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Finite Dimensional sl2 modules
An action of U(sl2) on a finite dimensional vector space V
consists of

I a weight space decomposition V =
⊕

λ∈Z V (λ),
I linear maps

e(λ) : V (λ− 1)→ V (λ+ 1)

f (λ) : V (λ+ 1)→ V (λ− 1)

for each λ. These satisfy

e(λ− 1)f (λ− 1) = λIdV (λ) + f (λ+ 1)e(λ+ 1).

The element s =
[ 0 1
−1 0

]
∈ SL2 acts on V , giving isomorphisms

s : V (−λ)→ V (λ).
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sl2 Categorification

Frameworks for sl2 categorification have been proposed by
Chuang-Rouquier, Lauda, Khovanov-Lauda, and Rouquier.
They define (a collection of closely related) categories U2(sl2)
which categorify the enveloping algebra U(sl2).

Our Goal: Construct geometric representations of U2(sl2).

Ordinary representations of sl2 have been constructed
geometrically by Lusztig, Ginzburg, Nakajima, and others. So it
is natural to look for geometric examples of categorified
representations.
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Geometric sl2 Categorification

I Weight spaces get replaced by varieties:

V (λ) 7→ Y (λ).

I Linear transformations get replaced by Fourier-Mukai
Kernels

e 7→ E , f 7→ F ,

E(λ),F(λ) ∈ Db (Y (λ− 1)× Y (λ+ 1)) .

These kernels are required to satisfy sl2 relations, but only
at the level of cohomology of complexes.

I We require the existence of deformations

Ỹ (λ) −→ A1

with some special properties.
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From Geometry to Categorification

One main virtue of geometric sl2 categorifications is that they
give rise to categorified representations.

Theorem (Cautis-Kamnitzer-L)
A geometric sl2 categorification induces a representation of
U2(sl2) on ⊕

λ

Db (Y (λ)) .

The functors E and F are induced by the kernels E and F , while
the natural transformations (X and T , y and ψ, or dots and
crosses) are constructed using the deformations Ỹ (λ).
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A Basic Example

Fix N ∈ N. For 0 ≤ k ≤ N, set

Y (2k − N) = T ?Gr(k ,N) ∼=

{(x ,V ) : x ∈ MN(C),0 ⊂ V ⊂ CN ,dim(V ) = k and CN x−→ V x−→ 0}

There are tautological bundles
I V ,
I CN/V

on Y (λ).
There are also natural deformations Ỹ (λ), given by varying the
action of x on V and CN/V .
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Hecke Correpondences

For r ≥ 0, define W r (λ) ⊂ Y (λ− r)× Y (λ+ r) by

W r (λ) := {(x ,V ,V ′) : 0 ⊂ V ⊂ V ′ ⊂ CN ; CN x−→ V and V ′ x−→ 0}.

Projections:

π1 : (x ,V ,V ′) 7→ (x ,V ), π2 : (x ,V ,V ′) 7→ (x ,V ′).

Tautological bundles on W r (λ):
I V := π∗1(V )

I V ′ := π∗2(V )

Inclusions:
0 ⊂ V ⊂ V ′ ⊂ CN ∼= O⊕N

W r (λ).
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Kernels E(λ),F(λ) for the Basic Example

Define the kernel E(r)(λ) ∈ D(Y (λ− r)× Y (λ+ r)) by

E(r)(λ) := OW r (λ) ⊗ det(V ′/V )−λ.

Similarly, F (r)(λ) ∈ D(Y (λ+ r)× Y (λ− r)) is defined by

F (r)(λ) := OW r (λ) ⊗ det(CN/V ′)−r det(V )r .
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Functors E and F from kernels E and F .

A kernel A ∈ D(Y (λ)× Y (λ′)) induces a functor

ΦA : D(Y (λ)) −→ D(Y (λ′))

given by
y 7→ π2∗(π

∗
1(y)⊗A).

Thus the kernels E(r)(λ),F (r)(λ) give rise to functors

E(r)(λ) := ΦE(r)(λ) : D(Y (λ− r)) −→ D(Y (λ+ r))

F(r)(λ) := ΦF (r)(λ) : D(Y (λ+ r)) −→ D(Y (λ− r)).
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Relations satisfied by the Es and Fs

I The E’s and F’s are biadjoint up to shifts.
I E’s (and hence F’s) compose as

E(λ+ r) ◦ E(r)(λ− 1)) ∼= E(r+1)(λ)⊗ IH∗(Pr )

via an explicit isomorphism built from the data.
I If λ ≤ 0 then

F(λ+ 1) ◦E(λ+ 1) ∼= E(λ− 1) ◦ F(λ− 1)⊕ Id⊗ IH?(P−λ−1)

via an explicit isomorphism built from the data. (Similarly
for λ ≥ 0.)
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Application: Equivalences

Given any geometric sl2 categorification, we build a complex of
functors

Θ∗ : D(−λ)→ D(λ).

Fix λ ≥ 0. For r = 0, . . . ,N − λ, set

Θr = E(λ+r)(−r)F(r)(−λ− r)[−r ].

The differential Θr → Θr−1 is constructed using units and
counits of adjunctions between E(k) and F(k).
The complex Θ∗ categorifies the action of the reflection element
s ∈ SL2, and was considered first by Chuang-Rouquier.
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Equivalences

Theorem (Cautis-Kamnitzer-L)
The complex Θ∗ is an equivalence between the opposite sl2
weight space categories D(−λ) and D(λ).
Applied to the basic example:

Corollary
The complex Θ∗ gives an equivalence

Θ∗ : D(T ?(Gr(k ,N)) −→ D(T ?(Gr(N − k ,N)).

This answers questions posed by Kawamata and Namikawa.
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From sl2 to g

There are analogous definitions of geometric categorification
when g is a Kac-Moody Lie algebra.

I Examples: Nakajima Quiver Varieties.
I Conjecturally, geometric categorifications induce

representations of U2(g).
I Braid group actions: For each root sl2 inside g, we have an

equivalence Θi∗ given by the Chuang-Rouquier complex.

Theorem (Cautis-Kamnitzer)
The equivalences {Θi∗} coming from a geometric g

categorifcation define an action of the braid group.


