Modified Trace and Dimension Functions for **Ribbon Categories**

Nathan Geer¹ Jon Kujawa² Bertrand Patureau-Mirand³

¹Utah State University

²University of Oklahoma

³Universite de Bretagne-Sud, France

Joint Meetings San Francisco, CA January 16, 2010

What is a Ribbon Category?

A tensor category C is a category equipped with:

- a covariant bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ called the tensor product;
- a unit object 1 ie. for all $V: V \otimes 1 \cong V$ and $1 \otimes V \cong V$;
- associativity ie. for all U, V, W:

$$(U \otimes V) \otimes W \cong U \otimes (V \otimes W);$$

• The Triangle and Pentagon Axioms hold.

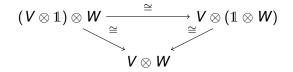


Figure: Triangle Axiom

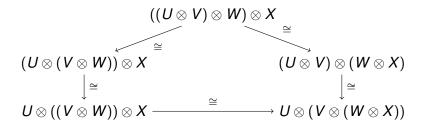


Figure: Pentagon Axiom

A duality is a functor $V \mapsto V^*$ such that for all $V \in V$, there is maps

$$b_V: \mathbb{1} \to V \otimes V^*$$
 $d_V: V^* \otimes V \to \mathbb{1}.$

A braiding is isomorphisms for all V, W in C:

$$c_{V,W}: V \otimes W \to W \otimes V$$

A twist is an isomorphism for every V in C:

$$\theta_V: V \to V$$

Definition A ribbon category is a tensor category C with *duality*, *braiding*, and *twists*.

Definition A ribbon category is a tensor category C with *duality*, *braiding*, and *twists*.

Caveat

Subject to some axioms, of course!

A Baby Example

Finite Dimensional Vector Spaces

Let *k* be a field, and let C be the category of finite-dimensional *k*-vector spaces. Let

$$\otimes = \otimes_k V^* = \operatorname{Hom}_k(V, k) \mathbb{1} = k$$

A Baby Example

Finite Dimensional Vector Spaces

Let *k* be a field, and let C be the category of finite-dimensional *k*-vector spaces. Let

$$\otimes = \otimes_k V^* = \operatorname{Hom}_k(V, k) \mathbb{1} = k$$

Given *V* in *C*, let $\{v_i\}$ be a arbitrary fixed basis for *V* and $\{v_i^*\}$ is the basis for *V*^{*} given by $v_i^*(v_i) = \delta_{i,j}$.

$$c_{V,W}: V \otimes W \to W \otimes V$$

 $c_{V,W}(v \otimes w) = w \otimes v$

$$b_V : \mathbb{1} \to V \otimes V^*$$

 $b_V(1) = \sum v_i \otimes v_i^*.$

$$d_V: V^* \otimes V \to \mathbb{1}$$

 $d_V(f \otimes v) = f(v).$

$$\theta_V = \mathsf{Id}_V : V \to V$$

More Interesting Examples

Let k be a fixed field, and let C be the category of finite dimensional representations for:

- A group;
- A Lie algebra;
- A Lie superalgebra.

Then the same morphisms (or graded versions) make $\ensuremath{\mathcal{C}}$ a ribbon category.

More Interesting Examples

Let k be a fixed field, and let C be the category of finite dimensional representations for:

- A group;
- A Lie algebra;
- A Lie superalgebra.

Then the same morphisms (or graded versions) make $\ensuremath{\mathcal{C}}$ a ribbon category.

Observe, all of these examples have the feature that

$$c_{W,V} \circ c_{V,W} = \mathsf{Id}_{V \otimes W}.$$

That is, they are symmetric.

Nonsymmetric Example

If $U_q(\mathfrak{g})$ is a quantum (super)group, then the category \mathcal{C} of finite-dimensional $U_q(\mathfrak{g})$ -(super)modules is a ribbon category. But,

 $c_{W,V}\circ c_{V,W}\neq \text{Id}_{V\otimes W}\,.$

What about those Axioms?

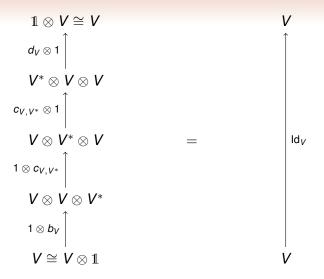
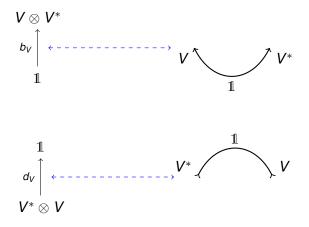
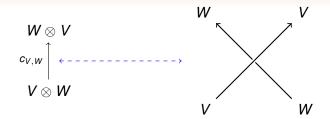
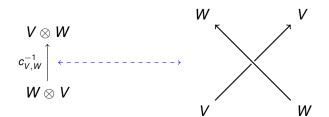


Figure: An Axiom

The Diagrammatic Calculus







For a general $f \in Hom_{\mathcal{C}}(V, W)$:

Rules for Combining Diagrams

- Composition corresponds to vertical concatenation of diagrams (read bottom to top);
- Tensor product corresponds to horizontal concatenation (read left to right).

