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Lie theoretic data

Let C = (Cij)i ,j∈I be a generalized Cartan matrix. Identify the
index set I with the vertices of the corresponding Dynkin diagram
Γ. Orient the edges of Γ in an arbitrary way.

For example,

A∞ : · · · −→ −2 −→ −1 −→ 0 −→ 1 −→ 2 −→ · · ·

A
(1)
2 : ↗ ↘

2 ←− 1

0

• {αi}i∈I the set of simple roots;

• Φ+ the corresponding set of positive roots;

• Q+ :=
⊕

i∈I Z≥0 · αi ;

• for α =
∑

i∈I miαi ∈ Q+, denote ht(α) :=
∑

i∈I mi ;

• W :=
⊔

d≥0 I d (words in the alphabet I );

• for α ∈ Q+, define words of weight α:

Wα := {i = (i1, . . . , id) ∈W | αi1 + · · ·+ αid = α}.
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KLR algebras

Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

Rd = Rd(C ) (d ∈ Z≥0)

given by generators and relations.

Fix the ground field F . Then

Rd =
⊕

α∈Q+, ht(α)=d

Rα.

Each Rα (= a block of Rd) is a unital F -algebra generated by

{e(i) | i ∈Wα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}

and some relations. For example, the relations say that e(i)’s are
mutually orthogonal idempotents which sum to 1, that e’s and y ’s
commute, there is an important relation

e(i)ψr = ψr e((r , r + 1) · i),
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KLR algebras (continued)

and there are explicit relations between y ’s and ψ’s and between
different ψ’s, all depending on the idempotents,

for example

(yr+1ψr − ψr yr )e(i) =

{
e(i) if ir = ir+1,
0 if ir 6= ir+1.

ψ2
r e(i) = Qir ,ir+1(yr , yr+1)e(i).

for certain explicit polynomial Qir ,ir+1 depending on cir ,ir+1 and
orientation (i.e. on how ir and ir+1 are connected in the Dynkin
diagram).

Note that the Lie type C comes in through the idempotents e(i),
not through Coxeter relations...

A (Z-)grading on Rα is defined by prescribing explicit degrees to
the generators e(i), yr e(i), and ψr e(i).
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Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used Rd to
categorify quantum groups.

More precisely, the Khovanov-Lauda
theorem says that the category of finitely generated projective
graded modules over the algebras Rd for all d ∈ Z≥0 categorify the
negative part f of the quantum group corresponding to the Cartan
matrix C . This leads to a definition of 2-Kac-Moody algebras and
further categorical generalizations of Kac-Moody algebras,
quantum groups and modules over them...

Motivation 2: Brundan-K.’08 constructed explicit isomorphisms
between the usual cyclotomic Hecke algebras HΛ

d and the
corresponding cyclotomic quotients RΛ

d of Rd for C “of type A”:

HΛ
d
∼= RΛ

d (C ).

This sheds some new light on the classical representation theory of
Hecke algebras and symmetric groups, for example allowing us to
grade the corresponding irreducible modules and Specht modules,
study graded decomposition numbers, and so on.
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Motivation for KLR algebras (continued)

The cyclotomic Hecke algebra HΛ
d depends on the parameter

q ∈ F×.

Let e be the smallest positive integer such that

1 + q + · · ·+ qe−1 = 0,

set e := 0 if no such integer exists. E.g. if q = 1, then e = char F .

Theorem (Brundan-K.’08)

Let the Cartan matrix C be of type

C :=

{
A∞ if e = 0,

A
(1)
e−1 if e > 0.

Then HΛ
d
∼= RΛ

d .

So representation theory of Rd(A∞) is equivalent to representation
theory of affine Hecke algebras in characteristic zero (or with

generic parameter), while representation theory of Rd(A
(1)
e−1) is

equivalent to modular representation theory in “characteristic e”.
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Stupid philosophy

One should think about representation theory of Rd(C ) as
representation theory of symmetric group Sd (and more generally
the corresponding affine Hecke algebra Hd) “in characteristic C ”.

For example representation theory of Sd = HΛ0
d “in characteristic

E8” is representation theory of RΛ0
d (E8) which is contained in

representation theory of Rd(E8) just like representation theory of
Sd is contained in representation theory of the corresponding
(degenerate) affine Hecke algebra Hd .

