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What is a Ribbon Category?

A tensor category C is a category equipped with:
a covariant bifunctor ⊗ : C × C → C called the tensor
product;
a unit object 1 - ie. for all V : V ⊗ 1 ∼= V and 1⊗ V ∼= V ;
associativity - ie. for all U,V ,W :

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) ;

The Triangle and Pentagon Axioms hold.

Jan 2010, AMS-SF Ribbon Cats 2/35



(V ⊗ 1)⊗W V ⊗ (1⊗W )

V ⊗W

∼=

∼= ∼=

Figure: Triangle Axiom
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((U ⊗ V )⊗W )⊗ X

(U ⊗ (V ⊗W ))⊗ X (U ⊗ V )⊗ (W ⊗ X )

U ⊗ ((V ⊗W ))⊗ X U ⊗ (V ⊗ (W ⊗ X ))

∼=

∼=

∼= ∼=
∼=

Figure: Pentagon Axiom
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A duality is a functor V 7→ V ∗ such that for all V ∈ V , there is
maps

bV : 1→ V ⊗ V ∗ dV : V ∗ ⊗ V → 1.

A braiding is isomorphisms for all V ,W in C:

cV ,W : V ⊗W →W ⊗ V

A twist is an isomorphism for every V in C:

θV : V → V
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Definition
A ribbon category is a tensor category C with duality, braiding,
and twists.

Caveat
Subject to some axioms, of course!
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A Baby Example

Finite Dimensional Vector Spaces
Let k be a field, and let C be the category of finite-dimensional
k -vector spaces. Let

⊗ = ⊗k

V ∗ = Homk (V , k)

1 = k

Given V in C, let {vi} be a arbitrary fixed basis for V and
{

v∗i
}

is the basis for V ∗ given by v∗i (vj) = δi,j .
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cV ,W :V ⊗W →W ⊗ V
cV ,W (v ⊗ w) = w ⊗ v

bV :1→ V ⊗ V ∗

bV (1) =
∑

vi ⊗ v∗i .

dV :V ∗ ⊗ V → 1

dV (f ⊗ v) = f (v).

θV = IdV :V → V
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More Interesting Examples

Let k be a fixed field, and let C be the category of finite
dimensional representations for:

A group;
A Lie algebra;
A Lie superalgebra.

Then the same morphisms (or graded versions) make C a
ribbon category.

Observe, all of these examples have the feature that

cW ,V ◦ cV ,W = IdV⊗W .

That is, they are symmetric.
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Nonsymmetric Example
If Uq(g) is a quantum (super)group, then the category C of
finite-dimensional Uq(g)-(super)modules is a ribbon category.
But,

cW ,V ◦ cV ,W 6= IdV⊗W .
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What about those Axioms?

1⊗ V ∼= V V

V ∗ ⊗ V ⊗ V

V ⊗ V ∗ ⊗ V =

V ⊗ V ⊗ V ∗

V ∼= V ⊗ 1 V

1⊗ bV

1⊗ cV ,V∗

cV ,V∗ ⊗ 1

dV ⊗ 1

IdV

Figure: An Axiom
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The Diagrammatic Calculus

V ⊗ V ∗

1

bV
V

1

V ∗

1

V ∗ ⊗ V

dV
V ∗

1

V
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W ⊗ V

V ⊗W

cV ,W

W

WV

V

V

V

V

V

V

V

V ⊗W

W ⊗ V

c−1
V ,W

V

V
V

V

V

V

V

V

W

W
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For a general f ∈ HomC(V ,W ):

W

V

f f

V

W
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Rules for Combining Diagrams
Composition corresponds to vertical concatenation of
diagrams (read bottom to top);
Tensor product corresponds to horizontal concatenation
(read left to right).
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Algebraically, our axiom was:

d ′V ⊗ 1 ◦ 1⊗ b′V = IdV .

Graphically, our axiom becomes:

V

V

V ∗

1

V
V

1

=

V

IdV

V
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Fundamental Observation
The axioms of a Ribbon Category are precisely those required
so that isotopic (ie. topologically equivalent) diagrams
corresponding to identical morphisms in C!

White Lie
Actually, the diagrams should be drawn with ribbons, not
lines, and a 360◦ twist of IdV corresponds to the twist
isomorphism θV : V → V .
We’ll suppress the twists for clarity.
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Here and throughout, let C be a ribbon category and assume

K = EndC(1)

is a field.

Example
Define trC : EndC(V )→ K and dimC : Objects(C)→ K by:

f
V

1
V ∗

V
1

V ∗

V
1

V ∗

V
1

V ∗

Figure: The categorical trace trC(f ) and dimension dimC(V ).
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Algebraically they are given by:

trC(f ) = dV ◦ c ◦ f ⊗ 1 ◦ bV

dimC(V ) = trC(IdV ) = dV ◦ c ◦ bV .

We call these the categorical trace and categorical dimension.

For finite dimensional k -vector spaces, and representations of
groups and Lie algebras, these are precisely the usual trace
and dimension functions with values in

K = EndC(1) = k .
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If V is a representation of a Lie superalgebra, then

dimC(V ) = sdim(V ) := dim(V0̄)− dim(V1̄),

the superdimension of V .

If V is a representation of a quantum group Uq(g), then

dimC(V )

is the quantum dimension.
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Low Dimensional Topology

Main Idea (Reshetikhin and Turaev)
Given a ribbon category C, you can construct a knot invariant
as follows:

A knot K  A knot diagram for K  EndC(1).

The second step is by labelling the diagram of K with objects of
C and using the diagrammatic calculus to interpret as a
morphism in C.
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Problems
1 Many categories arising in algebra are symmetric (i.e. the

square of the braiding is the identity) and, hence, yield only
trivial invariants.