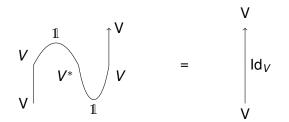
Algebraically, our axiom was:

$$d'_V \otimes 1 \circ 1 \otimes b'_V = \operatorname{Id}_V.$$

Algebraically, our axiom was:

$$d_V'\otimes 1\circ 1\otimes b_V'=\operatorname{\mathsf{Id}}_V.$$

Graphically, our axiom becomes:



Fundamental Observation

The axioms of a Ribbon Category are precisely those required so that isotopic (ie. topologically equivalent) diagrams corresponding to identical morphisms in C!

Fundamental Observation

The axioms of a Ribbon Category are precisely those required so that isotopic (ie. topologically equivalent) diagrams corresponding to identical morphisms in C!

White Lie

- Actually, the diagrams should be drawn with ribbons, not lines, and a 360° twist of Id_V corresponds to the twist isomorphism $\theta_V : V \to V$.
- We'll suppress the twists for clarity.

Here and throughout, let C be a ribbon category and assume

 $K = \operatorname{End}_{\mathcal{C}}(1)$

is a field.

Example

Define tr_C : End_C(V) \rightarrow K and dim_C : Objects(C) \rightarrow K by:

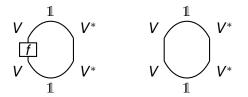


Figure: The categorical trace $tr_{\mathcal{C}}(f)$ and dimension $\dim_{\mathcal{C}}(V)$.

Algebraically they are given by:

$$\operatorname{tr}_{\mathcal{C}}(f) = d_V \circ c \circ f \otimes 1 \circ b_V$$
$$\operatorname{dim}_{\mathcal{C}}(V) = \operatorname{tr}_{\mathcal{C}}(\operatorname{Id}_V) = d_V \circ c \circ b_V.$$

We call these the categorical trace and categorical dimension.

Algebraically they are given by:

$$\operatorname{tr}_{\mathcal{C}}(f) = d_{V} \circ c \circ f \otimes 1 \circ b_{V}$$
$$\operatorname{dim}_{\mathcal{C}}(V) = \operatorname{tr}_{\mathcal{C}}(\operatorname{Id}_{V}) = d_{V} \circ c \circ b_{V}.$$

We call these the *categorical trace* and *categorical dimension*.

For finite dimensional k-vector spaces, and representations of groups and Lie algebras, these are precisely the usual trace and dimension functions with values in

$$K = \operatorname{End}_{\mathcal{C}}(\mathbb{1}) = k.$$

If V is a representation of a Lie superalgebra, then

$$\dim_{\mathcal{C}}(V) = \operatorname{sdim}(V) := \operatorname{dim}(V_{\overline{0}}) - \operatorname{dim}(V_{\overline{1}}),$$

the superdimension of V.

If *V* is a representation of a quantum group $U_q(\mathfrak{g})$, then

 $\dim_{\mathcal{C}}(V)$

is the quantum dimension.

Low Dimensional Topology

Main Idea (Reshetikhin and Turaev)

Given a ribbon category C, you can construct a knot invariant as follows:

A knot $K \rightsquigarrow$ A knot diagram for $K \rightsquigarrow$ End_C(1).

The second step is by labelling the diagram of K with objects of C and using the diagrammatic calculus to interpret as a morphism in C.

Problems

- Many categories arising in algebra are symmetric (i.e. the square of the braiding is the identity) and, hence, yield only trivial invariants.
- Many objects in these categories have categorical dimension zero and, again, necessarily yield only trival invariants.

Solutions

Use quantum (super)groups.

Solutions

- Use quantum (super)groups.
- 2 Define modified dimension functions:
 - Typical representations for Type I quantum supergroups (Geer Patureau-Mirand);
 - Nilpotent representations of U_q (sl₂) at a root of unity (Geer - Patureau-Mirand - Turaev);
 - General ribbon category (Geer - Kujawa - Patureau-Mirand).