Goal: classify the irreducible modules over Rd(C ) for the Cartan
matrix C of finite type.

Assume from now that C is of finite type (A∞, B∞, C∞ and D∞
are also allowed).

(It was noticed by Khovanov and Lauda that irreducible
Rd -modules are always finite dimensional.)
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Word theory (think weight theory!)

Let V be a finite dimensional Rα-module and i ∈Wα.

We refer to

Vi := e(i)V

as the i-word space of V . We have word space decomposition:

V =
⊕
i∈Wα

Vi.

To be able to speak of a highest word, pick any total order on I .
This induces lexicographic order “≤” on the words.

Theorem

The isomorphism class of an irreducible Rα-module L is determined
by the highest word of L.

Notation: if i is the highest word of an irreducible Rα-module L,
we denote L by L(i).
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Word theory (continued)

Definition

A word i ∈Wα is called dominant if and only if it occurs as a
highest word of some (irreducible) Rα-module. The set of all
dominant words in Wα is denoted by Wα

+.

So the theorem above can be interpreted as the statement that

{L(i) | i ∈Wα
+}

is a complete and irredundant set of irreducible Rα-modules.

The goal now is to describe the set of dominant words and to
construct the simple modules as heads of certain standard modules.



Word theory (continued)

Definition

A word i ∈Wα is called dominant if and only if it occurs as a
highest word of some (irreducible) Rα-module. The set of all
dominant words in Wα is denoted by Wα

+.

So the theorem above can be interpreted as the statement that

{L(i) | i ∈Wα
+}

is a complete and irredundant set of irreducible Rα-modules.

The goal now is to describe the set of dominant words and to
construct the simple modules as heads of certain standard modules.



Word theory (continued)

Definition

A word i ∈Wα is called dominant if and only if it occurs as a
highest word of some (irreducible) Rα-module. The set of all
dominant words in Wα is denoted by Wα

+.

So the theorem above can be interpreted as the statement that

{L(i) | i ∈Wα
+}

is a complete and irredundant set of irreducible Rα-modules.

The goal now is to describe the set of dominant words and to
construct the simple modules as heads of certain standard modules.



Word Combinatorics

A word i 6= ∅ is called a Lyndon word if it is lexicographically
smaller than all its proper right factors.

Classical fact: every word i has a unique factorization

i = i(1)i(2) · · · i(k)

such that i(1) ≥ i(2) ≥ · · · ≥ i(k) are Lyndon words. This is called
the canonical factorization of i.

Theorem

Let i ∈Wα and
i = i(1)i(2) · · · i(k)

be the canonical factorization of i. Then i is dominant if and only
if each i(k) is dominant.

Thus we are reduced to describing only dominant Lyndon words,
which we call minuscule words.
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Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) There is a minuscule word in Wα if and only if α ∈ Φ+, in
which case there is exactly one minuscule word in Wα.
Denote this word by iα. Thus

Φ+ → {minuscule words}, β 7→ iβ

is a bijection between the set of positive roots and the set of
all minuscule words.

(ii) Let β ∈ Φ+. Then iβ is the smallest element among Wβ
+.

(iii) Let β ∈ Φ+ and

C (β) = {(β1, β2) ∈ Φ+ × Φ+ | β1 + β2 = β, iβ1 < iβ2}.

Then iβ = max{iβ1 iβ2 | (β1, β2) ∈ C (β)}.
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Cuspidal modules

A minuscule (or cuspidal) module is an irreducible module of the
form L(i) for a minuscule i.

Thus the minuscule modules are
exactly {L(iβ) | β ∈ Φ+}.
The idea now is that minuscule modules should be easy to
construct explicitly and then other irreducible modules could be
constructed out of them using induction (hence the competing
term “cuspidal”).
What we were doing so far applied to an arbitrary ordering of I
(and so we obtained |I |! different parametrizations of irreducible
modules!), but for the construction of minuscule modules it is
convenient to work with an appropriate natural ordering of the
simple roots.
E.g. if you choose one of the two natural orderings in type An:

1 < 2 < · · · < n or 1 > 2 > · · · > n

then the minuscule modules are just one-dimensional and they
correspond to Zelevinsky segments.
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Cuspidal modules (continued)

Originally, we were able to construct the miniscule modules in all
types other than E8 and F4 (for some specific natural choice of the
ordering on I ). In type E8 we could construct them for all but 12
positive positive roots.

