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The Problem

k - algebraically closed field of characteristic p > 0

G - reductive algebraic group over k (split over Fp)

q = pr for an integer r ≥ 1

G (Fq) - associated finite Chevalley group

Question

What is the least positive i such that

Hi (G (Fq), k) 6= 0?
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Vanishing Ranges

Quillen, 1972

Hi (GLn(Fq), k) = 0 for 0 < i < r(p − 1).

No claim of “sharpness.”

For a split reductive G , there exists some constant C
depending only on the root system, such that
Hi (G (Fq), k) = 0 for 0 < i < r · C

For SL2: C = p−1
2 ; no other values given.

Not sharp in general (cf. Carlson, 1983)
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More Vanishing Ranges

Friedlander, 1975

Vanishing ranges for special orthogonal and symplectic groups.

Hiller, 1980

Vanishing ranges for G simply connected for all types.

Friedlander and Parshall, 1986

B(Fq) ⊂ GLn(Fq)

Hi (B(Fq), k) = 0 for 0 < i < r(2p − 3)

Hr(2p−3)(B(Fq), k) 6= 0
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Notation

G - simple and simply connected

Φ - root system

T - torus

B - Borel subgroup (corresponding to negative roots)

U - its unipotent radical

W - Weyl group

X (T ) - weights

X (T )+ - dominant weights

For λ ∈ X (T )+, H0(λ) := indG
B (λ) - the costandard module

For λ ∈ X (T )+, V (λ) := H0(λ∗)∗ - the Weyl or standard
module

w0 - longest word W

λ∗ := −w0(λ)
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The Strategy

Step 1: Hi (G (Fq), k) ' Hi (G , indG
G(Fq)

(k))

Step 2: Filter indG
G(Fq)

(k) by H0(λ)⊗ H0(λ∗)(r)

Step 3: For r = 1, relate Hi (G ,H0(λ)⊗ H0(λ∗)(1)) to
Hi (G1,H

0(λ))

Step 4: Use root combinatorics and a description of Hi (G1,H
0(λ))

to obtain vanishing information.

Step 5: Use inductive arguments to get vanishing for higher r .
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The Filtration

Proposition

As a G-module, indG
G(Fq)

(k) has a filtration with factors of the

form H0(λ)⊗ H0(λ∗)(r) with multiplicity one for each λ ∈ X (T )+.

“Proof:”
Consider k[G ] as a G × G -module structure via the left and right
regular actions.
As a G -module via G → G × G ,
Known Fact: k[G ] has a filtration by H0(λ)⊗ H0(λ∗).

New action: G → G × G
Id×Fr r

→ G × G
Key Step: Show that indG

G(Fq)
(k) ' k[G ] with this new action.

Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen Vanishing Ranges



The Filtration

Proposition

As a G-module, indG
G(Fq)

(k) has a filtration with factors of the

form H0(λ)⊗ H0(λ∗)(r) with multiplicity one for each λ ∈ X (T )+.

“Proof:”
Consider k[G ] as a G × G -module structure via the left and right
regular actions.
As a G -module via G → G × G ,
Known Fact: k[G ] has a filtration by H0(λ)⊗ H0(λ∗).

New action: G → G × G
Id×Fr r

→ G × G
Key Step: Show that indG

G(Fq)
(k) ' k[G ] with this new action.

Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen Vanishing Ranges



The Filtration

Proposition

As a G-module, indG
G(Fq)

(k) has a filtration with factors of the

form H0(λ)⊗ H0(λ∗)(r) with multiplicity one for each λ ∈ X (T )+.

“Proof:”
Consider k[G ] as a G × G -module structure via the left and right
regular actions.
As a G -module via G → G × G ,
Known Fact: k[G ] has a filtration by H0(λ)⊗ H0(λ∗).

New action: G → G × G
Id×Fr r

→ G × G
Key Step: Show that indG

G(Fq)
(k) ' k[G ] with this new action.

Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen Vanishing Ranges



Vanishing Criteria

Theorem

Let m be the least positive integer such that there exists
ν ∈ X (T )+ with Hm(G ,H0(ν)⊗ H0(ν∗)(r)) 6= 0. Let λ ∈ X (T )+

be such that Hm(G ,H0(λ)⊗ H0(λ∗)(r)) 6= 0. Suppose
Hm+1(G ,H0(ν)⊗ H0(ν∗)(r)) = 0 for all ν < λ that are linked to
λ. Then

(i) Hi (G (Fq), k) = 0 for 0 < i < m;

(ii) Hm(G (Fq), k) 6= 0;

(iii) if, in addition, Hm(G ,H0(ν)⊗ H0(ν∗)(r)) = 0 for all
ν ∈ X (T )+ with ν 6= λ, then
Hm(G (Fq), k) ∼= Hm(G ,H0(λ)⊗ H0(λ∗)(r)).
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The New Goal

Study Hi (G ,H0(λ)⊗ H0(λ∗)(r)) ' ExtiG (V (λ)(r),H0(λ)).

Lemma

If Hi (Gr ,H
0(λ))(−r) admits a good filtration, then

Hi (G ,H0(λ)⊗ H0(λ∗)(r)) ' ExtiG (V (λ)(r),H0(λ))

' HomG (V (λ),Hi (Gr ,H
0(λ))(−r))

Hypothesis holds for r = 1 and p > h (the Coxeter number).
For r > 1, ???
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Root Combinatorics

Consider Hi (G1,H
0(λ)). When can this be non-zero?

By block considerations, we need λ = pµ+ w · 0 for some
µ ∈ X (T ) and w ∈W . Further

Theorem (Andersen-Jantzen 1986, Kumar-Lauritzen-Thomsen
1999)

For p > h,

Hi (G1,H
0(λ))(−1) =

{
indG

B (S
i−`(w)

2 (u∗)⊗ µ) if λ = w · 0 + pµ

0 otherwise,

where u = Lie(U).

Note: since p > h and λ is dominant, µ must also be dominant.
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Root Combinatorics - Continued

Say λ = pµ+ w · 0,

HomG (V (λ),Hi (G1,H
0(λ))(−1))

' HomG (V (λ), indG
B S

i−`(w)
2 (u∗)⊗ µ)

' HomB(V (λ),S
i−`(w)

2 (u∗)⊗ µ)

Therefore, λ− µ = (p − 1)µ+ w · 0 is a sum of i−`(w)
2 positive

roots.

Lemma

Assume that p > h. Assume Hi (G ,H0(λ)⊗ H0(λ∗)(1)) 6= 0. Then
i ≥ (p − 1)〈µ, α̃∨〉 − 1, where α̃ is the longest root.

Note: 〈µ, α̃∨〉 ≥ 1
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Generic Vanishing Theorem

Theorem

Assume that p > h. Then

(a) Hi (G ,H0(λ)⊗ H0(λ∗)(r)) = 0 for 0 < i < r(p − 2) and
λ ∈ X (T )+;

(b) Hi (G (Fq), k) = 0 for 0 < i < r(p − 2).

Note: The r > 1 case requires working with ExtiG (V (λ)(r),H0(ν))
for possibly distinct λ, ν.

While better than previous bounds in most cases: ≈ r
(

p−1
2

)
,

these are still not sharp in general.
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Finding Sharp Bounds

For λ = pµ+ w · 0, if 〈µ, α̃∨〉 ≥ 2, then i ≥ 2(p− 1)− 1 = 2p− 3.

In general, the sharp bound will lie between p − 2 and 2p − 3.

If it is strictly less than 2p − 3, µ is necessarily a fundamental
dominant weight. And in fact certain specific such weights.

The task is then to study Hi (G ,H0(λ)⊗ H0(λ∗)(1)) for those
weights and see whether it in fact is non-zero.

In part, use Kostant Partition Functions.
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Finding Sharp Bounds

From the above description of G1-cohomology, we can more
precisely say:

dim Hi (G ,H0(λ)⊗ H0(λ∗)(1)) =
∑
u∈W

(−1)`(u)P i−`(w)
2

(u · λ− µ)

Pk(ν) is the dimension of the ν weight space in Sk(u∗).

Alternatively, Pk(ν) is the number of distinct ways that ν can be
expressed as a sum of exactly k positive roots.
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Φ of Type An, n ≥ 2

Theorem

Assume that p > n + 1.

(a) (Generic case) If p > n + 2 and n > 3, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 3;
(ii) H2p−3(G (Fp), k) = k.