Generalities

Definition

Given *J* in *C*, let \mathcal{I}_J be the full subcategory of all objects *V* in *C* for which there exist an object *X* and morphisms

$$\alpha: \mathbf{V} \to \mathbf{J} \otimes \mathbf{X} \qquad \qquad \beta: \mathbf{J} \otimes \mathbf{X} \to \mathbf{V},$$

with

$$\beta \circ \alpha = \mathsf{Id}_V.$$

Definition

A *trace* on \mathcal{I}_J is a family of *K*-linear functions $\{t_V\}_{V \in \mathcal{I}_J}$,

```
t_V : \operatorname{End}_{\mathcal{C}}(V) \to K,
```

which satisfy natural generalizations of properties of the ordinary trace function:

• If $U, V \in \mathcal{I}_J$ then for any morphisms $f : V \to U$ and $g : U \to V$ in \mathcal{C} we have

$$t_V(g \circ f) = t_U(f \circ g).$$

2 If $U \in \mathcal{I}_J$ and $W \in \text{Objects}(\mathcal{C})$ then for any $f \in \text{End}_{\mathcal{C}}(U \otimes W)$ we have

$$t_{U\otimes W}(f) = t_U(\operatorname{Tr}_R(f)).$$

Definition

A *K*-linear function $t : \text{End}_{\mathcal{C}}(J) \to K$ is an *ambidextrous trace* on *J* if for all $h \in \text{End}_{\mathcal{C}}(J \otimes J)$,

 $t\left(\mathrm{Tr}_{L}(h)\right)=t\left(\mathrm{Tr}_{R}(h)\right).$

Where:

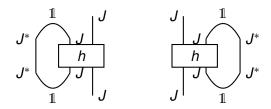


Figure: $Tr_L(h)$ and $Tr_R(h)$.

Theorem

- If *I_J* is an ideal of a ribbon category *C* and {*t_V*}_{*V*∈*I_J} is a trace on this ideal, then each <i>t_V* is an ambidextrous trace on *V*.
 </sub>
- Conversely, if J in C admits an ambidextrous trace, then there is a unique trace on IJ determined by that ambidextrous trace.

Theorem

- If *I_J* is an ideal of a ribbon category *C* and {*t_V*}_{*V*∈*I_J} is a trace on this ideal, then each <i>t_V* is an ambidextrous trace on *V*.
 </sub>
- Conversely, if J in C admits an ambidextrous trace, then there is a unique trace on IJ determined by that ambidextrous trace.

Definition

Given a trace $\{t_V\}_{V \in \mathcal{I}_J}$, the modified dimension function

$$\mathsf{d}_J:\mathsf{Objects}\,(\mathcal{I}_J) o K$$

is defined by:

$$\mathsf{d}_J(V) = t_V(\mathsf{Id}_V).$$

A Baby Example

If J = 1:

- Then $\mathcal{I}_1=\mathcal{C}$ and the categorical trace defines a trace on $\mathcal{I}_1.$
- It's easy to see that the identity map End_C(1) → K defines an ambidextrous trace on 1.
- In this way we recover the categorical trace and dimension functions.

• Are there other examples?

- Are there other examples?
- Yes! Typical reps of Type I quantum supergroups, quantum sl₂ at a root of unity, ...

- Are there other examples?
- Yes! Typical reps of Type I quantum supergroups, quantum sl₂ at a root of unity, ...
- But first some general results.

Theorem

Let *V* be an object in \mathcal{I}_J , assume *J* is irreducible and \mathcal{I}_J admits a nontrivial trace. Then:

- Let $U \in \mathcal{I}_V \subseteq \mathcal{I}_J$. If $d_J(V) = 0$, then $d_J(U) = 0$.
- **2** If *V* is irreducible, then the epimorphism $d_V \otimes Id_J : V^* \otimes V \otimes J \rightarrow J$ splits if and only if $d_J(V) \neq 0$.
- If *J* is not projective in *C* and *P* is projective in *C*, then *P* is an object of \mathcal{I}_J and $d_J(P) = 0$.

When J = 1

One Specialization

Let $C = I_1$ be the category of finite dimensional *G*-modules over an algebraically closed field *k* of characteristic *p*. Then:

- If p divides dim_k(V), then p divides dim_k(U) for any direct summand U of any $V \otimes X$.
- 2 If V is irreducible, then k is a direct summand of $V \otimes V^*$ if and only if p does not divide dim_k(V).
- If p divides the order of G and P is projective in C, then p divides dim_k(P).

(Landrock, Benson - Carlson)

When J = 1, cont.

