Categorification of quantum groups

Aaron Lauda Joint with Mikhail Khovanov

Columbia University

January 16th, 2010

Available at http://www.math.columbia.edu/~lauda/talks/

Why categorify quantum groups?

Quantum Group

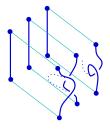
representation category

Braided monoidal category with duals

Categorified Quantum Group

representation 2-category

Braided monoidal 2-category with duals



Crane-Frenkel conjectured categorified quantum groups would give 4-dimensional TQFTs

$$U_q^+ \subset U_q(\mathfrak{g})$$

 $E_i = e_{i,i+1} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & & \ddots & \\ 0 & & \dots & 0 \end{pmatrix}$

$$\mathfrak{g}=\mathfrak{sl}_n$$

Lie algebra relations:

$$[E_i, E_j] = 0$$
 $|i - j| > 1$ $[E_i, [E_i, E_j]] = 0$ $|i - j| = 1$

Enveloping algebra relations for $U^+(\mathfrak{sl}_n)$

$$E_i E_j = E_j E_i \qquad |i - j| > 1$$

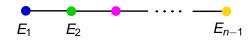
$$2E_iE_jE_i=E_i^2E_j+E_jE_i^2 \qquad j=i\pm 1$$

Quantum enveloping algebra $U_q^+(\mathfrak{sl}_n)$

$$E_iE_j=E_jE_i \qquad |i-j|>1$$

quantum 2
$$\rightarrow$$
 $(q + q^{-1})E_iE_jE_i = E_i^2E_j + E_jE_i^2$ $j = i \pm 1$

 $U_q^+(\mathfrak{sl}_n)$ has a generator E_i for each vertex of the Dynkin graph



U_q^+ for any Γ

Let Γ be an unoriented graph with set of vertices I.

 U_q^+ is the $\mathbb{Q}(q)$ -algebra with:

- generators: E_i $i \in I$
- relations: $E_i E_j = E_j E_i$ if •

$$(q+q^{-1})E_iE_jE_i = E_i^2E_j + E_jE_i^2$$
 if

 U_q^+ is $\mathbb{N}[I]$ graded with $\deg(E_i) = I$.

The goal: categorify $U_q^+(\mathfrak{g})$

The quantum enveloping algebra $U_q(\mathfrak{g})$ of a symmetrizable Kac-Moody Lie algebra \mathfrak{g} has a decomposition

$$U_q(\mathfrak{g})=U_q^-\otimes U_q(\mathfrak{h})\otimes U_q^+$$

 U_q^+ has the structure of a bialgebra: try to categorify the bialgebra U_q^+

The plan: define a new algebra R

$$R-\operatorname{mod}-\left(egin{array}{c} \operatorname{category} & \operatorname{of} \ \operatorname{finitely} \ \operatorname{generated} \ \operatorname{graded} \ \operatorname{projective} \ \operatorname{modules} \end{array}
ight)$$
 Decategorification (Grothendieck group) $\mathcal{K}_0(R-\operatorname{mod}) \cong \mathcal{U}_q^+(\mathfrak{g})$

Grothendieck groups

If R is a graded ring then $K_0(R)$ is the Grothendieck group of the category R-pmod of graded projective finitely-generated R-modules.

 $K_0(R)$ has generators [M] over all objects of R-pmod and defining relations

$$[M] = [M_1] + [M_2]$$
 if $M \cong M_1 \oplus M_2$
 $[M\{s\}] = q^s[M]$ $s \in \mathbb{Z}$

 $K_0(R)$ is a $\mathbb{Z}[q,q^{-1}]$ -module.

A useful trick

If e is an idempotent in R, then

$$R \cong Re \oplus R(1-e)$$
.

Integral form of U_a^+

Define quantum integers and quantum factorials:

$$[a] := \frac{q^a - q^{-a}}{q - q^{-1}}$$
 $[a]! := [a][a - 1]...[1]$

Example

• [2] =
$$\frac{q^2 - q^{-2}}{q - q^{-1}}$$
 = $q + q^{-1}$
• [3] = $\frac{q^3 - q^{-3}}{q - q^{-1}}$ = $q^2 + 1 + q^{-2}$

$$[3] = \frac{q^3 - q^{-3}}{q - q^{-1}} = q^2 + 1 + q^{-2}$$

The algebra $U_{\mathbb{Z}}^+$ is the $\mathbb{Z}[q,q^{-1}]$ -subalgebra of U_q^+ generated by all products of quantum divided powers:

$$E_i^{(a)} := \frac{E_i^a}{[a]!}$$

Since

$$E_i^{(2)} = rac{E_i^2}{q+q^{-1}}$$

we can write the U_q^+ relation

$$(q+q^{-1})E_iE_jE_i = E_i^2E_j + E_jE_i^2$$
 if i

as

$$E_i E_j E_i = E_i^{(2)} E_j + E_j E_i^{(2)}$$
 if $\bigcup_{i=1}^{j} E_i = E_j^{(2)} E_j = E_j^{(2)} E_j^{(2)} = E_j^{(2)} E_j^{(2$

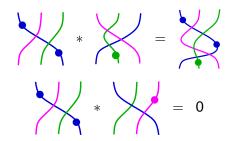
Categorification of U_q^+

Associated to graph Γ consider braid-like diagrams with dots whose strands are labelled by the vertices $i \in I$ of the graph Γ .

Let $\nu = \sum_{i \in I} \nu_i \cdot i$, for $\nu_i = 0, 1, 2, \dots$ ν keeps track of how many strands of each color occur in a diagram

Form an abelian group by taking \mathbb{Z} -linear (or \Bbbk -linear) combinations of diagrams:

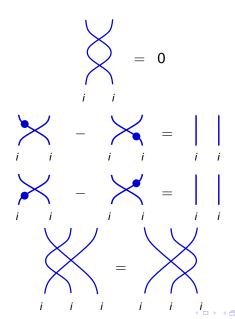
Multiplication is given by stacking diagrams on top of each other when the colors match:



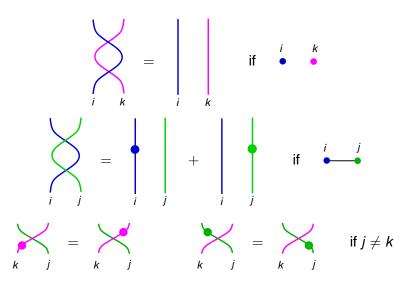
Definition

Given $\nu \in \mathbb{N}[I]$ define the ring $R(\nu)$ as the set of planar diagrams colored by ν , modulo planar braid-like isotopies and the following local relations:

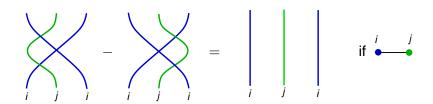
Local relations I

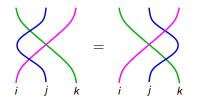


Local relations II



Local relations III





otherwise,

some of i, j, k may be equal

Grading

 $q \longrightarrow \text{grading shift}$

$$\deg\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = 2$$

$$\deg\left(\begin{array}{c} \bullet \\ i \end{array}\right) = \begin{cases} -2 & \text{if } i = j \\ 0 & \text{if } \begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

$$= \begin{cases} 1 & \text{if } \begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

The $R(\nu)$ relations are homogeneous with respect to this grading.

 R_{ν} is the associative, F-algebra on generators $\mathbf{1}_{i}$, $\mathbf{x}_{a,i}$, ; $\psi_{b,i}$ for $1 \le a \le m$, $1 \le b \le m-1$ and $\underline{i} \in \operatorname{Seq}(\nu)$ subject to the following relations for $\underline{\boldsymbol{i}},\,\boldsymbol{j}\in\mathrm{Seq}(\nu)$:

$$\begin{aligned} \mathbf{1}_{\underline{i}}\mathbf{1}_{\underline{j}} &= \delta_{\underline{i},\underline{j}}\mathbf{1}_{\underline{i}}, & x_{a,\underline{i}} &= \mathbf{1}_{\underline{i}}x_{a,\underline{i}}\mathbf{1}_{\underline{i}}, \\ \psi_{a,\underline{i}} &= \mathbf{1}_{s_{a}(\underline{i})}\psi_{a,\underline{i}}\mathbf{1}_{\underline{i}}, & x_{a,\underline{i}}x_{b,\underline{i}} &= x_{b,\underline{i}}x_{a,\underline{i}}, \end{aligned}$$