(b) If p = n + 2, then

(i) Hi (G (Fp), k) = 0 for 0 < i < p − 2;
(ii) Hp−2(G (Fp), k) = k ⊕ k .
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Φ of Type An, n ≥ 2 - Continued

Theorem

Assume that p > n + 1.

(c) If n = 2 and 3 divides p − 1, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 6;
(ii) H2p−6(G (Fp), k) = k ⊕ k .

(d) If n = 2 and 3 does not divide p − 1, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 3;
(ii) H2p−3(G (Fp), k) = k .

(e) If n = 3 and p > 5, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 6;
(ii) H2p−6(G (Fp), k) = k .
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Φ of Type An - r > 1

Theorem

Assume that p > 2(n + 1). Suppose further that p > 11 whenever
n = 4. Then

(a) Hi (G (Fp), k) = 0 for 0 < i < r(2p − 3);

(b) Hr(2p−3)(G (Fp), k) 6= 0.
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Φ of Type Bn, n ≥ 3 - Under Construction

Guess

Assume that p > 2n.

(a) (Generic case) If n ≥ 7, n = 6 with p 6= 13, or n = 5 with
p 6= 11, 13 then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 3;
(ii) H2p−3(G (Fp), k) 6= 0.

(b) If n = 3, 4, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 8;
(ii) H2p−8(G (Fp), k) 6= 0.

(c) If n = 5 and p = 11, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 7;
(ii) H2p−7(G (Fp), k) 6= 0.

(c) If n = 5, 6 and p = 13, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 5;
(ii) H2p−5(G (Fp), k) 6= 0.

Note: For the small n cases, the vanishing ranges can are known.
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Φ of Type Cn, n ≥ 1

Theorem

Assume that p > 2n. Then

(a) Hi (G (Fq), k) = 0 for 0 < i < r(p − 2);

(b) Hr(p−2)(G (Fq), k) 6= 0.

Note: The only dominant weight with
Hp−2(G ,H0(λ)⊗ H0(λ∗)(1)) 6= 0 is λ = (p − 2n)ω1, where ω1 is
the first fundamental dominant weight.
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Φ of Type Dn, n ≥ 4

Theorem

Assume that p > 2n − 2. Then

(a) Hi (G (Fp), k) = 0 for 0 < i < 2p − 2n.

(b) H2p−2n(G (Fp), k) =

{
k if n ≥ 5

k ⊕ k ⊕ k if n = 4.

Note: The “special” weight is λ = (p − 2n + 2)ω1

We should be able to extend this to r > 1.
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Φ of Type E6

Theorem

Assume that p > 12.

(a) If p 6= 13, 19, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 3.
(ii) H2p−3(G (Fp), k) 6= 0.

(b) If p = 13, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 16.
(ii) H16(G (Fp), k) 6= 0.

(c) If p = 19, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 33??.

(ii) H??(G (Fp), k) 6= 0.

We should be able to extend this to r > 1.
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Φ of type E7

Theorem

Assume that p > 18.

(a) If p 6= 19, 23, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 3.
(ii) H2p−3(G (Fp), k) 6= 0.

(b) If p = 19, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 27.
(ii) H27(G (Fp), k) 6= 0.

(c) If p = 23, then

(i) Hi (G (Fp), k) = 0 for 0 < i < 39??.

(ii) H??(G (Fp), k) 6= 0.

We should be able to extend this to r > 1.
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Φ of type E8

Theorem

Assume that p > 30.

(a) Hi (G (Fq), k) = 0 for 0 < i < r(2p − 3).

(b) Hr(2p−3)(G (Fq), k) 6= 0.

Note: The root lattice equals the weight lattice here.

More generally, this should be the answer whenever Φ is simply
laced and the group G is of adjoint type (as opposed to simply
connected).
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Φ of type F4 - Under Construction

Assume that p > 12.

Know: Hi (G (Fp), k) = 0 for 0 < i < 2p − 9.

Guess: H2p−9(G (Fp), k) = 0 and H2p−8(G (Fp), k) 6= 0
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Φ of type G2

Theorem

Assume that p > 6. Then

(i) Hi (G (Fp), k) = 0 for 0 < i < 2p − 8.

(ii) H2p−8(G (Fp), k) 6= 0.
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