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What is a Ribbon Category?

A tensor category C is a category equipped with:

@ a covariant bifunctor ® : C x C — C called the tensor
product;

@ aunitobject1 -ie.forall V: V@1 = Vandl® V =V,
@ associativity - ie. forall U, V, W:

(U V)e WU (Ve W);

@ The Triangle and Pentagon Axioms hold.
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(Veol)eo W Ve ((le W)

VoW

Figure: Triangle Axiom
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(U (Ve W)e X (U V) (We X)
Us (Ve W) e X = Us (Ve (We X))

Figure: Pentagon Axiom
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A duality is a functor V — V* such that for all V € V, there is
maps

by:1—- VeV dy: V'@V - 1.

A braiding is isomorphisms for all V, W in C:

Cvw: VoW - WeV

A twist is an isomorphism for every V in C:

Oy: V-V
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Definition
A ribbon category is a tensor category C with duality, braiding,
and twists.
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Definition
A ribbon category is a tensor category C with duality, braiding,
and twists.

|

Caveat
Subject to some axioms, of course!
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A Baby Example

Finite Dimensional Vector Spaces

Let k be a field, and let C be the category of finite-dimensional
k-vector spaces. Let

Q@ = Qk
V* = Homg(V, k)
1=k
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A Baby Example

Finite Dimensional Vector Spaces

Let k be a field, and let C be the category of finite-dimensional
k-vector spaces. Let

X = Qg
V* = Homg(V, k)
1=k

Given Vin C, let {v;} be a arbitrary fixed basis for V and {v;}
is the basis for V* given by vi*(v;) = d; ;.
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CV’W:V®W—> WeV
cvw(veow)=wev

by:1— VeV

dy V'@V -1
dy(f® v) = f(v).

oy =Idy :V = V
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More Interesting Examples

Let k be a fixed field, and let C be the category of finite
dimensional representations for:

@ A group;
@ A Lie algebra;
@ A Lie superalgebra.

Then the same morphisms (or graded versions) make C a
ribbon category.
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More Interesting Examples

Let k be a fixed field, and let C be the category of finite
dimensional representations for:

@ A group;
@ A Lie algebra;
@ A Lie superalgebra.

Then the same morphisms (or graded versions) make C a
ribbon category.

Observe, all of these examples have the feature that

Ccw,vocCyw = ldygw.

That is, they are symmetric.
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Nonsymmetric Example

If Ug(g) is a quantum (super)group, then the category C of
finite-dimensional Uy(g)-(super)modules is a ribbon category.
But,

Cw,vocyw # ldvgw.
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What about those Axioms?
1VV v
dv®1

Ve VeV

Cv,vx ®1

Ve VeV = Idy

1R vav*

Ve Ve V*

1® by

VeVel 74

Figure: An Axiom
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The Diagrammatic Calculus
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For a general f € Home(V, W):

w W
f - - s m - — 4
4 v
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Rules for Combining Diagrams
@ Composition corresponds to vertical concatenation of
diagrams (read bottom to top);

@ Tensor product corresponds to horizontal concatenation
(read left to right).
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Algebraically, our axiom was:

d,®101® b, =Idy.
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Algebraically, our axiom was:
v®1o1®@by, =Idy.

Graphically, our axiom becomes:

= ldy
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Fundamental Observation

The axioms of a Ribbon Category are precisely those required
so that isotopic (ie. topologically equivalent) diagrams
corresponding to identical morphisms in C!
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Fundamental Observation

The axioms of a Ribbon Category are precisely those required
so that isotopic (ie. topologically equivalent) diagrams
corresponding to identical morphisms in C!

White Lie
@ Actually, the diagrams should be drawn with ribbons, not
lines, and a 360° twist of Idy corresponds to the twist
isomorphism 6y : V — V.
@ We’'ll suppress the twists for clarity.
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Here and throughout, let C be a ribbon category and assume
K = End¢(1)

is a field.

Example
Define tr¢ : Ende(V) — K and dim¢ : Objects(C) — K by:

1 1
4 v 4 v*
4 v+ 4 v*
1 1

Figure: The categorical trace tre(f) and dimension dim¢( V).

Jan 2010, AMS-SF Ribbon Cats

18/35



Algebraically they are given by:

tre(f)=dyocof®10by
dimC(V) = tl’c(|d\/) =dyocoby.