Another Specialization

Let $C = I_1$ be the finite dimensional representations of a complex Lie superalgebra. Then:

- If sdim(V) = 0, then sdim(U) = 0 for any direct summand U of any $V \otimes X$.
- ② If *V* is irreducible, then \mathbb{C} is a direct summand of *V* ⊗ *V*^{*} if and only if sdim(*V*) ≠ 0.
- If *P* is projective in C, then sdim(*P*) = 0.

When J = 1, cont.

Another Specialization

Let $C = I_1$ be the finite dimensional representations of a complex Lie superalgebra. Then:

- If sdim(V) = 0, then sdim(U) = 0 for any direct summand U of any $V \otimes X$.
- ② If *V* is irreducible, then \mathbb{C} is a direct summand of *V* ⊗ *V*^{*} if and only if sdim(*V*) ≠ 0.
- If *P* is projective in C, then sdim(*P*) = 0.

Yet More Specializations

Let $C = I_1$ be the finite dimensional representations of a quantum group (Andersen), quantum supergroups, . . .

A Real Example (finally!)

Let's consider an application of this framework to representation theory.

Lie Superalgebras

- Say g is a complex basic Lie superalgebra and C is its finite dimensional reps.
- Let atypicality and defect be as in Vera's talk.
- In particular,

 $def(\mathfrak{g}) = atyp(\mathbb{C}).$

A Real Example (finally!)

Let's consider an application of this framework to representation theory.

Lie Superalgebras

- Say g is a complex basic Lie superalgebra and C is its finite dimensional reps.
- Let atypicality and defect be as in Vera's talk.
- In particular,

 $\text{def}(\mathfrak{g})=\text{atyp}(\mathbb{C}).$

Conjecture

Let L be a simple object in C. Then,

```
\operatorname{atyp}(L) = \operatorname{def}(\mathfrak{g}) if and only if \operatorname{sdim}(L) \neq 0.
```

```
(Kac-Wakimoto 1996, Serganova 2009)
```

In our language:

Conjecture

Let *L* be a simple object in C. Then,

 $\operatorname{atyp}(L) = \operatorname{atyp}(\mathbb{C})$ if and only if $d_{\mathbb{C}}(L) \neq 0$.

In our language:

Conjecture

Let *L* be a simple object in C. Then,

```
\operatorname{atyp}(L) = \operatorname{atyp}(\mathbb{C}) if and only if d_{\mathbb{C}}(L) \neq 0.
```

This is naturally the "top level" of a more general conjecture:

In our language:

Conjecture

Let L be a simple object in C. Then,

```
\operatorname{atyp}(L) = \operatorname{atyp}(\mathbb{C}) if and only if d_{\mathbb{C}}(L) \neq 0.
```

This is naturally the "top level" of a more general conjecture:

Generalized KW Conjecture

Let \mathfrak{g} be a basic classical Lie superalgebra, let J be a simple \mathfrak{g} -supermodule such that \mathcal{I}_J admits a nonzero trace and $L \in \mathcal{I}_J$ be a simple \mathfrak{g} -supermodule. Then,

 $\operatorname{atyp}(L) = \operatorname{atyp}(J)$ if and only if $d_J(L) \neq 0$.

Type A

Theorem

Let $\mathfrak{g} = \mathfrak{gl}(m|n)$, let *J* be a simple \mathfrak{g} -supermodule which admits an ambidextrous trace, and let $L \in \mathcal{I}_J$ be a simple \mathfrak{g} -supermodule. Then the following are true.

- One always has $atyp(L) \le atyp(J)$.
- **2** If $d_J(L) \neq 0$, then atyp(L) = atyp(J).
- If atyp(J) = 0, then atyp(L) = 0 and $d_J(L) \neq 0$.
- If *J* and *L* are polynomial, then *J* necessarily admits an ambidextrous trace (i.e. it does not have to be assumed), and $d_J(L) \neq 0$ if and only if atyp(L) = atyp(J).

Type A

Theorem

Let $\mathfrak{g} = \mathfrak{gl}(m|n)$, let *J* be a simple \mathfrak{g} -supermodule which admits an ambidextrous trace, and let $L \in \mathcal{I}_J$ be a simple \mathfrak{g} -supermodule. Then the following are true.

- One always has $atyp(L) \leq atyp(J)$.
- **2** If $d_J(L) \neq 0$, then atyp(L) = atyp(J).
- If atyp(J) = 0, then atyp(L) = 0 and $d_J(L) \neq 0$.
- If *J* and *L* are polynomial, then *J* necessarily admits an ambidextrous trace (i.e. it does not have to be assumed), and $d_J(L) \neq 0$ if and only if atyp(L) = atyp(J).

That is, for $\mathfrak{gl}(m|n)$ we proved one direction of the generalized KW conjecture in general. Both directions for atypicality zero and polynomial representations.