AMS Meeting

San Francisco, January 2010

Special Session on Categorical and Algebraic Methods in Representation Theory

Blocks in Deligne's category $\operatorname{Rep}(S_t)$

Victor Ostrik

(joint work with Jonathan Comes)

arxiv:0910.5695

F – field of characteristic zero

 S_N – symmetric group

 $V = \langle e_1, \dots, e_N \rangle_F \in \operatorname{Rep}_F(S_N)$ -standard N-dimensional representation

Reminder: Any irreducible representation of S_N appears in $V^{\otimes a}$ for some a.

Partition of a finite set $\Omega = \Box \pi_i$

Example: $\{1, 2, 3, 4, 5\} = \{1, 3, 4\} \sqcup \{2, 5\}$ **Observation:** For large N, $\operatorname{Hom}_{S_N}(F, V^{\otimes a})$ has a basis labeled by partitions of [1, ..., a]

Example: $\sum_{i,j} e_i \otimes e_j \otimes e_i \otimes e_i \otimes e_j$

Corollary: For large N, $\operatorname{Hom}_{S_N}(V^{\otimes a}, V^{\otimes b})$ has a basis $\{t_{\pi}^{(N)}\}$ labeled by partitions π of [1, ..., a + b]

Computation: For $t_{\pi}^{(N)} \in \operatorname{Hom}_{S_N}(V^{\otimes a}, V^{\otimes b})$ and $t_{\nu}^{(N)} \in \operatorname{Hom}_{S_N}(V^{\otimes b}, V^{\otimes c})$, we have

$$t_{\nu}^{(N)} \circ t_{\pi}^{(N)} = N^{l(\pi,\nu)} t_{\mu(\pi,\nu)}^{(N)}$$

The category $\underline{\operatorname{Rep}}_0(S_t)$: Pick $t \in F$ **Objects:** [I] where I is a finite sets **Morphisms:** Hom([I], [J]) = F-vector space with basis $\{t_{\pi}\}$ labeled by partitions π of $I \sqcup J$.

Composition of morphisms: same as above

$$t_{\nu} \circ t_{\pi} = t^{l(\pi,\nu)} t_{\mu(\pi,\nu)}$$

Example: End([I]) - partition algebrasstudied by P. Martin, W. Doran, D. Wales, T. Halverson, A. Ram et al

Additional structures on $\underline{\operatorname{Rep}}_0(S_t)$: Define $[I] \otimes [J] := [I \sqcup J]$ Then $\underline{\operatorname{Rep}}_0(S_t)$ has a natural structure of symmetric rigid tensor category

The category $\operatorname{Rep}(S_t)$:

 $\underbrace{\operatorname{Rep}(S_t) := Karo\overline{ubian} \text{ (or } pseudo-abelian)}_{envelope \text{ of } \operatorname{Rep}_0(S_t)}$

Karoubian envelope:

Stage 1: add formal direct sums $[I] \oplus [J]$ Stage 2: add new objects (A, e) where Ais an object and $e = e^2 \in \text{Hom}(A, A)$

 $\operatorname{Hom}((A,e),(B,f)) := e\operatorname{Hom}(A,B)f$ with obvious composition

The category $\underline{\operatorname{Rep}}(S_t)$ is still symmetric rigid tensor category:

 $(A,e)\otimes (B,f)=(A\otimes B,e\otimes f)$

The category $\underline{\operatorname{Rep}}(S_t)$ is Karoubian Krull-Schmidt Theorem holds in $\operatorname{Rep}(S_t)$

Questions:

- (1) What are indecomposable objects?
- (2) What are blocks?
- (3) What is a structure of blocks?

Indecomposable objects of $\operatorname{Rep}(S_t)$:

Let \bullet denote a one element set Symmetric group S_I acts on [I] since $[I] = [\bullet] \otimes \ldots \otimes [\bullet]$

Let Y be a Young diagram of size |I| E_Y – irreducible representation of S_I $[I]_Y := ([I] \otimes E_Y)^{S_I} - E_Y$ —isotypic component of [I]

Theorem. (J. Comes, V. O.)

(a) There is exactly one indecomposable object T_Y which is a direct summand of $[I]_Y$ and which is not a direct summand of [J]with |J| < |I|.

(b) The objects T_Y are pairwise non-isomorphic and exhaust all indecomposable objects of $\operatorname{Rep}(S_t)$.

Blocks:

 \mathcal{A} – (nice) additive category

 $\operatorname{Ind}(\mathcal{A})$ – set of isomorphism classes of indecomposable objects

 $A, B \in \text{Ind}(\mathcal{A}) \text{ are } linked \text{ if }$

 $\operatorname{Hom}(A,B)\neq 0$

Generate weakest equivalence relation on $\operatorname{Ind}(\mathcal{A})$ such that linked objects are equivalent

Equivalence classes are called *blocks*

Y – Young diagram represented as

 $\lambda_1 \ge \lambda_2 \ge \dots$ $t_Y := t - |Y|, \lambda_1 - 1, \lambda_2 - 2, \dots$

Theorem. (J. Comes, V. O.) T_Y is in the same block as T_Z if and only if t_Y is a permutation of t_Z .

Structure of blocks:

Infinitely many blocks of size 1 Finitely many blocks of infinite size

Theorem. (J. Comes, V. O.)

(a) All blocks of size 1 are semisimple (i.e. $\operatorname{End}(T) = F$)

(b) Infinite blocks appear only for $t \in \mathbb{Z}_{\geq 0}$. All infinite blocks are equivalent to each other as additive categories

Moreover a quiver of the infinite block is explicitly computed

Corollary. (P. Deligne)

 $\underline{\operatorname{Rep}}(S_t)$ is semisimple if and only if $t \notin \mathbb{Z}_{\geq 0}$.

In particular for $t \notin \mathbb{Z}_{\geq 0}$, the category $\operatorname{Rep}(S_t)$ is *abelian*

Specializations:

Question: What are *abelian* tensor categories \mathcal{A} and tensor functors $\underline{\operatorname{Rep}}(S_t) \to \mathcal{A}$?

Example: Assume $t = d \in \mathbb{Z}_{\geq 0}$ $\underline{\operatorname{Rep}}(S_d) \to \operatorname{Rep}(S_d), \ [\bullet] \mapsto V; \text{ surjective}$ (but not injective) on Hom's

Deligne's construction:

abelian tensor category $\underline{\operatorname{Rep}}^{ab}(S_d)$ and fully faithful functor

 $\underline{\operatorname{Rep}}(S_d) \to \underline{\operatorname{Rep}}^{ab}(S_d)$

Theorem. (J. Comes, V.O., conjectured by P. Deligne)

Let \mathcal{A} be an abelian tensor category and let $F : \underline{\operatorname{Rep}}(S_d) \to \mathcal{A}$ be a tensor functor. Then F factors through either

$$\underline{\operatorname{Rep}}(S_d) \to \operatorname{Rep}(S_d)$$

or

$$\underline{\operatorname{Rep}}(S_d) \to \underline{\operatorname{Rep}}^{ab}(S_d).$$