We call these the categorical trace and categorical dimension.
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Algebraically they are given by:

tre(f)=dyocof®10by
dimC(V) = trc(|d\/) =dyocoby.

We call these the categorical trace and categorical dimension.

For finite dimensional k-vector spaces, and representations of
groups and Lie algebras, these are precisely the usual trace
and dimension functions with values in

K = Endc(1) = k.

Jan 2010, AMS-SF Ribbon Cats 19/35



If V is a representation of a Lie superalgebra, then
dim¢(V) = sdim(V) :=dim(V5) — dim(Vj),

the superdimension of V.

If V is a representation of a quantum group Ug(g), then

dime(V)

is the quantum dimension.
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Low Dimensional Topology

Main ldea (Reshetikhin and Turaev)

Given a ribbon category C, you can construct a knot invariant
as follows:

A knot K ~~» A knot diagram for K ~» End¢(1).

The second step is by labelling the diagram of K with objects of
C and using the diagrammatic calculus to interpret as a
morphism in C.
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Problems

@ Many categories arising in algebra are symmetric (i.e. the
square of the braiding is the identity) and, hence, yield only
trivial invariants.

© Many objects in these categories have categorical

dimension zero and, again, necessarily yield only trival
invariants.

Jan 2010, AMS-SF Ribbon Cats 22/35



Solutions
@ Use quantum (super)groups.
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Solutions

@ Use quantum (super)groups.
© Define modified dimension functions:
e Typical representations for Type | quantum supergroups
(Geer - Patureau-Mirand);
e Nilpotent representations of Uy (sl2) at a root of unity
(Geer - Patureau-Mirand - Turaev);
e General ribbon category
(Geer - Kujawa - Patureau-Mirand).
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Generalities

Definition
Given J in C, let Z, be the full subcategory of all objects V in C
for which there exist an object X and morphisms

a:V-oJdoX B:JX—V,

with

Boa=Idy.
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Definition
A trace on 17, is a family of K-linear functions {ty}vcz,,

tv : Ende(V) — K,

which satisfy natural generalizations of properties of the
ordinary trace function:

@ If U, V € Z, then for any morphisms f: V — U and
g:U— VinC we have

tv(gof) =ty(fog).

@ If U e Z,and W e Objects(C) then for any
f € Ende(U ® W) we have

tuew (f) = ty (Trr(f)).

Jan 2010, AMS-SF Ribbon Cats

25/35



Definition

A K-linear function t : End¢(J) — K is an ambidextrous trace

ond ifforall h € End¢(J ® J),
t(Tro(h)) = t(Tra(h)) .

Where:

J*

J*

Figure: Try(h) and Trg(h).

J*

J*
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Theorem

@ If Z, is an ideal of a ribbon category C and {ty}vcz, is a
trace on this ideal, then each ty is an ambidextrous trace
on V.

@ Conversely, if J in C admits an ambidextrous trace, then

there is a unique trace on Z, determined by that
ambidextrous trace.
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Theorem

@ If Z, is an ideal of a ribbon category C and {ty}vcz, is a
trace on this ideal, then each ty is an ambidextrous trace
on V.

@ Conversely, if J in C admits an ambidextrous trace, then
there is a unique trace on Z,; determined by that
ambidextrous trace.

Definition
Given a trace {ty}vcz,, the modified dimension function

dy : Objects (Z,) — K

is defined by:
dy(V) = ty(ldy).
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A Baby Example
IfJ=1:
@ Then Zy; = C and the categorical trace defines a trace on
1.
@ It's easy to see that the identity map End¢(1) — K defines
an ambidextrous trace on 1.

@ In this way we recover the categorical trace and dimension
functions.
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@ Are there other examples?
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@ Are there other examples?

@ Yes! Typical reps of Type | quantum supergroups, quantum
slp at a root of unity, . ..
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@ Are there other examples?

@ Yes! Typical reps of Type | quantum supergroups, quantum
slp at a root of unity, . ..

@ But first some general results.

Jan 2010, AMS-SF Ribbon Cats 29/35



Theorem
Let V be an object in Z,, assume J is irreducible and Z, admits
a nontrivial trace. Then:
Q@ LetUeZy CZy Ifdy(V)=0,thendy(U)=0.
@ If Vs irreducible, then the epimorphism
dy®Ildy: V*® V®dJd— Jsplitsif and only if d (V) # 0.

