g}/\mathfrak{p})} 1 + e^{\alpha}}),$$

where

$$D = \frac{\prod_{\alpha \in \Delta_1^+} e^{\alpha/2} + e^{-\alpha/2}}{\prod_{\alpha \in \Delta_0^+} e^{\alpha/2} - e^{-\alpha/2}}.$$

Geometric induction

Fix a parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$. We construct a functor Γ from the category of finitedimensional \mathfrak{p} -modules to the category of \mathfrak{g} -modules by putting $\Gamma(V)$ to be the maximal finite-dimensional quotient of the induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$. It is easy to see that Γ is not exact and one can define a derived functor Γ_i .

If $\mathcal{L}(V) = G \times_P V$, then

 $\Gamma_i(V) = H^i(G/P, \mathcal{L}(V^*))^*.$

Definition 5.1. V is stable if $\Gamma_i(V) = 0$ for i > 0.

Theorem 5.2. (Penkov)

$$\sum_{w \in W} (-1)^i ch(\Gamma_i(V)) = \sum_{w \in W} (-1)^w w(\frac{chVe^{\rho}}{\prod_{\alpha \in \Delta_1(\mathfrak{g}/\mathfrak{p})} 1 + e^{\alpha}}),$$

where

$$D = \frac{\prod_{\alpha \in \Delta_1^+} e^{\alpha/2} + e^{-\alpha/2}}{\prod_{\alpha \in \Delta_0^+} e^{\alpha/2} - e^{-\alpha/2}}.$$

The proof is based on supergeometry: one can consider a filtration of $\mathcal{L}(V)$ by vector bundles on the underlying variety G_0/P_0 and use the usual Borel-Weil-Bott theorem.

Theorem 5.3. Here $\mathfrak{g} = \mathfrak{gl}(m,n)$ or $\mathfrak{osp}(2m+1,2n)$. Let at $\chi = def(\mathfrak{g})$ and $x \in X$ belong to an open G_0 -orbit, then \mathcal{F} is equivalent to the most atypical block \mathcal{F}_0 of $\overline{\mathfrak{g}}$, and $M_x = V \otimes \overline{M}_x$ where \overline{M} is the image of M under the functor $\mathcal{F}^{\chi} \to \mathcal{F}_0$.

Idea of the proof. Chose \mathfrak{p} with reductive part $\mathfrak{g}_x \oplus \overline{\mathfrak{g}}$. Using translation functor $M \to (M \otimes E)^{\eta}$ which establish an equivalence between \mathcal{F}^{χ} and \mathcal{F}^{η} several times, make M stable. Then set $\overline{M} = M^{\mathfrak{n}}$ where \mathfrak{n} is the nil-radical of \mathfrak{p} .

A simple observation that $\operatorname{sdim} V \neq 0$ implies the following

Theorem 5.3. Here $\mathfrak{g} = \mathfrak{gl}(m,n)$ or $\mathfrak{osp}(2m+1,2n)$. Let at $\chi = def(\mathfrak{g})$ and $x \in X$ belong to an open G_0 -orbit, then \mathcal{F} is equivalent to the most atypical block \mathcal{F}_0 of $\overline{\mathfrak{g}}$, and $M_x = V \otimes \overline{M}_x$ where \overline{M} is the image of M under the functor $\mathcal{F}^{\chi} \to \mathcal{F}_0$.

Idea of the proof. Chose \mathfrak{p} with reductive part $\mathfrak{g}_x \oplus \overline{\mathfrak{g}}$. Using translation functor $M \to (M \otimes E)^{\eta}$ which establish an equivalence between \mathcal{F}^{χ} and \mathcal{F}^{η} several times, make M stable. Then set $\overline{M} = M^{\mathfrak{n}}$ where \mathfrak{n} is the nil-radical of \mathfrak{p} .

A simple observation that $\operatorname{sdim} V \neq 0$ implies the following

Corollary 5.4. If Kac-Wakimoto conjecture holds for $\overline{\mathfrak{g}}$, it holds for \mathfrak{g} .

Theorem 5.3. Here $\mathfrak{g} = \mathfrak{gl}(m,n)$ or $\mathfrak{osp}(2m+1,2n)$. Let at $\chi = def(\mathfrak{g})$ and $x \in X$ belong to an open G_0 -orbit, then \mathcal{F} is equivalent to the most atypical block \mathcal{F}_0 of $\overline{\mathfrak{g}}$, and $M_x = V \otimes \overline{M}_x$ where \overline{M} is the image of M under the functor $\mathcal{F}^{\chi} \to \mathcal{F}_0$.

Idea of the proof. Chose \mathfrak{p} with reductive part $\mathfrak{g}_x \oplus \overline{\mathfrak{g}}$. Using translation functor $M \to (M \otimes E)^{\eta}$ which establish an equivalence between \mathcal{F}^{χ} and \mathcal{F}^{η} several times, make M stable. Then set $\overline{M} = M^{\mathfrak{n}}$ where \mathfrak{n} is the nil-radical of \mathfrak{p} . A simple observation that sdim $V \neq 0$ implies the following

Corollary 5.4. If Kac-Wakimoto conjecture holds for $\overline{\mathfrak{g}}$, it holds for \mathfrak{g} .

Let $\bar{\mathfrak{g}} = \mathfrak{gl}(n,n)$. Choose now the maximal parabolic subalgebra \mathfrak{q} with reductive part $\mathfrak{gl}(1) \oplus \mathfrak{gl}(n-1,n)$.

Lemma 5.5.

