Voisin - Schiffer variations of hypersurfaces and the generic Torelli theorem

Genus-Torelli theorem for hypersurfaces via Schiffer variation

Voisin

The meaning of generic Torelli then is $X \neq \tilde{X}$ in some
hypersurface & \exists another hypersurface $\tilde{H}'(X, Q) \neq H'(\tilde{X}, Q) \Rightarrow X \neq \tilde{X}$?

- Rank: Weaker than Torelli if period map is generically one-to-one.

1. Stronger: From is with Q-coefficient not with Z.

2. Cogas - for curve, Torelli is wrong with (Q).

3. Generically from period map one needs polarization to have no polarization needed.

 Except for c_n, $(3, 3)$ polarization of $H^{2n}(X, Q)$ is unique.

 So it has to preserve polarization.

4. Consider set of $S = \{(t, i) | \exists \tilde{x}, \tilde{y}, \tilde{z} \in C^2, H_i(x, y, z) = H_i(x, y, z)\}$

 set is a Hodge locus \Rightarrow Deligne-Catanri-Kollár

 $S = \emptyset$ closed subset.

\bar{U}_n = universal family.

1983: Thm (Donagi): The generic Torelli theorem holds if $(c_n) \neq (3, 3)$ (it doesn't very but we have a full moduli) with possible exclusion

1. $d | n+1$
2. $d = 4 \Rightarrow 2 \equiv 2 \pmod{4}$
3. $d = 6, n+1 \equiv 3 \pmod{6}$

Voisin: Out of Donagi's leftover cases there are only finitely many exceptions to the generic Torelli theorem via hypersurfaces.

Where does Donagi fail? Suppose that $X' = X$, otherwise...
have \(H_{\pi}^c(X, \mathbb{Q}) = \prod_{x \in X'} H^{\pi}_{x, \mathbb{Q}} \) or \(\varphi U_{\pi} \chi X' \chi \).

Consider \(\Gamma \) local \(\text{then } (d'v) = (2, 3) \) \(x \in X \quad V \) \(\pi \) \(\text{period map is isom.} \)

\(\rightarrow \) \(\exists \varphi \in C(U \ast U) \) \(\text{a local holomorphic} \)

\(\Psi \circ U \cdot U \Psi : H^\pi_{\pi}(X, \mathbb{Q})_x \rightarrow H^\pi_{\pi}(X, \mathbb{Q})_x \) isom \(H^\pi_{\pi}(X, \mathbb{Q})_x \)

\(\rightarrow \) \(\Psi(U) \rightarrow V \) \(\Psi : T_{\pi, u} \rightarrow T_{\pi, v} \)

\(\frac{d}{dt} \left(\begin{array}{c} \Psi(t, x) \\ \text{for } (t, x) \rightarrow (t, H^\pi_{\pi}(X, \mathbb{Q})_x) \rightarrow \text{hom}(R_{\pi}^{\text{short}}, H^\pi_{\pi}(X, \mathbb{Q})_x) \end{array} \right) \)

\(S \in \mathbb{C}[x_0, \ldots, x_d] \)

\(x_i = (x_i) \quad R^*_y = S^*/f^*_y \quad \text{Griffiths residue} \)

\(\phi_{R^*_y} \quad R^*_y \rightarrow R^*_x \quad \text{Hodge residue} \)

\(T_{\pi, x_0} \quad \text{commute with} \quad R^*_x \quad \text{and} \quad R^*_y \)

\(\Rightarrow \text{isomorphism} \quad \text{of} \quad R^*_y \quad \text{and} \quad R^*_x \)

\(\text{except in the exceptional dim ordering, } f \text{ can be reconstructed from } \Psi \)

More precisely, the trick of Donagi is that in \(\Psi \) we don't have full Jacobian, but \(\Psi \) determines the whole Jacobian ring, therefore \(R^*_y \approx R^*_x \quad X' = (f' = 0) \quad X = (f = 0) \)

\(\Rightarrow f = f' \text{ under } \text{GL}(n+1) \quad R^*_y = S^* \quad R^*_x \rightarrow S^* \rightarrow R^*_x \)
\[\text{Set } s \rightarrow J_f \rightarrow S^d \rightarrow R_f \rightarrow 0 \]
\[o \rightarrow J_f \rightarrow S^d \rightarrow R_f \rightarrow 0 \]

Matter: Yani! If you have two hypersurfaces with \(J = J' \), then \(f < f' (\text{generic}) \). If \(f \) is generic
\[f = 2f', \quad x + f \]

Why \(\text{dim}(t) \text{ is a problem?} \)

Dnagi uses symmetrization lemma to allow to recompute math. in \(R_f \) from
\[R_f \xrightarrow{\text{Hodge theory}} \text{(IV+5 of } X_f) \]
when \(\text{dim}(t) \), symmetrization lemma doesn't bring new info.

Main idea: Schiffer variation for \(S^d \) is a one parameter family \(f_t \) with \(x \in S^d \) a linear form.

Why Schiffer? For curve \(C \) is a deformation of \(C \) supp at \(x \).
\[\text{ie } p \left(H^*(C, T_C) \right) = p \left(H^*(C, 2K_C) \right) \]

True: \[[Hp = H^*(C, 2K_C - p)] \]

Note: \(x \)-form are supp at \(x \).

First order Schiffer variation: \(x^\sigma \in C \cdot R_f \)

Lemma: \(f \) is generic, \(\sigma \rightarrow 0 \). Then the set of first order Schiffer variations determines \(f \).

Proof: First order:
\[S^d \rightarrow R_f \]
\[x^\sigma \rightarrow \]
\[
P(R^d_f) \rightarrow P(s^d)_{\text{Var}} \quad \text{Torreso}
\]

Get \(f \) by Mather-Yamasaki.

Define complete embedding.

\[H^0(\mathcal{H}, \mathcal{O}(1)) \rightarrow H^0(W, \mathcal{L}_k)\]

Proof of main: Characterize schiffer variation via Hodge theory.

Part(1): \(\mathcal{U} = \mathbb{R}^d \because R^d_f \) Artinian ring

Say \(I^d_k \subset \mathcal{R}^d_f \)

Ideal generated by \(X^k \).

\[\dim I^d_k = \dim R^d \quad \text{for} \quad x \leq 3 \]

\[\text{have, } I^d_k \cdot \mathcal{R}^d_f \subset \mathcal{R}^d_f\]

In part - \(I^d_1 = \langle x^2, + \rangle\)

Part(2): Among schiffer variation \(R^d / I^d \) is cont

Proof: \(f = f + t x^d \Rightarrow \frac{\partial f}{\partial x^i} = \frac{\partial f}{\partial x^j} (\text{mod} \ x^d) \)

Def. Deform of IV HS - (second order)

Prop: \(f \) is generic \& \(d \gg 0 \)

then \((1) + (2) \) characterize schiffer variation

\(\square \) Where is \(d \gg 0 \) needed.
Ano. \(\mathbb{A}^d : \mathbb{R}^d \to \mathbb{R}^{2d} \) I want this to be injective for \(f \) generically (need this for part (ii)).

This needs \(d > \binom{n+1}{d+1} \) when

\[
\begin{align*}
f &= \text{Formal polynomial} = \sum x^d \\
R^f &= C(x, \ldots, x) \\
H^2(C(x, \ldots, x)) &= H^2(C(x, \ldots, x))
\end{align*}
\]

On Counterexample to Forelli for hypersurface.

No, not that's known. No idea.