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Why categorify quantum groups?

Quantum Group

representation
category

///o/o/o/o/o/o/o Braided monoidal
category with duals

Categorified
Quantum Group

representation
2-category

///o/o/o/o/o/o/o Braided monoidal
2-category with duals

Crane-Frenkel conjectured categorified quantum groups would give
4-dimensional TQFTs
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U+
q ⊂ Uq(g)

g = sln Ei = ei ,i+1 =











0 0 . . . 0
0 0 1 0
...

. . .
0 . . . 0











i+1

i

Lie algebra relations:

[Ei ,Ej ] = 0 |i − j | > 1 [Ei , [Ei ,Ej ]] = 0 |i − j | = 1

Enveloping algebra relations for U+(sln)

EiEj = EjEi |i − j | > 1

2EiEjEi = E2
i Ej + EjE

2
i j = i ± 1

Quantum enveloping algebra U+
q (sln)

EiEj = EjEi |i − j | > 1

quantum 2 →(q + q−1)EiEjEi = E2
i Ej + EjE

2
i j = i ± 1
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U+
q (sln) has a generator Ei for each vertex of the Dynkin graph

E1 E2 En−1

U+
q for any Γ

Let Γ be an unoriented
graph with set of vertices I.

Γ =

U+
q is the Q(q)-algebra with:

generators: Ei i ∈ I

relations: EiEj = EjEi if
i j

(q + q−1)EiEjEi = E2
i Ej + EjE2

i if
i j

U+
q is N[I] graded with deg(Ei) = i .
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The goal: categorify U+
q (g)

The quantum enveloping algebra Uq(g) of a symmetrizable Kac-Moody
Lie algebra g has a decomposition

Uq(g) = U−

q ⊗ Uq(h) ⊗ U+
q

U+
q has the structure of a bialgebra: try to categorify the bialgebra U+

q

The plan: define a new algebra R

−
(

category of finitely generated
graded projective modules

)

∼= U+
q (g)

R − mod

K0(R−mod)

Decategorification
(Grothendieck group)

��
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Grothendieck groups

If R is a graded ring then K0(R) is the Grothendieck group of the
category R−pmod of graded projective finitely-generated R-modules.

K0(R) has generators [M] over all objects of R−pmod and defining
relations

[M] = [M1] + [M2] if M ∼= M1 ⊕ M2

[M{s}] = qs[M] s ∈ Z
K0(R) is a Z[q,q−1]-module.

A useful trick
If e is an idempotent in R, then

R ∼= Re ⊕ R(1 − e).
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Integral form of U+
q

Define quantum integers and quantum factorials:

[a] :=
qa − q−a

q − q−1
[a]! := [a][a − 1] . . . [1]

Example

[1] = 1

[2] = q2−q−2

q−q−1 = q + q−1

[3] = q3
−q−3

q−q−1 = q2 + 1 + q−2

The algebra U+Z is the Z[q,q−1]-subalgebra of U+
q generated by all

products of quantum divided powers:

E (a)
i :=

Ea
i

[a]!
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Since

E (2)
i =

E2
i

q + q−1

we can write the U+
q relation

(q + q−1)EiEjEi = E2
i Ej + EjE

2
i if

i j

as

EiEjEi = E (2)
i Ej + EjE

(2)
i if

i j
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Categorification of U+
q

Associated to graph Γ consider braid-like diagrams with dots whose
strands are labelled by the vertices i ∈ I of the graph Γ.

Let ν =
∑

i∈I νi · i , for νi = 0,1,2, . . .
ν keeps track of how many strands
of each color occur in a diagram

Form an abelian group by taking Z-linear (or k-linear) combinations of
diagrams:

5 − 2 − 17
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Multiplication is given by stacking diagrams on top of each other when
the colors match:

∗ =

∗ = 0

Definition
Given ν ∈ N[I] define the ring R(ν) as the set of planar diagrams
colored by ν, modulo planar braid-like isotopies and the following local
relations:

Aaron Lauda Joint with Mikhail Khovanov (Columbia Universi ty)Categorification of quantum groups January 16th, 2010 10 / 26



Local relations I

i i

= 0

i i

−

i i

=

i i

i i

−

i i

=

i i

i i i

=

i i i
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Local relations II

i k

=

i k

if
i k

i j

=

i j

+

i j

if
i j

k j

=

k j k j

=

k j

if j 6= k
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Local relations III

i j i

−

i j i

=

i j i

if
i j

i j k

=

i j k

otherwise,

some of i , j , k may be equal
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Grading

q −→ grading shift

deg







 = 2

deg





i j



 =































−2 if i = j

0 if
i j

1 if
i j

The R(ν) relations are homogeneous with respect to this grading.
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Rν is the associative, F -algebra on generators 1i , xa,i , ;ψb,i for
1 ≤ a ≤ m, 1 ≤ b ≤ m − 1 and i ∈ Seq(ν) subject to the following relations for
i , j ∈ Seq(ν):

1i 1j = δi,j1i , xa,i = 1i xa,i1i ,

ψa,i = 1sa(i)ψa,i 1i , xa,ixb,i = xb,ixa,i ,

ψa,sa(i)ψa,i =











0 if ir = ir+1

1i if (αia , αia+1) = 0
(

x−〈ia,ia+1〉
a,i + x−〈ia+1,ia〉

a+1,i

)