2 Many objects in these categories have categorical
dimension zero and, again, necessarily yield only trival
invariants.
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Solutions
1 Use quantum (super)groups.

2 Define modified dimension functions:
Typical representations for Type I quantum supergroups
(Geer - Patureau-Mirand);
Nilpotent representations of Uq (sl2) at a root of unity
(Geer - Patureau-Mirand - Turaev);
General ribbon category
(Geer - Kujawa - Patureau-Mirand).
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Generalities

Definition
Given J in C, let IJ be the full subcategory of all objects V in C
for which there exist an object X and morphisms

α : V → J ⊗ X β : J ⊗ X → V ,

with
β ◦ α = IdV .
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Definition
A trace on IJ is a family of K -linear functions {tV}V∈IJ ,

tV : EndC(V )→ K ,

which satisfy natural generalizations of properties of the
ordinary trace function:

1 If U,V ∈ IJ then for any morphisms f : V → U and
g : U → V in C we have

tV (g ◦ f ) = tU(f ◦ g).

2 If U ∈ IJ and W ∈ Objects(C) then for any
f ∈ EndC(U ⊗W ) we have

tU⊗W (f ) = tU (TrR(f )) .
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Definition
A K -linear function t : EndC(J)→ K is an ambidextrous trace
on J if for all h ∈ EndC(J ⊗ J),

t (TrL(h)) = t (TrR(h)) .

Where:

h

J

J

J∗

1

J

J∗
1

J
h

J

J

J

1

J∗

J

1

J∗

Figure: TrL(h) and TrR(h).
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Theorem

If IJ is an ideal of a ribbon category C and {tV}V∈IJ is a
trace on this ideal, then each tV is an ambidextrous trace
on V .
Conversely, if J in C admits an ambidextrous trace, then
there is a unique trace on IJ determined by that
ambidextrous trace.

Definition
Given a trace {tV}V∈IJ , the modified dimension function

dJ : Objects (IJ)→ K

is defined by:
dJ(V ) = tV (IdV ).
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A Baby Example
If J = 1:

Then I1 = C and the categorical trace defines a trace on
I1.
It’s easy to see that the identity map EndC(1)→ K defines
an ambidextrous trace on 1.
In this way we recover the categorical trace and dimension
functions.
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Are there other examples?

Yes! Typical reps of Type I quantum supergroups, quantum
sl2 at a root of unity, . . .
But first some general results.
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Theorem
Let V be an object in IJ , assume J is irreducible and IJ admits
a nontrivial trace. Then:

1 Let U ∈ IV ⊆ IJ . If dJ(V ) = 0, then dJ(U) = 0.
2 If V is irreducible, then the epimorphism

dV ⊗ IdJ : V ∗ ⊗ V ⊗ J −→ J splits if and only if dJ(V ) 6= 0.
3 If J is not projective in C and P is projective in C, then P is

an object of IJ and dJ(P) = 0.
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When J = 1

One Specialization
Let C = I1 be the category of finite dimensional G-modules
over an algebraically closed field k of characteristic p. Then:

1 If p divides dimk (V ), then p divides dimk (U) for any direct
summand U of any V ⊗ X .

2 If V is irreducible, then k is a direct summand of V ⊗ V ∗ if
and only if p does not divide dimk (V ).

3 If p divides the order of G and P is projective in C, then p
divides dimk (P).

(Landrock, Benson - Carlson)
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When J = 1, cont.

Another Specialization
Let C = I1 be the finite dimensional representations of a
complex Lie superalgebra. Then:

1 If sdim(V ) = 0, then sdim(U) = 0 for any direct summand
U of any V ⊗ X .

2 If V is irreducible, then C is a direct summand of V ⊗ V ∗ if
and only if sdim(V ) 6= 0.

3 If P is projective in C, then sdim(P) = 0.

Yet More Specializations
Let C = I1 be the finite dimensional representations of a
quantum group (Andersen), quantum supergroups, . . .
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A Real Example (finally!)
Let’s consider an application of this framework to
representation theory.

Lie Superalgebras
Say g is a complex basic Lie superalgebra and C is its finite
dimensional reps.
Let atypicality and defect be as in Vera’s talk.
In particular,

def(g) = atyp(C).

Conjecture
Let L be a simple object in C. Then,

atyp(L) = def(g) if and only if sdim(L) 6= 0.

(Kac-Wakimoto 1996, Serganova 2009)
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In our language:

Conjecture
Let L be a simple object in C. Then,

atyp(L) = atyp(C) if and only if dC(L) 6= 0.

This is naturally the “top level” of a more general conjecture:

Generalized KW Conjecture
Let g be a basic classical Lie superalgebra, let J be a simple
g-supermodule such that IJ admits a nonzero trace and L ∈ IJ
be a simple g-supermodule. Then,

atyp(L) = atyp(J) if and only if dJ(L) 6= 0.
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Type A

Theorem
Let g = gl(m|n), let J be a simple g-supermodule which admits
an ambidextrous trace, and let L ∈ IJ be a simple
g-supermodule. Then the following are true.

1 One always has atyp(L) ≤ atyp(J).
2 If dJ(L) 6= 0, then atyp(L) = atyp(J).
3 If atyp(J) = 0, then atyp(L) = 0 and dJ(L) 6= 0.
4 If J and L are polynomial, then J necessarily admits an

ambidextrous trace (i.e. it does not have to be assumed),
and dJ(L) 6= 0 if and only if atyp(L) = atyp(J).

That is, for gl(m|n) we proved one direction of the generalized
KW conjecture in general. Both directions for atypicality zero
and polynomial representations.
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