Fortunately, this issues has been resolved recently by Hill, Melvin,
and Mondragon, who were able to construct all cuspidal modules
for certain natural orderings on I .
A special case of their result which improves our work in type E8 is

Theorem (Hill-Melvin-Mondragon’09)

In simply laced types (ADE), there is an order on I , for which all
minuscule modules are homogeneous, and hence can be explicitly
constructed using K.-Ram’08.
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Induction

Let α, β ∈ Q+. There is an obvious (non-unital) algebra
embedding of Rα ⊗ Rβ into the Rα+β mapping e(i)⊗ e(j) to e(ij).

The image of the identity element of Rα ⊗ Rβ under this map is

eα,β =
∑

i∈Wα,j∈Wβ

e(ij).

Consider the functor

Indα+β
α,β := Rα+βeα,β⊗Rα⊗Rβ

? : Rα ⊗ Rβ-Mod→ Rα+β-Mod .

For α, β ∈ Q+, M ∈ Rep(Rα) and N ∈ Rep(Rβ), we denote

M ◦ N := Indα+β
α,β (M � N).



Induction

Let α, β ∈ Q+. There is an obvious (non-unital) algebra
embedding of Rα ⊗ Rβ into the Rα+β mapping e(i)⊗ e(j) to e(ij).
The image of the identity element of Rα ⊗ Rβ under this map is

eα,β =
∑

i∈Wα,j∈Wβ

e(ij).

Consider the functor

Indα+β
α,β := Rα+βeα,β⊗Rα⊗Rβ

? : Rα ⊗ Rβ-Mod→ Rα+β-Mod .

For α, β ∈ Q+, M ∈ Rep(Rα) and N ∈ Rep(Rβ), we denote

M ◦ N := Indα+β
α,β (M � N).



Induction

Let α, β ∈ Q+. There is an obvious (non-unital) algebra
embedding of Rα ⊗ Rβ into the Rα+β mapping e(i)⊗ e(j) to e(ij).
The image of the identity element of Rα ⊗ Rβ under this map is

eα,β =
∑

i∈Wα,j∈Wβ

e(ij).

Consider the functor

Indα+β
α,β := Rα+βeα,β⊗Rα⊗Rβ

? : Rα ⊗ Rβ-Mod→ Rα+β-Mod .

For α, β ∈ Q+, M ∈ Rep(Rα) and N ∈ Rep(Rβ), we denote

M ◦ N := Indα+β
α,β (M � N).



Induction

Let α, β ∈ Q+. There is an obvious (non-unital) algebra
embedding of Rα ⊗ Rβ into the Rα+β mapping e(i)⊗ e(j) to e(ij).
The image of the identity element of Rα ⊗ Rβ under this map is

eα,β =
∑

i∈Wα,j∈Wβ

e(ij).

Consider the functor

Indα+β
α,β := Rα+βeα,β⊗Rα⊗Rβ

? : Rα ⊗ Rβ-Mod→ Rα+β-Mod .

For α, β ∈ Q+, M ∈ Rep(Rα) and N ∈ Rep(Rβ), we denote

M ◦ N := Indα+β
α,β (M � N).



Constructing all irreducible modules

Let i ∈Wα
+. We want to construct L(i).

Write the canonical factorization of i:

i = i(1)i(2) . . . i(k),

i.e. i(1) ≥ i(2) ≥ · · · ≥ i(k) are minuscule words.
Define the standard module of highest weight i:

∆(i) := L(i(1)) ◦ · · · ◦ L(i(k)).

Theorem

Let α ∈ Q+, i ∈Wα
+, and ∆(i) be the standard Rα-module. Then:

(i) The highest word of ∆(i) is i.

(ii) ∆(i) has an irreducible head L(i).

(iii) (Generalized Kato) If i = jn for a good Lyndon word j, then
L(i) = ∆(i).
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A conjecture

Conjecture

Let C be a Cartan matrix of finite type. Then the formal
characters of irreducible Rd(C )-modules are independent of the
characteristic of the ground field F .

Remark. A different classification of irreducible modules over KLR
algebras was obtained by Lauda and Vazirani.
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