1i if (αia , αia+1) 6= 0 and ia 6= ia+1

,

ψb,sa(i)ψa,i = ψa,sb(i)ψb,i if |a − b| > 1,

ψa,sa+1sa(i)ψa+1,sa(i)ψa,i − ψa+1,sasa+1(i)ψa,sa+1(i)ψa+1,i =

=







∑

−〈ia,ia+1〉−1

r=0

x r
a,ix

−〈ia,ia+1〉−1−r
a+2,i if ia = ia+2 and (αia , αia+1) 6= 0

0 otherwise,

ψa,ixb,i − xsa(b),sa(i)ψa,i =







1i if a = b and ia = ia+1

−1i if a = b + 1 and ia = ia+1

0 otherwise.
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Projective modules from idempotents

Let R =
⊕

ν R(ν). For each product of Ei ’s in U+
q we have an

idempotent in R:

EiEjEkEiEjEℓ 7→ 1ijkijℓ :=

i j k i j ℓ

This gives rise to a projective module

EiEjEkEiEjEℓ := R1ijkijℓ = R(2i + 2j + k + ℓ)1ijkijℓ

corresponding to the idempotent 1ijkijℓ above.
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Example

Consider
R1ijk = R(i + j + k)1ijk

The projective module EiEjEk := R(i + j + k)1ijk consists of linear
combinations of diagrams that have the sequence ijk at the bottom

i j k

Diagram
i.e. and ∈ R(i + j + k)1ijk

But

/∈ R(i + j + k)1ijk
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We can construct maps between projective modules by adding
diagrams at the bottom

Example

We get a module map from EiEjEk := R(i + j + k)1ijk to
EkEjEi := R(i + j + k)1kjl as follows:

:

R1ijk

i j k

−→

k j i

∈

R1kji

k j i

Diagram
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Given a graded module M and a Laurent polynomial
f =

∑

faqa ∈ Z[q,q−1] write

M⊕f or
⊕

f

M

to denote the direct sum over a ∈ Z of fa copies of M{a}

Example

Since [3] = q2 + 1 + q−2 ∈ Z[q,q−1], for a graded module M
⊕

[3]

M = M{2} ⊕ M{0} ⊕ M{−2}

Aaron Lauda Joint with Mikhail Khovanov (Columbia Universi ty)Categorification of quantum groups January 16th, 2010 19 / 26



Example ( n = 2)

E (2)
i =

E2
i

q+q−1 or E2
i = (q + q−1)E (2)

i

Recall that

=

so that e2 = is an idempotent.

E
(2)
i is the projective module for this idempotent

E
(2)
i := R(2i)e2{1}

E2
i
∼= E

(2)
i {1} ⊕ E

(2)
i {−1}
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Categorification of EiEj = EjEi

EiEj = EjEi if
i j

 EiEj
∼= EjEi if

i j

EiEj EjEi EiEj
i j

//
j i

//

These maps are isomorphisms since

j i

=

j i i j

=

i j

if
i j
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Categorification of EiEjEi = E (2)
i Ej + EjE

(2)
i

The relation

i j i

−

i j i

=

i j i

if
i j

together with the other relations imply

EiEjEi
∼= EjE

(2)
i ⊕ E

(2)
i Ej

We have shown that all the quantum Serre relations hold as
isomorphisms between projective modules. This implies that they also
hold in the Grothendieck ring.
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Work over a field k.

Theorem (M.Khovanov, A. L. arXiv:0803.4121)

There is an isomorphism of twisted bialgebras:

γ : U+Z −→ K0(R)

E (a1)
i1

E (a2)
i2

. . . E (ak )
ik

7→
[

E
(a1)
i1

E
(a2)
i2

. . . E
(ak )
ik

]

multiplication 7→ multiplication given by [Ind]

comultiplication 7→ comultiplication given by [Res]

The semilinear form on U+Z maps to the HOM form on K0(R)

(x , y) = (γ(x), γ(y))
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Theorem ( simply-laced )

U+Z K0(R)
∼

//

Lusztig-Kashiwara
canonical basis

indecomposable
projective [P]

�

//

arXiv:0901.4450
Brundan and Kleshchev gave an algebraic proof when Γ is a chain or a
cycle.

arXiv:0901.3992
The general case (over C) was proven by Varagnolo and Vasserot who
showed that rings R(ν) in the simply-laced case were isomorphic to
certain Ext-algebras of Perverse sheaves on Lusztig quiver varieties.
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Cyclotomic quotients

For a given weight λ =
∑

i∈I λi · Λi define the cyclotomic quotient Rλ
ν of

R(ν) by imposing the additional relations: for any sequence i1i2 · · · im of
vertices of Γ

λi1 dots on the first
strand of any sequence
is zero

−→
λi1

i1 i2 i3

· · ·

im

= 0

This is analogous to taking the Ariki-Koike cyclotomic quotient of the
affine Hecke algebra:

Hλ
d := Hd

/

〈

∏

i∈I

(X1 − q i)λi

〉
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Cyclotomic quotient conjecture

The category of finitely-generated graded modules over the ring

Rλ =
⊕

ν∈N[I]

Rλ
ν

categorifies the integrable version of the representation Vλ of Uq(g) of
highest weight λ.

V (λ) K0(Rλ)
∼

//

Lusztig-Kashiwara
canonical basis

indecomposable
projective [P]

�

//
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