$$\psi_{a,s_{a}(\underline{i})}\psi_{a,\underline{i}} &= \begin{cases} 0 & \text{if } i_{r} &= i_{r+1} \\ \mathbf{1}_{\underline{i}} & \text{if } (\alpha_{i_{a}},\alpha_{i_{a+1}}) &= 0 \\ \left(x_{a,\underline{i}}^{-\langle i_{a},i_{a+1}\rangle} + x_{a+1,\underline{i}}^{-\langle i_{a+1},i_{a}\rangle}\right)\mathbf{1}_{\underline{i}} & \text{if } (\alpha_{i_{a}},\alpha_{i_{a+1}}) \neq 0 \text{ and } i_{a} \neq i_{a+1} \end{aligned}$$

$$\psi_{b,s_{a}(\underline{i})}\psi_{a,\underline{i}} &= \psi_{a,s_{b}(\underline{i})}\psi_{b,\underline{i}} & \text{if } |a-b| > 1,$$

$$\psi_{a,s_{a+1}}s_{a}(\underline{i})\psi_{a+1,s_{a}(\underline{i})}\psi_{a,\underline{i}} - \psi_{a+1,s_{a}}s_{a+1}(\underline{i})\psi_{a,s_{a+1}}(\underline{i})\psi_{a+1,\underline{i}} =$$

$$= \begin{cases} \sum_{r=0}^{-\langle i_{a},i_{a+1}\rangle - 1} x_{a,\underline{i}}^{r}x_{a+2,\underline{i}}^{-\langle i_{a},i_{a+1}\rangle - 1 - r} & \text{if } i_{a} = i_{a+2} \text{ and } (\alpha_{i_{a}},\alpha_{i_{a+1}}) \neq 0 \\ 0 & \text{otherwise}, \end{cases}$$

$$\psi_{a,\underline{i}}x_{b,\underline{i}} - x_{s_{a}(b),s_{a}(\underline{i})}\psi_{a,\underline{i}} = \begin{cases} 1_{\underline{i}} & \text{if } a = b \text{ and } i_{a} = i_{a+1} \\ -1_{\underline{i}} & \text{if } a = b + 1 \text{ and } i_{a} = i_{a+1} \\ 0 & \text{otherwise}. \end{cases}$$

 $x_{a,i} = 1_i x_{a,i} 1_i$

Projective modules from idempotents

Let $R = \bigoplus_{\nu} R(\nu)$. For each product of E_i 's in U_q^+ we have an idempotent in R:

This gives rise to a projective module

$$\mathcal{E}_i \mathcal{E}_j \mathcal{E}_k \mathcal{E}_i \mathcal{E}_j \mathcal{E}_\ell \quad := \quad R \mathbf{1}_{ijkij\ell} \quad = \quad R (2i + 2j + k + \ell) \mathbf{1}_{ijkij\ell}$$

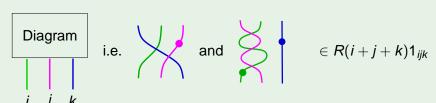
corresponding to the idempotent $1_{ijkij\ell}$ above.

Example

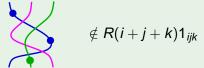
Consider

$$R1_{ijk} = R(i+j+k)1_{ijk}$$

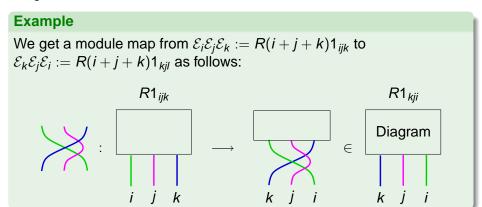
The projective module $\mathcal{E}_i\mathcal{E}_j\mathcal{E}_k := R(i+j+k)\mathbf{1}_{ijk}$ consists of linear combinations of diagrams that have the sequence ijk at the bottom



But



We can construct maps between projective modules by adding diagrams at the *bottom*



Given a graded module M and a Laurent polynomial $f = \sum f_a q^a \in \mathbb{Z}[q, q^{-1}]$ write

$$M^{\oplus f}$$
 or $\bigoplus_{f} \Lambda$

to denote the direct sum over $a \in \mathbb{Z}$ of f_a copies of $M\{a\}$

Example

Since
$$[3] = q^2 + 1 + q^{-2} \in \mathbb{Z}[q, q^{-1}]$$
, for a graded module M

$$\bigoplus_{m \in \mathbb{N}} M = M\{2\} \oplus M\{0\} \oplus M\{-2\}$$

Example (n = 2)

$$E_i^{(2)} = \frac{E_i^2}{q+q^{-1}}$$
 or $E_i^2 = (q+q^{-1})E_i^{(2)}$

Recall that

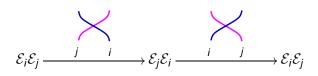
so that $e_2 =$ is an idempotent.