 $\sum (-1)^i sdim\Gamma_i(V) = 0.$

Assume that $\operatorname{at}(\chi) > 0$, then we may assume without loss of generality that a highest weight λ of $L(\lambda) \in \mathcal{F}^{\chi}$ is integral. On the lattice Λ of all integral weights one can introduce the parity $p : \Lambda \to \mathbb{Z}_2$. We assume that the parity of the highest vector in $L(\lambda)$ equals $p(\lambda)$.

Assume that $\operatorname{at}(\chi) > 0$, then we may assume without loss of generality that a highest weight λ of $L(\lambda) \in \mathcal{F}^{\chi}$ is integral. On the lattice Λ of all integral weights one can introduce the parity $p : \Lambda \to \mathbb{Z}_2$. We assume that the parity of the highest vector in $L(\lambda)$ equals $p(\lambda)$.

Theorem 5.6. *If* i > 0*, then*

$$\Gamma_i(L_{\mathfrak{q}}(\lambda)) = \bigoplus (L(\nu)),$$

and $p(\lambda + \nu) = p(i+1)$ for all ν appearing in the direct sum. If i = 0, then we have the following exact sequence $0 \rightarrow \bigoplus L(\mu) \rightarrow \Gamma_0(L_q(\lambda)) \rightarrow L(\lambda) \rightarrow 0$,

and $p(\mu) = p(\lambda) + 1$ for all μ appearing in the left term.

Assume that $\operatorname{at}(\chi) > 0$, then we may assume without loss of generality that a highest weight λ of $L(\lambda) \in \mathcal{F}^{\chi}$ is integral. On the lattice Λ of all integral weights one can introduce the parity $p : \Lambda \to \mathbb{Z}_2$. We assume that the parity of the highest vector in $L(\lambda)$ equals $p(\lambda)$.

Theorem 5.6. *If* i > 0*, then*

$$\Gamma_i(L_{\mathfrak{q}}(\lambda)) = \bigoplus (L(\nu)),$$

and $p(\lambda + \nu) = p(i + 1)$ for all ν appearing in the direct sum. If i = 0, then we have the following exact sequence $0 \rightarrow \bigoplus L(\mu) \rightarrow \Gamma_0(L_q(\lambda)) \rightarrow L(\lambda) \rightarrow 0$,

and $p(\mu) = p(\lambda) + 1$ for all μ appearing in the left term.

Corollary 5.7. There is some linear order on
$$\Lambda$$
 such that
 $sdimL(\lambda) = \sum_{\mu < \lambda} (-1)^{p(\mu+\lambda)} sdimL(\mu)$

This implies sdim $L(\lambda)$ is positive for even λ and negative for odd λ ! Hence Kac-Wakimoto conjecture.

Now let M be a finite-dimensional \mathfrak{g} -module and $h \in \mathfrak{h}$. Write

$$\operatorname{ch}_{M}(h) = \operatorname{str}_{M}(e^{h}).$$

Obviously, ch_M is W-invariant analytic function on \mathfrak{h} . We can write Taylor series for ch_M at h = 0

$$\operatorname{ch}_{M}\left(h\right) = \sum_{i=0}^{\infty} p_{i}\left(h\right),$$

where $p_i(h)$ is a homogeneous polynomial of degree i on \mathfrak{h} . The order of ch_M at zero is by definition the minimal i such that $p_i \neq 0$.

Now let M be a finite-dimensional \mathfrak{g} -module and $h \in \mathfrak{h}$. Write

$$\operatorname{ch}_{M}(h) = \operatorname{str}_{M}(e^{h}).$$

Obviously, ch_M is W-invariant analytic function on \mathfrak{h} . We can write Taylor series for ch_M at h = 0

$$\operatorname{ch}_{M}\left(h\right)=\sum_{i=0}^{\infty}p_{i}\left(h\right),$$

where $p_i(h)$ is a homogeneous polynomial of degree i on \mathfrak{h} . The order of ch_M at zero is by definition the minimal i such that $p_i \neq 0$.

Theorem 5.8. (Duflo, S.) Assume that all odd roots of \mathfrak{g} are isotropic. Let M be a finite-dimensional \mathfrak{g} -module, s be the codimension of X_M in X. The order of ch_M at zero is greater or equal than s. Moreover, the polynomial $p_s(h)$ in Taylor series for ch_M is determined uniquely up to proportionality.

Now let M be a finite-dimensional \mathfrak{g} -module and $h \in \mathfrak{h}$. Write

$$\operatorname{ch}_{M}(h) = \operatorname{str}_{M}(e^{h}).$$

Obviously, ch_M is W-invariant analytic function on \mathfrak{h} . We can write Taylor series for ch_M at h = 0

$$\operatorname{ch}_{M}(h) = \sum_{i=0}^{\infty} p_{i}(h) ,$$

where $p_i(h)$ is a homogeneous polynomial of degree i on \mathfrak{h} . The order of ch_M at zero is by definition the minimal i such that $p_i \neq 0$.

Theorem 5.8. (Duflo, S.) Assume that all odd roots of \mathfrak{g} are isotropic. Let M be a finite-dimensional \mathfrak{g} -module, s be the codimension of X_M in X. The order of ch_M at zero is greater or equal than s. Moreover, the polynomial $p_s(h)$ in Taylor series for ch_M is determined uniquely up to proportionality.

Remark 5.9. In fact, the above theorem gives a hint how to define the "superdimension" for a block which is not maximal atypical. One can try to define it as a coefficient of p_s for some suitable normalization of p_s . We conjecture that it is possible to find a normalization so that the superdimension of every simple object is integral and nonzero.

Open questions and remarks

- Check the conjecture for exceptional cases (defect is always 1)
- As it follows from the proof sdim is the same for almost all simple objects in a block
- \bullet Get a formula for superdimension
- \bullet Modules of superdimension zero form an ideal in the tensor category $\mathcal{F}.$ Study the quotient.