© If Jis not projective in C and P is projective in C, then P is
an object of Z, and d (P) = 0.
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When J =1

One Specialization

Let C = 7 be the category of finite dimensional G-modules
over an algebraically closed field k of characteristic p. Then:

@ If p divides dim,(V), then p divides dim,(U) for any direct
summand U of any V & X.

@ |If Visirreducible, then k is a direct summand of V @ V* if
and only if p does not divide dimg( V).
© If p divides the order of G and P is projective in C, then p
divides dimg(P).
(Landrock, Benson - Carlson)
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When J = 1, cont.

Another Specialization

Let C = 7y be the finite dimensional representations of a
complex Lie superalgebra. Then:
@ If sdim(V) = 0, then sdim(U) = 0 for any direct summand
Uofany V® X.
@ If Visirreducible, then C is a direct summand of V @ V* if
and only if sdim(V) # 0.
© If Pis projective in C, then sdim(P) = 0.
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When J = 1, cont.

Another Specialization

Let C = 7y be the finite dimensional representations of a
complex Lie superalgebra. Then:

@ If sdim(V) = 0, then sdim(U) = 0 for any direct summand
Uofany V® X.

@ If Visirreducible, then C is a direct summand of V @ V* if
and only if sdim(V) # 0.

© If Pis projective in C, then sdim(P) = 0.

Yet More Specializations

Let C = 7y be the finite dimensional representations of a
quantum group (Andersen), quantum supergroups, .. .
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A Real Example (finally!)
Let’s consider an application of this framework to
representation theory.

Lie Superalgebras

@ Say g is a complex basic Lie superalgebra and C is its finite
dimensional reps.

@ Let atypicality and defect be as in Vera’s talk.
@ In particular,

def(g) = atyp(C).
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A Real Example (finally!)

Let’s consider an application of this framework to
representation theory.

Lie Superalgebras

@ Say g is a complex basic Lie superalgebra and C is its finite
dimensional reps.

@ Let atypicality and defect be as in Vera’s talk.

@ In particular,
def(g) = atyp(C).

Conjecture
Let L be a simple object in C. Then,

atyp(L) = def(g) if and only if sdim(L) # 0.

(Kac-Wakimoto 1996, Serganova 2009)
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In our language:

Conjecture
Let L be a simple object in C. Then,

atyp(L) = atyp(C) if and only if d¢(L) # 0.
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In our language:

Conjecture
Let L be a simple object in C. Then,

atyp(L) = atyp(C) if and only if d¢(L) # 0.

This is naturally the “top level” of a more general conjecture:
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In our language:

Conjecture
Let L be a simple object in C. Then,

atyp(L) = atyp(C) if and only if d¢(L) # 0.

This is naturally the “top level” of a more general conjecture:

Generalized KW Conjecture

Let g be a basic classical Lie superalgebra, let J be a simple
g-supermodule such that Z; admits a nonzero trace and L € Z
be a simple g-supermodule. Then,

atyp(L) = atyp(J) if and only if d (L) # 0.
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Type A

Theorem

Let g = gl(m|n), let J be a simple g-supermodule which admits
an ambidextrous trace, and let L € 7, be a simple
g-supermodule. Then the following are true.

@ One always has atyp(L) < atyp(J).
@ Ifdy(L) # 0, then atyp(L) = atyp(J).
© If atyp(J) = 0, then atyp(L) = 0 and dy(L) # 0.

© If Jand L are polynomial, then J necessarily admits an
ambidextrous trace (i.e. it does not have to be assumed),
and dy(L) # 0 if and only if atyp(L) = atyp(J).
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Type A

Theorem

Let g = gl(m|n), let J be a simple g-supermodule which admits
an ambidextrous trace, and let L € 7, be a simple
g-supermodule. Then the following are true.

@ One always has atyp(L) < atyp(J).
@ Ifdy(L) # 0, then atyp(L) = atyp(J).
© If atyp(J) = 0, then atyp(L) = 0 and dy(L) # 0.

© If Jand L are polynomial, then J necessarily admits an
ambidextrous trace (i.e. it does not have to be assumed),
and dy(L) # 0 if and only if atyp(L) = atyp(J).

That is, for gi(m|n) we proved one direction of the generalized
KW conjecture in general. Both directions for atypicality zero
and polynomial representations.
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