 $\mathcal{E}_{i}^{(2)}$ is the projective module for this idempotent

$$\mathcal{E}_{i}^{(2)} := R(2i)e_{2}\{1\}$$
 $\mathcal{E}_{i}^{2} \cong \mathcal{E}_{i}^{(2)}\{1\} \oplus \mathcal{E}_{i}^{(2)}\{-1\}$

Categorification of $E_i E_j = E_j E_i$

$$E_i E_j = E_j E_i$$
 if $\overset{i}{\bullet}$ $\overset{j}{\bullet}$ $\overset{j}{\bullet}$ $\overset{j}{\bullet}$ $\mathcal{E}_i \mathcal{E}_j \cong \mathcal{E}_j \mathcal{E}_i$ if $\overset{i}{\bullet}$



These maps are isomorphisms since

Categorification of $E_i E_j E_i = E_i^{(2)} E_j + E_j E_i^{(2)}$

The relation

together with the other relations imply

$$\mathcal{E}_i \mathcal{E}_j \mathcal{E}_i \cong \mathcal{E}_j \mathcal{E}_i^{(2)} \oplus \mathcal{E}_i^{(2)} \mathcal{E}_j$$

We have shown that all the quantum Serre relations hold as isomorphisms between projective modules. This implies that they also hold in the Grothendieck ring.

Work over a field k.

Theorem (M.Khovanov, A. L. arXiv:0803.4121)

There is an isomorphism of twisted bialgebras:

$$\gamma \colon U_{\mathbb{Z}}^{+} \longrightarrow \mathcal{K}_{0}(R)$$

$$E_{i_{1}}^{(a_{1})}E_{i_{2}}^{(a_{2})}\dots E_{i_{k}}^{(a_{k})} \mapsto \begin{bmatrix} \mathcal{E}_{i_{1}}^{(a_{1})}\mathcal{E}_{i_{2}}^{(a_{2})}\dots \mathcal{E}_{i_{k}}^{(a_{k})} \end{bmatrix}$$

 $\begin{array}{ll} \text{multiplication} & \mapsto & \text{multiplication given by [Ind]} \\ \text{comultiplication} & \mapsto & \text{comultiplication given by [Res]} \end{array}$

The semilinear form on $U_{\mathbb{Z}}^+$ maps to the HOM form on $K_0(R)$

$$(x, y) = (\gamma(x), \gamma(y))$$

Theorem (simply-laced)

$$U_{\mathbb{Z}}^{+} \xrightarrow{\sim} \mathcal{K}_{0}(R)$$

 $\begin{array}{c} \text{Lusztig-Kashiwara} \\ \text{canonical basis} \end{array} \xrightarrow{\text{indecomposable}} \text{projective } [P]$

arXiv:0901.4450

Brundan and Kleshchev gave an algebraic proof when Γ is a chain or a cycle.

arXiv:0901.3992

The general case (over \mathbb{C}) was proven by Varagnolo and Vasserot who showed that rings $R(\nu)$ in the simply-laced case were isomorphic to certain Ext-algebras of Perverse sheaves on Lusztig guiver varieties.

Cyclotomic quotients

For a given weight $\lambda = \sum_{i \in I} \lambda_i \cdot \Lambda_i$ define the cyclotomic quotient R_{ν}^{λ} of $R(\nu)$ by imposing the additional relations: for any sequence $i_1 i_2 \cdots i_m$ of vertices of Γ

This is analogous to taking the Ariki-Koike cyclotomic quotient of the affine Hecke algebra:

$$H_d^{\lambda} := H_d / \left\langle \prod_{i \in I} (X_1 - q^i)^{\lambda_i} \right
angle$$

Cyclotomic quotient conjecture

The category of finitely-generated graded modules over the ring

$${\sf R}^\lambda = igoplus_{
u \in \mathbb{N}[{\it I}]} {\sf R}^\lambda_
u$$

categorifies the integrable version of the representation V_{λ} of $U_q(\mathfrak{g})$ of highest weight λ .

$$V(\lambda) \xrightarrow{\sim} K_0(R^{\lambda})$$

Lusztig-Kashiwara indecomposable canonical basis projective [P]

